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APPROXIMATION OF RELIABILITY FOR A LARGE SYSTEM
WITH NON-MARKOVIAN REPAIR-TIMES

Jean-Louis Bon
1
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Abstract. Consider a system of many components with constant failure rate and general repair rate.
When all components are reliable and easily reparable, the reliability of the system can be evaluated
from the probability q of failure before restoration. In [14], authors give an asymptotic approximation
by monotone sequences. In the same framework, we propose, here, a bounding for q and apply it in
the ageing property case.

Résumé. Le calcul de la fiabilité d’un grand système réparable peut être réduit à celui de la probabilité
q de panne avant remise à neuf. Dans [14], les auteurs donnent une approximation asymptotique de
q par séquences monotones pour un système k/n. Nous proposons ici un encadrement de q dans un
cadre plus général et l’appliquons à des réparations vieillissantes.
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1. Introduction

This paper is motivated by the study of reliability of large and highly reparable systems. It constitutes
a continuation of different works originating in Gnedenko and Solovyev [7] and more recently Solovyev and
Konstant [14]. These papers were concerned mainly with asymptotic analysis of reliability. Undoubtedly, their
approach was profitable to a large area of applications. For more details on asymptotic analysis of reliability,
see [6] and references contained therein. We consider here a system with N reparable independent components.
The evolution is described by a binary vector e(t)=(ei(t))i=1..N where ei is equal to 0 (resp. 1) according as
component number i is working (resp. failed so, in this case, under repair). Each component i has a lifetime
Xi with constant failure rate λi and repairtime Ri with any distribution.

It is quite natural to define on the system states set E a partial order relation. A state is better than another
if it has less failed components:

e(t) ≤ e′(t)⇔ ∀i, ei ≤ e′i.

Without any risk of confusion, it’s possible to identify a state e and the set of failed components of e. In this
way, the order amounts to inclusion.
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The set E can be decomposed in two disjoint parts E+ and E− where E+ is the set of working states and
E− the set of failure states. We assume that this decomposition is compatible with the order relation in the
following sense. Let two states be in order, say e ≤ e′. If e′ ∈ E+ (resp. e ∈ E−) then e ∈ E+ (resp. e′

∈ E−). It seems natural to assume that when all components are functioning (e = 0) the system is functioning
too, and the same for repairing e = 1. The system is said to be coherent in Barlow-Proschan’s sense [1]. In
this description, a minimal cut is nothing but a minimal subset of (E−,≤). Denote by G the set of minimal cuts.

If A is a subset of E, let TA be the entry time, say

TA = inf{t > 0 | ∃s < t, e(s) /∈ A e(t) ∈ A}·

A state is characterized by its associated failed components denoted a. For this state, we note λa the exit
parameter:

λa =
∑
i∈a

λi.

The initial state 0 plays a particular role. Its entry time and parameter will be denoted by T0 and λ, and we
have

λ =
N∑
i=1

λi.

This parameter is the inverse of the mean sojourn time in 0. We need also a global mean repairtime r which is
defined by:

r =
∑
i=1..N

λi
λ
ri

where ri is the mean repairtime of component i. This formula has a concrete meaning. If the system is starting
from 0, the first failure concerns component i with probability λi

λ . In this case, repair starts for a mean time ri.
So r can be seen as the mean repairtime of a component. The product λr measures the stiffness of the system.
Generally, for reliable systems, this parameter is very small. Due to the coherence property, the entry time in
failure states T− can be written:

T− = TE− = inf
γ∈G

Tγ .

It is natural to assume the system new at time 0 and to estimate the reliability at time t:

R(t) = P(T− > t | e(0) = 0).

This calculation is very important in terms of industrial safety and quality. It’s known as a difficult problem.
During the last twenty years, many papers were concerned with approximation evaluations. A common feature
of essentially all these works (especially [2, 7, 10, 12, 13]) is that they use the fact that the initial state is a
regeneration state. It would be too lengthy to mention all these approximations. We choose a representative
one in Solovyev [13]:

R(t) ≥ exp(−λqt) (1.1)
where q = P(T− < T0 | e(0) = 0). (1.2)
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With this result, the evaluation of the function R can be reduced to the evaluation of q which is the probability
to have a failure system before complete restoration when system goes out from initial state 0.

Our purpose is to get a good approximation of q in the most general framework possible. In [14], for a
k/n model, authors consider monotone trajectories (a trajectory is monotone if the sequence of visited states
is monotone). They prove, in an asymptotic setting, that cumulated probability of all monotone trajectories
furnishes a good approximation. It’s not surprising that loops “repairs-failures” may have a small probability.
For the same model we propose a non-asymptotical approximation of q without any assumption on repair
distribution. In addition, when repairtimes verify the ageing property we give even simpler bounds. Failure
rates are supposed to be independent of the state system but this restriction can be removed by a bounding of
the different rates [7].

The system enters failure states by minimal cuts, so we can decompose q from these minimal cuts,
q = P(infγ∈G{Tγ} < T0), and define a pessimistic version qG ≥ q by summing:

qG =
∑
γ∈G

qγ where qγ = P(Tγ < T0 | e(0) = 0). (1.3)

This bounding is more efficient when minimal cuts have few redundancy. So we need to bound each term qγ
from separate study of each minimal cut.

The paper is organized as follows. Section 2 is devoted to modelling the system life. Contrary to the
Markovian case, the description of the process is not usual. It requires a more precise and complex framework.
Main results dealing with bounding of q from monotone sequences are given in Section 3. Section 4 is concerned
with applications in the case of ageing repairtimes. In the industrial context, such an assumption is quite
reasonable and the simple bounds given at the end of the paper should answer engineer requirements.

2. System modelling

The system is composed of N independent components. For i = 1..N, the component i has a lifetime Xi

with constant failure rate λi. Its repairtime Ri (almost surely positive) has a general distribution defined by
the queue function Hi:

Hi(t) = P(Ri > t), so ri =
∫ ∞

0

Hi(u)du.

Considering constant failure-rate components is realistic for many industrial components. But for the
repairtimes, this assumption is too restrictive. Nevertheless it’s reasonable to assume that a current repair-
ing has more chance of success than a starting repair. Many works in the literature deal about the ageing
property definition (for more details, see for example [1, 2, 4, 7]). The next definition gives a general version.

Definition 2.1. A random positive variable Ri is said NBUE (New Better than Used in Expectation) if, for
any t, we have

E(Ri − t | Ri > t) ≤ ri.

As a consequence of this relation, the repair time Ri verifies, for any t:∫ ∞
t

Hi(u)du ≤ rie−t/ri . (2.1)

The property defined by this last inequality is usually called HNBUE.

In our context, the NBUE property means that when a component is under repair, mean time to restoration
is less than when repair is starting. The more general definition HNBUE is less expressive. Roughly, it amounts
to say that the distribution has not an heavy tail (less heavy than the exponential one).
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In what follows, we construct independently, for each component i, the process ei(t) which is Markovian with
respect to some filtration which is not the natural one. For clarity of notation, we omit, in this part, the index
i of the component.

Let us remark that if the repairtime is instantaneous then the sequence of failures yields a Poisson process
with parameter λ. We start from this process and introduce successive repairtimes. Let (ξj)j>0 be the sequence
of jump times of this Poisson process. It represents potential dates of failure. Let (ρj)j>0 an i.i.d. sequence
of random variables with the same distribution as R (repair time of the component) and independent from the
previous Poisson process.

Let u be a positive number. We define the process C(t) starting from u as

C(t) = (u− t)+ +
∞∑
j=1

(ξj + ρj − t)+
.1ξj≤t.

As usual, notation (x)+ is used for max{x, 0}. Let denote Gt the σ-algebra generated by {ξj , ρj|ξj ≤ t} and G
the corresponding filtration: G = (Gt)t≥0. Due to the Poisson property, the process C(t) is a G-Markov process.
It is worthy noting that the corresponding filtration, at time t, allows to anticipate the process.

To construct the process C(t) we have taken into account all the failure-times. To model the evolution of
the component we have to cancel the failures which appear when the component is in repair. So we propose to
construct a new process c(t). Let fix u ≥ 0. Set:

σ0 = u

and define, step by step, for j ≥ 0:

aj+1 = inf
k>0

(k | ξk > σj), τj+1 = ξaj+1 , Rj+1 = ρaj+1 , σj+1 = τj+1 +Rj+1. (2.2)

Component has complete repair at each time σj . The next failure after σj is the first jump ξaj+1 of the Poisson
process. The sequence (aj)j is strictly increasing, hence the random variables Rj are i.i.d. with the same
distribution as R and are independent of (τj)j . We define:

c(t) = (u− t)+ +
∞∑
j=0

(τj +Rj − t)+
.1τj≤t. (2.3)

The restricted filtration is

F = (Ft)t≥0 with Ft = σ{τj , Rj |τj ≤ t} = σ{c(s)|s ≤ t}·

Remark 1. The process c(t) is Markovian with respect to this filtration.

To prove this, let us suppose c(t) > 0, then the end of current repair is known. Because of the loss of memory
of the Poisson process, if τ is the next lifetime then τ−c(t) is independent of Ft. If c(t) = 0 the same conclusion
holds clearly.

To return to the state evolution of the system we define

e(t) = 1c(t)>0.
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The process e(t) is Markovian with respect to the (Ft)t≥0-filtration. We can define, in the same way, a process
E(t) which is constructed from C(t):

E(t) = 1C(t)>0.

Remark 2. For each t > 0, c(t) ≤ C(t), and e(t) ≤ E(t).

Remark 3. The perfect state 0 is a renewal state for the four above processes.

For each component, we make independently the same construction. Now we denote with an adding index i
all the variables which were defined above: ξi,k, σi,j , τi,j , ei, ci, Ei, Ci. We describe the evolution of the system
by the new process

e(t) =
N∑
i=1

ei(t).

Similarly, we define the process c(t) =
∑N
i=1 ci(t), and the processes C(t) and E(t). For the component i, in

the same way as for usual processes, we can define, for t > 0, the failure-time and repairtime close to t. Let us
denote τi(t) the last failure date before t. Its number is j∗ and the end of the associated repairing is σi(t). The
case j∗ = 0 gives σi(t) = u otherwise

τi(t) = inf
j>0;τi,j≤t

(τi,j) = τi,j∗ , σi(t) = σi,j∗ = τi(t) +Ri,j∗ .

At the time t, the component i failed for the last time at the date τi(t) and the residual repairtime is (σi(t)−t)+.

In the sequel, we are interested by “chains of failures”. We need to bound the probability that a component
is under repair between two fixed dates knowing its failure time. The following technical lemma is given for this
purpose.

Lemma 2.2. Let a, b, s, δ positive with 0 ≤ s ≤ a + δ ≤ b+ δ. For component i and every initial distribution
δui , we have:

Pui (max{a, s} < τi(b) ≤ a+ δ; b ≤ σi(b)) ≤ λiδHi(b− a− δ) + (λiδ)2/2. (2.4)

Proof. If I is an interval, we denote by µ(I) (resp. ν(I)) the number of failures for masked process (resp.
not-masked process):

µ(I) = card{j | τi,j ∈ I} ν(I) = card{j | ξi,j ∈ I}·

By definition, µ(I) ≤ ν(I). To establish the result, we have to study the number of jumps in the interval
[max{a, s}, a + δ]. Since τi(s) is the last failure-time preceding s, we have τi(s) ≤ s. And by definition
τi(s) < σi(s). So

µ (] max{a, s}, a+ δ]) = µ (] max{a, σi(s)}, a+ δ]) .

The strong Markov property can be used at the renewal point σi(s). So, for any integer k, we can bound the
probability to have more than k jumps in ]a, a+ δ]∩]s, a+ δ]:

Pui(µ] max{a, s}, a+ δ] ≥ k|Bi(s)) ≤ P0(µ](a− σi(s))+, (a− σi(s))+ + δ] ≥ k).
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This writing allows to deal with both cases with the same formula. Replacing µ by ν, the problem is comes
down to the Poisson process case for which the inequality is well known (see [5]). The probability to have at
least one failure in the interval ]x, x + δ] is less than λiδ and the probability to have more than two failures
is less than (λiδ)2. The meaning of the event {max{a, s} < τi(b) ≤ a + δ; b ≤ σi(b)} is that there is a jump
between max{a, s} and a+ δ with a repairtime ending after b− a− δ.

Another lemma will be useful in the sequel. It answers the question: if the process is going out of the perfect
state, how long time does it take before complete restoration? All the components are reparable and no state is
absorbing, so such a return happens almost surely. The next lemma gives a bound for this mean return time.
The proof is based on a classical result by Klimov [9] for busy period in a queue M/G/∞.

Lemma 2.3. Let T1 = inf{t | e(t) 6= 0} be the first failure-time of a component of the system (entry time in
E − {0}). Recall that T0 is the entry time to 0. So the mean sojourn time spent out of the perfect state 0,
starting from 0, is bounded by:

E0(T0 − T1) ≤ eλr − 1
λ
·

It follows that, for any u: Eu(T0) <∞.

Proof. As above, (ξi,j)j=1,2,.. is a Poisson process with parameter λi and (ρi,j)j=1,2,.. is a sequence of random
variables with the same distribution as Ri and independent of the Poisson process.

Ci(t) = (ui − t)+ +
∞∑
j=1

(ξi,j + ρi,j − t)+
.1ξi,j≤t.

We have also:

c(t) ≤ C(t).

We want to compare the return times. By analogy to T0 and T1 for the process c(t), let denote T ′0 and T ′1 the
return time and the first failure time for the process V (t). Clearly we have T ′1 = T1 and

E0(T0 − T1) ≤ E0(T ′0 − T ′1).

It is sufficient to prove the result for the process C(t). This process has the same distribution as the queue
process W defined by

W (t) =
∞∑
j=1

(ζj + Uj − t)+
.1ζj≤t

where ζk is a Poisson process with parameter λ =
∑
λi and Uk a sequence of independent random variables

with the same distribution as U .

P (U > x) =
N∑
i=1

λi
λ
Hi(x).

We can easily understand this identity between C(t) and W (t) as follows. Starting from 0, the system has its
first failed component at time ζ1. This failure concerns the component i with probability λi

λ . So the repairtime
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distribution has the same distribution as U . If the process e(t) starts from (ui)i=1,..,N we use

∑
i=1,..,N

(ui − t)+ ≤

 ∑
i=1,..,N

ui − t

+

to prove that

c(t) ≤
(∑

i

ui − t
)+

+W (t).

So for this process, the return time T
′′

0 verifies:

E(ui)i(T0) ≤ EPui(T
′′

0 )

where E(ui)i(T0) is the expectation of T0 starting from ui for the component i and EPui(T
′′
0 ) is the mean return

time of the queuing process starting from
∑
ui. Intuitively, we return at 0 more slowly if we suppose that the

repairs are made one after the other. A classical result for M/G/∞ queue (see [9]), gives that expectation is
equal to:

λ.E0(T
′′

0 − T1) = exp(λE(U)) − 1

EPui(T
′′

0 ) <∞.

And this achieves the proof.

3. Bounding of failure probability

The aim is to evaluate q = P(T− < T0) which is the probability of failure before restoration, especially its
pessimistic version (see Eq. (1.3)), which is built from minimal cuts:

qG =
∑
γ∈G

qγ .

The first step consists in evaluating qγ = P0(Tγ < T0) for a fixed minimal cut γ. Let us fix γ = {i1, i2, .., in}.
Indeed, in the case of highly reliable systems, it is impossible to obtain the failure probability by enumera-
tion of all trajectories ending at γ. Nevertheless a good choice of some trajectories allows to get an efficient
approximation.

3.1. Evaluation of direct failure

In reliability models, failure probabilities are very dissimilar to repair probabilities. So, when a system
failure is obtained with n failure components, it is not very probable to have more than n failures (each pair
repair − failure has a small probability). That induces to study trajectories without repairing.

If s is a permutation of γ, we define direct failure in γ via s by writing that the components of the minimal
cut γ fail in the order s and stay under repair until Tγ (time of failure system). When Tγ is given, we can
define, as previously, for each component ij of γ the last failure time before Tγ (which was noted τij (Tγ) above).
Recall that τsij ,1 is the first failure of the component sij .
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Definition 3.1. The probability pγ defined by next formula:

pγ(s) = P0

(
T1 = τsi1,1 < ... < τsin,1 = Tγ ; ∀ j ≤ n ,τsij ,1 = τsij (Tγ); ∀k ≤ N,σk,1 ≥ Tγ

)
is called probability of direct failure in γ via s.

If we consider the set Sγ of all the permutations of γ, we get the probability of direct failure in γ:

pγ =
∑
s∈Sγ

pγ(s).

For these trajectories, each component of γ fails one after the other, without repairing, until failure system.
Lastly, we define the probability of direct failure pG, by considering all minimal cuts:

pG =
∑
γ∈G

pγ .

It is noteworthly that, generally, pG is less than qG. In what follows, we propose a bounding of q in function of
pG. But before, let us give a lemma which is interesting by itself.

Lemma 3.2. Let G be the set of minimal cuts, then the probability pG of direct failure is bounded as follows:

pG ≤ α

where α is given by:

α =
∑
γ∈G

πγ
µγ
λ

with πγ =
∏
i∈γ

λiri, µγ =
∑
i∈γ

1
ri
·

Proof. First, fix a permutation s of the minimal cut γ = {i1, i2, ...in}. As previously, pγ(s) is the direct failure
probability in order s via γ. Regarding the successive failure dates of the direct sequence, we can define a
measure pγ(s, .) on R+n. It is absolutely continuous with respect to the corresponding Lebesgue measure dx.
Its density can be computed as follows. Let ∆n be the domain defined by

∆n = {xi : 0 < x1 < x2 < ... < xn}·

For j = 1, ..., n, the times xj represent the successive failures of the different components sij of γ.

dpγ(s, x)
dx

= 1∆n .

∏
j≤n

λsij e
−λsij xj

 .e−(λ−λγ)xn .
∏
j<n

Hsij
(xn − xj). (3.1)

Recall that λ represents the sum of failure rates of all components and that λγ is the sum of failure rates of
components of the minimal cut. If we join all exponential terms, using the order of the terms xj , we obtain:

e−(λ−λγ)xn .
∏
j≤n

λsij e
−λsij xj ≤ e−λx1

∏
i∈γ

λi.

So we can write:

dpγ(s, x)
dx

≤
dp+
γ (s, x)
dx

(3.2)
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where the bounding probability p+
γ is defined by:

dp+
γ (s, x)
dx

= 1∆n .

∏
i∈γ

λi

 e−λx1 .
∏
j<n

Hsij
(xn − xj). (3.3)

In order to prove the inequality of the lemma, we have to take into account all the permutations.

αγ =
∑
s∈Sγ

∫
dp+
γ (s, .) =

∏
i∈γ

λi

 .
∑
s∈Sγ

∫
1∆n .e

−λx1 .
∏
j<n

Hsij
(xn − xj)dx. (3.4)

With the change of variables: for j = 1, .., n− 1, vj = xn − xj , and vn = x1, the majorizing probability can
be rewritten:

αγ =

∏
i∈γ

λi

 .
∑
s∈Sγ

∫
1∆′n .e

−λvn .
∏
j<n

Hsij
(vj)dv

where the domain ∆′n is associated to the change of variables:

∆′n = {vi : 0 < vn−1 < vn−2 < ... < v1 ; vn > 0}·

It’s worth remarking that this integral concerns only n − 1 repair distributions. The sum on all permutations
gives the product of integrals of all the different Hj . So we obtain the next simple inequality:

pγ ≤ αγ =
1
λ

∏
i∈γ

λiri

 .

∑
i∈γ

1
ri

 .

And the lemma is proved by taking into account all the minimal cuts: α =
∑
γ∈G αγ .

3.2. Upper bound of the failure probability q

Now we establish the main results for the approximation of the failure probability. Some applications are
given in the last section. First theorem furnishes an upper bound for the probability qG (so also for q) from
above parameter α. This parameter is easily computed from the mean repairtimes and the mean failure-times.
Recall that T1, (resp. T0, T−) denotes the date of first component failure amongst all components (resp. date
of the complete restoration after exit from 0, date of system failure). Of course T1 < T0, and T1 < T−.

First, let fix γ. With aim of lightening notations, we denote

τ(T−) = (τ1(T−), τ2(T−), .., τn(T−))

the vector of the last successive failure-times of each component of γ before T− in a fix order.

Theorem 3.3. The failure probability qG obtained by cumulating all the minimal cut probabilities is bounded
as follows:

qG ≤ (1 + λE0(T0 − T1))α ≤ eλrα. (3.5)
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Proof. With a view to compare pγ and qγ , we consider the event

A = {τ(T−) ∈ ∆n;T− < T0 ; σi(T−) > T−}

of successive failures of γ components, in a fix order, before the complete restoration in 0. We want to bound
P0(A). Let us remark that the event A can be also written:

A = {τ(T−) ∈ ∆n; τ1(T−) < T0 ;σi(T−) > T−}·

Two cases are possible, according as the first failure component at time T1 concerns or not a γ component. This
gives a decomposition for A in two parts:

A1 = A ∩ {τ1(T−) = T1} and A2 = A ∩ {τ1(T−) > T1}·

For A1, the condition {τ1(T−) = T1} gives clearly {τ1(T−) < T0}, hence A1 is also:

A1 = {τ(T−) ∈ ∆n ; τ1(T−) = T1; σi(T−) > T−, ∀i ∈ γ}·

To evaluate the probability for both cases A1 and A2, we use a standard uniform discretisation of space. Let δ
a positive real number, k = (ki)i=1,..,n an integer vector of ∆n, and for a fixed k, let note:

Ik(δ) = {(yi)i : i = 1, .., n; kiδ < yi < (ki + 1)δ}·

For the special case where k1 = 0, we also use:

I ′k(δ) = {(y)i : y1 = 0; kiδ < yi < (ki + 1)δ,∀i = 2, .., n}·

Remark that Ik(δ) is included in ∆n when δ is less than 1.
For A1, the question is reduced to bound the probability of the event:

A1,k = {τ(T−) ∈ ∆n ∩ (T1 + I ′k(δ))} ∩ {σi(T−) > T−}·

For A2, the corresponding event is:

A2,k = {τ(T−) ∈ ∆n ∩ (T1 + Ik(δ))} ∩ {τ1(T−) < T0} ∩ {σi(T−) > T−}·

Such an event is contained in:

A′2,k = {τ(T−) ∈ ∆n ∩ (T1 + Ik(δ))} ∩ {T0 > T1 + k1δ} ∩ {σi(T−) > T−}·

Indeed, the first failure element arrived at time T1 and, for each component i ∈ γ, the last failure τi(T−) before
T− is after T1 + k1δ. So complete restoration cannot be realized before T1 + k1δ. If we observe the process at
this time, we can use Markov property. The process is in e(T1 + k1δ) and we have:

P0(A2,k) ≤ P0(A′2,k) = P0(T0 − T1 ≥ k1.δ).Pe(T1+k1δ)(A2,k−k1)

where the notation k − k1 represents vector (0, k2 − k1, ..., kn − k1). This bounding allows to control what
happens when kn is fixed.

Now we must control the probability when knδ is close to ∞. Let M a fixed positive real number and BM
the event:

BM = {T− > M + T1}·
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We decompose A from discretisation with δ and bounding by M :

P(A) ≤ P(BM ) +
∑

{k:knδ≤M}
P0(A1,k) +

∑
{k:knδ≤M}

P0(A′2,k). (3.6)

Let us give a lemma to bound these different terms.

Lemma 3.4.

∑
{k:knδ≤M}

P0(A′2,k) ≤
∑

{k:knδ≤M}
P0(T0 − T1 ≥ k1δ)

∏
i≤n

λi.δ.Hi((kn − ki − 1)δ) +
(
e
λδ
2 − 1

)∏
i≤n

λi.δ


∑

{k:knδ≤M,k1=0}
P0(A1,k) ≤ 1

λδ

∑
{k:knδ≤M,k1=0}

∏
i≤n

λi.δ.Hi((kn − ki − 1)δ) +
(
e
λδ
2 − 1

)∏
i≤n

λi.δ

 .

Proof of lemma. We want an upper bound of

P0(A′2,k) = P0(T0 − T1 ≥ k1.δ).Pe(T1+k1δ)(A2,k−k1).

To prove the first formula, we have to bound Pe(T1+k1δ)(A2,k−k1). Beginning with convention τ0(T−) = 0, we
successively write that time τi(T−) must appear after τi−1(T−) but also between kiδ and (ki + 1)δ. Since this
time failure is the last one for i, we also have to write that σi(T−) is after knδ. These conditions allow to apply
Lemma 2.2, and we obtain:

P0(A2,k−k1) ≤
∏
i≤n

(
(λi.δ)2

2
+ λiδHi((kn − ki − 1)δ)

)
.

This product can be bounded from using expansion in δ and the fact that Hi ≤ 1 and we obtain:

P0(A2,k−k1) ≤
∏
i≤n

λi.δ

∏
i≤n

Hi((kn − ki − 1)δ) +
∑
i≤n

λiδ

2
+
∑
i,j≤n

λiλjδ
2

4
+ ...


≤

∏
i≤n

λi.δ

∏
i≤n

Hi((kn − ki − 1)δ) +
(
e
λδ
2 − 1

) .

For the case k1 = 0, reasoning is similar but we must take into account the probability of {τ1(T−) = T1} which
is equal to λ1/λ. That explains the term 1

λδ in the assertion.
Now, we can complete the proof of the theorem. In the decomposition:

P(A) ≤ P(BM ) +
∑

{k:knδ≤M}
P0(A1,k) +

∑
{k:knδ≤M}

P0(A′2,k)

both last right terms can be bounded. The left one is tending to 0 when M is tending to∞ because E0(T−−T1)
is finite. If δ tends to 0, in the discrete decomposition:

∑
{k:knδ≤M,k1=0}

 1
λδ

∏
i≤n

λi.δ.Hi((kn − ki − 1)δ) +

(
e
λδ
2 − 1

)
λδ

∏
i≤n

λi.δ


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the second term is O(δ) and the first term converges to the next integral when we sum on all the different
permutations ∏

i≤n λi

λ

∫
v1>..>vn−1>0

∏
i<n

Hi (vi) dvi.

In a similar way, in the sum:

∑
{k:knδ≤M}

P0(T0 − T1 ≥ k1δ)

∏
i≤n

λi.δ.Hi((kn − ki − 1)δ) +
(
e
λδ
2 − 1

)∏
i≤n

λi.δ


the second term is less than

(
M
δ + 1

)n (∏
i≤n λi.δ

)(
e
λδ
2 − 1

)
= O(δ) and the first one converges to the next

integral when we sum on all the permutations:

∏
i∈γ λi

λ

(∫
P0(T0 − T1 ≥ u)du

)∫
v1>..>vn−1>0

∏
i<n

Hi (vi) dvi.

We recognize the mean return time E0(T0−T1) (see Lem. 2.3) and the term α which was defined in the previous
lemma. To conclude, we cumulate on all the minimal cuts.

This result is opening a new approach to evaluate the reliability of highly reliable systems. Using the
regenerative approximations which were mentioned at the beginning, we obtain the next practical bound.

Corollary 3.5. A system is composed with N components. For i = 1, ..., N , each component i has a constant
failure-rate λi and a general repair time distribution (mean time ri). Let denote G the set of the minimal cuts.
The reliability at time t is bounded, in a pessimistic way, by:

R(t) ≥ exp(−at)

where a is defined by

a = exp

(
N∑
i=1

λiri

)
.
∑
γ∈G

πγµγ with πγ =
∏
i∈γ

λiri, µγ =
∑
i∈γ

1
ri
·

It is a direct consequence of previous theorem because q ≤ qG ≤ eλrα.

3.3. Lower bound

In this paragraph, we give a lower bound for the failure probability. It is pleasant to see that the same
parameter α is found again in the calculation of this bound. It would be useful to measure the accuracy of the
approximation.

Theorem 3.6. With the same notations as above, the probability of failure before restoration (which cumulates
all minimal cuts) verifies:

pG ≥ α(1− ρ)
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where ρ is the parameter:

ρ = sup
γ∈G

∫
R+n

(
1− eλmax{vi}

)∏
i∈γ

Hi(vi)
dvi
ri
·

Proof. First, fix a minimal cut γ . Using expression (3.3), we write xj < xn in the exponential term of (3.1).
So we get:

αγ − pγ(s,∞) ≤
∫

R+n

(
1− eλ(xn−x1)

)
dp+
γ (x).

With the same change of variables as above, vn = x1 and vj = xn − xj for j < n, we obtain:

αγ − pγ(s,∞) ≤ ραγ

where αγ is the upper bound when γ is fixed. Lastly we take into account all minimal cuts.

Now it would be interesting to sum up all these results. Taking the same notations as in the above sections,
we obtain successive inequalities which can be used in concrete situations.

Corollary 3.7. The failure probability q, the cumulated failure probability qG on minimal cuts, the direct failure
probability pG can be ordered.

α(1− ρ) ≤ pG≤ q ≤ qG≤ αeλr (3.7)

where α is given by:

α =
∑
γ∈G

πγ
µγ
λ

with πγ =
∏
i∈γ

λiri, µγ =
∑
i∈γ

1
ri
·

That is to say that the failure probability q can be approximated with α. It is worth noting that this parameter
can be computed without any information on the detail of the system architecture. Only minimal cuts must be
known.

A special case engages our attention. It concerns the n-out-of-N systems (n/N systems). Failure arrives when
more than n components among N are failed. This case is the source of a lot of works (see, for example [11]).
It has been studied in an asymptotic approach by Solovyev and Konstant [14]. We recall their result in order
to compare with our boundings.

Theorem 3.8. Here we assume that failure rates λi(e) are depending from state system e. Failure system is
characterized by more than n failed components. Let denote

λ̄i = max
e∈E+

λi(e) and λ̄ = max
e∈E

∑
i

λi(e).

If the parameters λi(e) and the functions Hi(x) are varying in such a manner that:

λ̄i
λi
≤ c <∞ and

1
ri

∫ ∞
0

(
1− eλ̄x

)
Hi(x)dx→ 0 (3.8)

then, with the same notations as above, the next approximations are valid:

(q − pG) = o(pG) = o(α).
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So for n/N systems, with some general asymptotic point of view, it is proved that direct sequences give ap-
proximately the failure distribution. Here, studying this case thoroughly, we have built a similar result in a non
asymptotic context and we have given a measure of efficiency of this approximation.

For example, let us consider the particular case of a parallel system with N identical exponential components.
Let denote (λ, µ), the failure and repair common rate. From Corollary 3.5, we get an approximation of reliability:

R(t) ≥ exp(−NµeNεεN t)

where ε = λ
µ is the stiffness coefficient of the system.

4. Ageing repairtimes

4.1. Refined bounds

Previous boundings give a method to evaluate, a priori, failure probability q ' α. Only expectations of
lifetime and repairtime are used. Efficiency of this approximation is measured by λr which is an easily known
parameter and a small parameter ρ defined by:

ρ = max
γ∈G

∫
R+n

(
1− eλmax{vi}

)∏
i∈γ

Hi(vi)
dvi
ri
·

But this writing is not very expressive. From each component i and repairtime Ri we define a new random
variable R′i whose density is given by queue function Hi. With this variable, ρ can be more conveniently written:

ρ = max
γ∈G

{
E
(

1− exp
(
−λmax

j∈γ
R′j

))}
·

It is clearly bounded by:

ρ ≤ λmax
γ∈G

(
E
(

max
j∈γ

R′j

))
.

That induces us to seek a bounding of the expectation of the maximum of the random variables R′j . In the
popular case where all components have both lifetime and repairtime exponentially distributed, random variable
R′j has the same exponential distribution as Rj and the bound for ρ follows immediately:

ρ ≤ λ

µ

where λ =
∑
λi and µ = minµi. This parameter can be seen as a stiffness coefficient of the Markov model.

Consider now some systems involving ageing properties for repairtimes.

Proposition 4.1. If each component of the system is HNBUE, then:

ρ ≤ λmax
γ∈G

{
(1 + log |γ|) max

j∈γ
rj

}
where |γ| represents here the number of elements of γ.

Proof. The expectation of the maximum of R′i can be written

E
(

max
j∈γ

R′j

)
=
∫ ∞

0

P
(

max
j∈γ

R′j > u

)
du.
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Fix a > 0 and decompose the integral:

E
(

max
j∈γ

R′j

)
≤

∫ a

0

1du+
∫ ∞
a

P
(

max
j∈γ

R′j > u

)
du (4.1)

≤ a+
∫ ∞
a

∑
j∈γ

P(R′j > u)du. (4.2)

Using property of Definition 2.1, we get, for any a,

E
(

max
j∈γ

R′j

)
≤ a+

∫ ∞
a

∑
j∈γ

rje
−u/rjdu.

So the next relation is available for any a:

E
(

max
j∈γ

R′j

)
≤ a+

∑
j∈γ

rj .e
−a/rj .

The right term is a function of a which has a minimum for the solution of the equation∑
j∈γ

e−a/rj = 1.

Thus, we get a first upper bound for ρ but not an explicit form. When all the expectations rj are less than r

the right part of the inequality is less than a + |γ|re−a/r. We can choose a = r. log(n), then the inequality of
the proposition is following.

Corollary 4.2. With the same notations as above, assume that all repairtimes have the HNBUE property. If
moreover, for any i, ri ≤ rmax then

ρ ≤ λ(1 + log|γmax|)rmax

where |γmax| is the dimension of the largest minimal cut.

For a n/N system, when the number of components are increasing, ρ is increasing as log(n) in comparison
to an increasing in N . We can refine the approximation of the failure probability by direct failure.

Corollary 4.3. Let denote ρ+ = λ(1 + log(N))rmax ≤ 1. With the same assumptions as previously, then

1 ≤ q

pG
≤ eρ

+

1− ρ+
· (4.3)

The parameter ρ+ bounds the coefficient ρ and the stiffness λr of the system. It can be evaluated without
knowledge about architecture. With regard to monotone sequences, it is easy to enumerate or simulate them.

4.2. Some applications

In this paragraph we want to investigate two special cases. The first one would can be used in concrete
situations when we know approximatively the repairtime. It concerns the uniform distribution for repairtimes.
It is clear that those distributions have NBUE property and we can apply above results. But it’s also possible
to bound directly by writing that this random variable has a bounded support.
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Corollary 4.4. If all repairtimes have a support in [0, a], then ρ is bounded with:

ρ ≤ λa.

In the special case where each repairtime component has an uniform distribution with mean ri this formula can
be expressed as:

ρ ≤ 2λ max
i=1..n

ri.

Proof. Using expression of ρ from random variable R′j , it’s sufficient to prove that R′j has also its support
bounded by a. In the case of uniform distributions, we have E(maxj∈γ R′j) ≤ 2 maxi∈γ ri.

This corollary gives a rough general bound for ρ. We remark that the size of minimal cuts doesn’t appear.
It confirms that when repairtime is small in front of the lifetime, the probability of failure is very small.

With a view to compare to classical results, we propose to take again the case of n/N systems. Let assume
that all N components are identical and exponentially distributed with failure and repair rates respectively
equal to λ, µ. Let consider the case where the failure system arrives when more than n components are failed.
By symmetry, there is exactly

(
N
n

)
identical minimal cuts. If we apply inequalities (3.7) then we obtain:(

N − 1
n− 1

)
εn−1(1− ρ+) ≤ q ≤

(
N − 1
n− 1

)
eNε.εn−1.

Here, ε is as above, a stiffness coefficient, that is: ε = λ
µ . This expression can be rewritten as follows:(

N − 1
n− 1

)
(1−Nε(1 + log(n)))εn−1 ≤ q ≤

(
N − 1
n− 1

)
(1 +Nε)εn−1.

Out of curiosity, let us compare to exact formulas that we can found, for example, in [3]:

q =

(
n−1∑
k=0

1(
N−1
k

)ε−k)−1

. (4.4)

Usually ε is very small for reliability applications and we can appreciate our general formula as a good approx-
imation even in this Markov case.

In conclusion when all components of a system are reparable and highly reliable, it’s natural to use approxi-
mations built from regenerative processes. In practical cases, the efficiency of this kind of approximations is very
good. To justify this use, different authors have given asymptotic reasons when stiffness vanishes. Here, after
modeling from Poisson Process, we have furnished exact bounds. These bounds confirm the approximation of
order one with respect to stiffness. Moreover these bounds can be applied when special property about repair-
time distributions is known. In this way, for concrete situations, it is possible to use more realistic distributions
than exponential one (for example, uniform distributions).

The authors express thanks to the referees for their helpful advices.
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