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TESTING IN LOCALLY CONIC MODELS� AND

APPLICATION TO MIXTURE MODELS

D� DACUNHA�CASTELLE AND �E� GASSIAT

Abstract� In this paper� we address the problem of testing hypothe�
ses using maximum likelihood statistics in non identi�able models� We
derive the asymptotic distribution under very general assumptions� The
key idea is a local reparameterization� depending on the underlying dis�
tribution� which is called locally conic� This method enlights how the
general model induces the structure of the limiting distribution in terms
of dimensionality of some derivative space� We present various applica�
tions of the theory� The main application is to mixture models� Under
very general assumptions� we solve completely the problem of testing
the size of the mixture using maximum likelihood statistics� We derive
the asymptotic distribution of the maximum likelihood statistic ratio
which takes an unexpected form�

�� Introduction

In this paper� we study the problem of hypothesis testing using maximum
likelihood statistics in very general and various situations� The originating
question was to solve the problem for general �nite mixtures� Indeed� the
problem is nor clearly neither completely solved in the literature� Partial
solutions may be found for example in Berdai and Garel �����	� Ghosh and
Sen ���
�	� Self and Liang ���
�	� Redner proved in Redner ���
�	 that the
maximum likelihood estimators for �nite mixtures with compact parameter
space is consistent in the quotient parameter space �when quotient is taken
with respect to identi�able classes	� This result� though interesting� is not
very tractable� Bickel and Cherno
 give the asymptotic distribution of the
supremum of some process which is related� following Hartigan �Hartigan
���
�		� to the problem of testing a mixture of two normal distributions
with same variance against a pure normal �see Bickel and Cherno
 �����		
in the simple mixture model� see ����	 below in section ��
In particular� Ghosh and Sen �Ghosh and Sen ���
�		 state the asymptotic
distribution of the maximum likelihood statistics for testing one population
against two populations� However� their formulation requires some strong
separation of the populations which is highly unsatisfactory� To be more
precise and to introduce the key ideas of our solution� let us discuss brie�y
the simplest problem of population mixture� So let

g������� � ��� �	f�� � �f�� ����	
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be the model� where F � �f�	��� is a parametric regular family of densities
with respect to some positive measure �� and � � ��� ��� The problem
is to test ���� g������� � f�� against ���� g������� �� f�� � We now have
g������� � f� if and only if ��	 � � and � � �	 or ��� � � and � � �	 or
��	 � � and �� � �	 � Considering the result of Redner �Redner ���
�		�
it would be possible to consider submodels� To �nd the distribution of
the maximum likelihood statistic� the usual method is to make expansions
around the true value of the parameter� to perform some maximization upon
the identi�able parameter �in the submodel	� and then to maximize the
maximum upon the non identi�able parameter� Doing so� to be able to
obtain a result� it is necessary to have a careful control over the remaining
terms of the expansions� with respect to the complete �rst terms� including
their coe�cients depending upon the non identi�able parameter� But in
our speci�c problem� when considering directional models� the degeneracy
of Fisher information leads to the fact that the classical technic may not be
performed� The remaining terms are not uniformly small with respect to
the complete �rst terms� Indeed� consider the submodel

�f�� � ��� �	f��

with � � �� �� � � and �	 free� Making an expansion with �	 �xed we have

ln��� ��	 � �
X f�� � f�

f�
�Xi	

�

�
��
X f ��

f�
�Xi	 �

�

�
���
X f��

f�
�Xi	

�
��� �	

��
�

�
�
X f�� � f�

f�
�Xi	 � ��

X f ��
f�
�Xi	

��
� o�same	�

For �	 �xed� the involved matrix �n��		 tending to Fisher information ���		
is invertible for big n� and we have ���� ���	 � �n��		�	Vn��		 with Vn��		
the score� It follows that for �	 �xed sup ln � 	

�Vn��		�n��		
�	Vn��		� Now�

when letting �	 tend to �� we obtain ���� ���	 � ��� �		� This contradicts the
fact that � � �� but more importantly by letting �	 go slowly to �� the
remaining terms in the expansion may be unbounded � This shows that
there is a need to separate �	 goes slowly to � and �	 is bounded away from
�� where sup ln has a di
erent behavior� this separation may not be done
using �	 only�
Here� we propose a complete solution to this speci�c problem without any

extra assumption on the parameters� The driving idea is to parameterize
in such a way that one of the parameters is identi�able at the previously
non identi�able point� so that it is possible to have asymptotic expansions
in its neighborhood� and the other parameter contains all the non identi�a�
bility� We call such parameterization locally conic� We thus propose a new
reparameterization of the mixture family space� An important property is
also that all directional Fisher informations are uniformly equal to one� The
�rst parameter can be thought around the true point as something close
to a distance� the other parameter can be thought as a �direction�� The
�rst parameter is thus the only parameter that is identi�able under the null
hypothesis� and the second one� around the true distribution� may be seen
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as a nuisance parameter� It can not be consistently estimated� When a
�direction� is �xed� the model is supposed to be regular � which� of course�
does not imply the regularity of the whole model� Doing so� the key point
is to assume that the closure of the derivatives in any direction at point
� of the log�likelihood is a Donsker class of random variables� so that we
prove easily that the asymptotic distribution of the maximum log�likelihood
is a function of the supremum of a Gaussian process� Moreover� the �rst
�distance� parameter converges in distribution with parametric speed

p
n�

When testing one population against two populations� the asymptotic dis�
tribution has a term coming from �second order� unboundness� see Theorem
���� The simple mixture model does not lead to such extra term� compare
Theorem ��� and Theorem ����
This situation is not proper to mixture models� In this paper� we present

an abstract general parameterization to �nd the asymptotics of maximum
likelihood statistics� and its application to hypothesis testing� These gen�
eral models are not identi�able in general and can be nonparametric models�
We call them locally conic models� We develop here two major applications�
mixture models� and usual parametric models� Applied to parametric mod�
els� this point of view underlines naturally the role of the geometric structure
of the parameter space around the null hypothesis in the precise formulation
of the limit distribution� Applied to mixture models� this leads to a theorem
where it appears that an unexpected term in the limit distribution comes
from the non identi�ability of the model� The locally conic parameterization
allows a clear understanding of what happens due to the non identi�ability�
Nonparametric testing �and the associated estimation of our �distance� pa�
rameter	 of a probability density may be carried out using our theory for
contamination �or perturbation	 models� Indeed� they are an extension of
the simple mixture model� Applications to ARMA processes are quickly ex�
plained and are developed in another paper �Dacunha�Castelle and Gassiat
�����		�
The organization of the paper is the following� in a �rst section� we set the

general point of view and assumptions on the model� We explain the driving
ideas� In a subsequent section� we prove an abstract result concerning the
case where �classical� technic may be performed� convergence� asymptotic
distribution of the maximum log�likelihood statistic and of the �rst �dis�
tance� parameter �� together with asymptotic distribution of the maximum
log�likelihood under contiguous sequences� We then show how these results
apply to the problem of hypothesis testing� and how they apply to the clas�
sical parametric situation� with particular attention to the geometry of the
parameter space� In section �� we solve the problem for population mixtures�
and in section � we propose further remarks and applications� in particular
to nonparametric perturbation models and to ARMA models� Proofs of the
main results are given in section ��

�� Locally conic parameterization

G is a set of probability densities g in L	��	� where � is a positive measure
on Rk� Most often in the sequel we refer to the situation where we observe
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a sample �X	� � � � � Xn	 of i�i�d� random vectors with common distribution
the underlying probability g���
The fundamental assumption on the model is the following� we assume

that there exists a parameterization of G through two parameters � and ��
��� �	 � ���M �� B� M is a positive real number� B is a precompact set in a
Polish space with metric d�

G � fg������ ��� �	 � T g
where T � ���M ��B is endowed with the product topology of R and B� T
is the �compact	 closure of T � The parameterization satis�es the following
assumptions�

�A�	 It is possible to extend the application ��� �	 	 g����� to a map

from T to G such that ��� �		 g������x	 is continuous � a�s�� and�

g����� � g� 
� � � ��

For any �� let

�� � supft � � � ��� t�� f�g � T g�
We say that a model is locally conic if the local parameterization veri�es�

�A�	 �� � B� �� 	 ��

This assumption says that it is impossible to �nd accumulation sequences of
parameter leading to � � � with directions � where the submodel �g�������
��� �	 � T 	� �where � is �xed	 is not de�ned in a right neighborhood of ��
The driving ideas are the following� First� to be able to expand the

likelihood� we need a point around which to make the expansion� In other
words� we need a parameter � which can be consistently estimated� This
is the reason of the locally conic parameterization such that �A�	 and �A�	
hold� Second� we have to make an expansion till the remaining terms may
be uniformly bounded� so that the maximization may also be performed on
the parameter �� In the parametric situation and for the simple mixture� an
expansion till order � will be enough� see the next section� In the mixture
model� this is not possible any more� as we shall explain further� However�
the locally conic parameterization allows to see exactly what happens and
to �nd the solution�
The �rst point which holds for both applications is the uniform conver�

gence of the estimator of �� we show it now� The log�likelihood is�

ln��� �	 �
nX
i
	

log g������Xi	�

De�ne the maximum likelihood estimator ���� ��	 to be any maximizer of ln
over T � which exists� thanks to �A�	� As usual we shall need�
�AC	 There exists a function h in L	�g��	 such that� �g � G� j log gj 
 h

��a�e�

The following Theorem states the convergence of ���

Theorem ���� Under assumptions �A�� �A�� and �AC�� �� converges in
probability to � as n tends to in�nity�
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Notice that �� may or may not converge� see the examples developed in
subsequent sections� for mixture models� �� does not converge in general�
and for regular parametric models� �� converges in probability�
To study the maximum likelihood statistic� we shall use Taylor expan�

sions� The �rst term in the expansion is the empirical process of the �rst
derivative of the density� The uniformity of the convergence in the cen�
tral limit theorem will be the second key point in the paper� De�ne H the
Hilbert space L��g� � �	� and

D � f
g������
g�

� � � Bg�

�AD	
D is a Donsker class� Let 
d be a Gaussian process on D with co�
variance the usual scalar product in H and with continuous sample
paths w�r�t� the intrinsic variance metric�

Donsker classes are de�ned in Van der Vaart and Wellner �����	� Roughly
speaking� a Donsker class is a set of functions for which the empirical distri�
butions �with i�i�d� variables	 verify a uniform central limit theorem� with
limit distribution a Gaussian process�

�AN	 We assume that the following normalization condition holds�

�d � D� kdkH � ��

So that D is a subset of the unit sphere in H � D is then a compact subset
of this unit sphere in H � since Donsker classes are necessarily precompact�
Comments on the assumptions�

� The parameterization depends upon the underlying distribution g��
For instance� in case of simple mixtures such as ����	� we set

g��� � f��� � � � �	� � � kg��� � f�
f�

kH � � �
g��� � f�

f�
� kg��� � f�

f�
k�	H �

and in case of parametric models �g�	� where g� � g�� �

g� � g����� � �� � �� � ��	
T � I���	 � �� � ��	� � �

� � ��
�

where I��	 is the Fisher information of the model�
� Su�cient conditions for a set to be a Donsker class of functions are
given in Van der Vaart and Wellner �����	� A su�cient condition
for D to be a Donsker class is that the L��entropy with bracketing is
integrable� see Ossiander ���
�	�

� Su�cient conditions for a Gaussian process to have continuous sample
paths are given in Dudley �����	� A su�cient condition is that the L��
entropy is integrable� The existence of a continuous Gaussian process
is automatic if the class is Donsker�

� The assumptions imply that �D	� is a Glivenko�Cantelli class in prob�
ability�

� The parameterization may be non identi�able� The only identi�ability
is that of � at point g��

� When � lies on B� it is possible that the only possible � is � � ��
this comes from the originating non identi�ability� To expand the
likelihood� the parameter set may not be taken as T �
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�� Asymptotic results� simple case

���� General results

Assume�

�A�	

For all � in B� g��� is twice continuously di
erentiable with respect
to � � a�e�� with right continuous derivatives at point � � �� De�
note by g���� and g���� the derivatives �which are right derivatives
at � � �	� These derivatives are � a�s� continuous over T �with
respect to ��� �		�

To have uniformly small remainder terms in the Taylor expansion till
order �� we introduce�

�A�	 There exists real functions l and m such that�

���� �	 � T � j
g������
g�����

j
 l and j g������
g�����

j
m

with

Eg�� �l�
� � �� and Eg��m � ���

Notice that �A�	� �A�	 state the regularity of the model parameterized only
with � � � when � is �xed� which is de�ned on a small right�neighborhood
of �� ��� ���� thanks to �A�	�

De�ne Tn as the maximum likelihood statistic� Tn � ln���� ��	� We have
the following asymptotic result�

Theorem ���� Assume �A����A��� �A	�� �AD�� �AN�� �AC�� �A
� hold�
Then� under g���� Tn� ln��	 converges in distribution to the following vari�
able�

�

�
� sup
d�D

�
d	
� � ��d���

Remark ���� Depending on the structure of the Gaussian process on D�
the indicator function may disappear in the limit variable� For the classical
parametric case� it depends on the geometrical structure around ��� see
Section ����

The following theorem states the asymptotic distribution of ���

Theorem ����
p
n � �� converges in distribution as n tends to in�nity to

sup
d�D

�
d	 � ��d��

where 
d is the Gaussian process on D with covariance the usual scalar prod�
uct in H�

It is possible to check the asymptotic limit distribution of the log�likeliho�
od statistic for each direction under alternative contiguous distributions as
usual� The following result was proved by Ghosh and Sen in Ghosh and
Sen ���
�	 for mixtures of two populations under their strong separation
assumption�

Theorem ���� Assume the underlying distribution is g��n���� ��� where �n �
c�
p
n� c a positive real number� �� � B� For any � in B� de�ne Vn��	 �
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sup� � ������T ln��� �	� Then� Vn��	� ln��	 converges in distribution to�

�

�
� �
d � chd� d�iH	� � ��d�chd�d�iH��

where d �
g������
g�

and d� �
g�������
g�

�

Of course� this is not completely satisfactory since this result holds only
directionally� We prove the following result�

Theorem ���� Assume �A����A��� �A	�� �AD�� �AN�� �AC�� �A
� hold�
Under the distribution g��n���� ��� where �n � c�

p
n� c a positive real number�

�� � B� the maximum likelihood statistic Tn� ln��	 converges in distribution
to�

�

�
� sup
d�D

�
d � chd� d�iH	� � ��d�chd�d�iH��

where d� �
g�������
g�

�

���� Application to hypothesis testing

As was underlined before� the locally conic parameterization depends on
the unknown true density� However� the maximum likelihood statistic does
not depend on the parameterization� it only depends on the family G� what�
ever be its description� Moreover� when subtracting two maximum likeli�
hood statistics over di
erent models� the di
erence makes the terms ln��	
disappear� It is then clear that the previous results allow to test hypothe�
ses using maximum likelihood statistics with asymptotically known level in
the following way� De�ne T� and T	 to be sets of parameters such that the
models G� � fg������ ��� �	 � T�g and G	 � fg������ ��� �	 � T	g verify all
assumptions of section ����� T� � T	� De�ne�

Tn�i	 � sup
������Ti

ln��� �	 i � �� ��

We have

Theorem ���� Suppose g� � G�� The asymptotic level of the test of H� �
��� �	 � T� against H	 � ��� �	 � T	 � T� with critical region

Tn��	� Tn��	 � C�

is�


 �� P �
�

�
� sup
d�D�

�
d	
� � ��d�� �

�

�
� sup
d�D�

�
d	
� � ��d�� � C�	

with obvious notations�

The proof follows that of Theorem ��� for the distribution of �Tn��	 �
ln��	� Tn��	� ln��		 where the true distribution g� lies in G��
If the true distribution is a �xed g	 not in G�� the asymptotic power of the
test is obviously one� If the true distribution is g��n���� �� as in Theorem ����
the asymptotic power is�

P �
�

�
� sup
d�D�

�
d � chd� d�iH	� � ��d�chd�d�iH��

��
�
� sup
d�D�

�
d � chd� d�iH	� � ��d�chd�d�iH�� � C�	
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where d� � g��������g��

Remark ��	�

� To compute the asymptotic distribution of Tn��	� Tn��	� notice that
the processes involved are correlated and that D� � D	�

� The limit distribution may depend on g� or may be free of g�� This
depends on the spaces B and D� Indeed� if B does not depend on g��
the distribution of the supremum over D of the square of the Gaussian
process may be free of g�� This is the case for parametric testing where
the parameter to be tested is in the interior of the parameter set� see
section ����

� Analytic derivations of the distributions of the supremum of the Gauss�
ian process as involved in the Theorems are di�cult problems� In a
recent work� Azais and Wschebor �Azais and Wschebor �����		 give an
explicit formula for computing the distribution of the supremum of a
random process in various situations� A recent text of introduction in
the topics of continuity and extrema for Gaussian processes� together
with references� is the one of Adler �Adler �����		� Also� in similar
contexts� Beran and Millar �Beran and Millar ���
�		 have proposed
stochastic procedures using bootstrapping to �nd the estimated level
of con�dence sets when the asymptotic distribution is too intractable�
Similar ideas could be used here�

� Though the assumption �A�	 does not hold for mixtures� we shall derive
an asymptotic distribution for the maximum likelihood statistic which
will be also some function of the maximum of the Gaussian process
indexed by D� Application to hypothesis testing follows obviously the
same lines�

���� Application to parametric models

Let G � fg� � � � �g be an identi�able parametric model where � is a
compact subset of Rp� We make the following geometrical assumption on ��

�RP�	 For all � in � and u in Rp de�ne�

T ��� u	 � ft � R� � � t�u � �g�
U��	 � fu � Rp� T ��� u	 contains a right�neighborhood of � � ��� u��g�

Then�

�� � �� �c 	 �� �u� ��t � T ��� u		 and t � c �� u � U��		�

Moreover� for all � in �� U��	 spans Rp�
Let g� � g�� � Assume the model is locally regular in the following way�

�RP�	

The application t	 g���t	u is twice continuously di
erentiable

for t 	 �� g�� a�e� for all directions u in U���	� with right
continuous derivative at t � ��

There exist functions h� l� m� such that�

�� � �� � t�u � �� u � U���	� j log g� j 
 h� j �
g�

�g���t	u
�t

j 
 l�

ESAIM� P
S� July ����� Vol� �� pp� �	
����



TESTING IN LOCALLY CONIC MODELS ���

j �
g�

��g���t	u
�t�

j 
 m� Eg�� �h� � ��� Eg�� �l
�� � ��� Eg�� �m� � ���

De�ne the Fisher information at point �� as the p � p matrix I���	 such
that�

�u � U���	� Var

�
�

g��

�g���t	u
�t

jt
�
�
� uT � I���	 � u�

�RP�	 I���	 is non degenerated�

Comments

� Assumption �RP�	 allows to de�ne the Fisher information unambigu�
ously since derivatives exist in at least p linearly independent direc�
tions�

� For �� in the interior of �� the Fisher information so de�ned reduces to
the usual Fisher information� and assumptions �RP�	 and �RP�	 state
the regularity of the model in the usual way �see Dacunha�Castelle and
Du�o ���
�		�

� The geometric interpretation of �RP�	 is that � possesses the following
property� at a boundary point� there exists a small ball B centered at
the boundary point such that � �B is inside the tangent cone�

������ Testing � � �� against � �� ��� The locally conic parameteriza�
tion will be�

� � �� � � � ��

� �
q
�� � ��	T I���	�� � ��	�

� �
� � ��

�
�

It is then obvious that all assumptions �A�	��A�	� �A�	� �AN	� �AC	� �A�	
hold� with�

B � B � f � � ��p
�� � ��	TI���	�� � ��	

� � � �g�

Now� let �	� � � � � �p be p independent directions in B� Then�

D � D � fd � �

g�

pX
i
	

bidi� where di �
�g����	�i

��
j�
�� and

pX
i
	

bi�i � Bg�

Then �AD	 holds since D is a compact subset of a �nite dimensional linear
space� and �AN	 holds by construction� Let ln��	 be the log�likelihood with
n i�i�d� observations� We have�

Theorem ��
� Under the assumptions �RP�� to �RP	�� sup����ln��	 �
ln��		 converges in distribution to�

�

�
sup

u�I��������B
�hu� V i	� �hu�V i��

where V is a p dimensional standard Gaussian random variable and h�� �i
the usual scalar product on Rp�
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Proof� Theorem ��� gives that sup��� ln��	� ln��	 converges in distribution
to�

�

�
sup

Pp
i�� bi�i�B

�hb� di	� �hb�di��

with d � �d	� � � � � dp	� The distribution of hb� di is that of h��W i where
� � B and W follows centered p�dimensional Gaussian distribution with
variance I���	� The change of variables u � I���		
� �� gives the result�
Theorem ��
 allows one to know the asymptotic distribution of the maximum
likelihood statistic depending on the geometric structure of � around ���

� If �� is in the interior of �� B contains all possible directions� and also
I���		
� � B� so that �as already known	 we obtain that the asymptotic
distribution of sup��� ln��	� ln��	 is

	
� ����p	� since the supremum in

the Theorem is attained for u � V�kV k�
� If �� is on the boundary of �� the asymptotic distribution does depend
on �� only through the set B� that is only through the shape of � at
the boundary point ��� More precisely�

Corollary ���� Under the assumptions �RP�� to �RP	�� sup��� ln��	�
ln��	 converges in distribution to�

�

�

�
hV� PI��������B�V 	i

��
�hV�P

I��������B
�V �i��

where PI��������B the orthogonal projection onto the set I���		
� � B and V is
a p�dimensional standard Gaussian random variable�

������ Testing with a finite dimensional nuisance parameter� We
suppose here that we are interested only in a part of the parameter� Namely�
� � �
� �	� 
 � Rk� � � Rl� k � l � p� and we want to test 
 � 
� against

 �� 
�� Say that �� � �
�� ��	� We have�

Theorem ����� Under the assumptions �RP�� to �RP	� for the whole mod�
el and if �� lies in the interior of �� sup��� ln��	 � sup���������� ln�
�� �	
converges in distribution to 	

� � ���k	�
Proof� For the full model� we have that B is an ellipsoid in Rp� For the
submodel� the locally conic parameterization will be�

� � �� � �	 � ��� �		�

�	 �
q
�� � ��	TI	���	�� � ��	�

�	 �
� � ��

�	
�

where I	���	 is de�ned at point �� as in �RP�	 for the submodel� Then� with
obvious notations� B	 � ��	k � El where ��	k is the null point in Rk and El
is the l�dimensional ellipsoid de�ned with the matrix I	���	� Following the
same change of variables than for the proof of Theorem ��
� we have that�
sup��� ln��	� sup���������� ln�
�� �	 converges in distribution to

�

�
sup
u�B

�hu� V i	� �hu�V i�� �
�

�
sup
u��El

�h���	k� u		� V i	� �h����k�u���V i��
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where V is a p dimensional standard Gaussian random variable� This in
turns exactly equals 	

��V
�
	 � V �

� � � � �� V �
k 	�

Though the simple mixture ����	 is also an application of the general re�
sult of section �� we chose to present the problem of testing the number of
populations in a mixture in a separate section�

�� Population mixtures

In this section� we show how the theory of locally conic models applies to
population mixtures�
Let F � �f�	��� be a family of probability densities with respect to �� � is
a compact subset of Rk for some integer k� Gp is the set of all p�mixtures
of densities of F �

Gp � fg��� �
pX

i
	

�i � f�i � � � ��	� � � � � �p	� 
 � ��	� � � � � �p	�

�i � �� � � � � p� �i � �� � 
 �i 
 ��

pX
i
	

�i � �g�

Obviously� the model is not identi�able for the parameters � � ��	� � � � � �p	
and 
 � ��	� � � � � �p	� There exist mixtures g in Gp which have di
erent
representations g��� with di
erent parameters � and 
� For instance� we
have for any permutation � of the set f�� � � � � pg�

pX
i
	

�i � f�i �
pX
i
	

���i� � f���i� �

Another example which may not be avoided by taking some quotient with
respect to permutations is�

f�� �

pX
i
	

�i � f��

for any ��i	 such that �i � � and
Pp

i
	 �i � ��
However� we assume that Gp is identi�able in the weak following sense�

g����� � g�� ��� � a�e�
�
����
Pp

i
	 �
�
i � ���i �

Pp
i
	 �

	
i � ���i as probability

distributions on ��

In other words� Gp is identi�able if the parameter is the mixing discrete
probability distribution on �� Teicher �see Teicher �����		 or Yakowitz and
Spragins �Yakowitz and Spragins ����
		 give su�cient conditions for such
weak identi�ability� which hold for instance for �nite mixtures of Gaussian
or gamma distributions�
We address the following problems�

� For a particular density f�� � f�� test f� against a simple mixture in
the model ����	 stated in the introduction�

� For a particular density f�� � f�� test f� against a general mixture� or
test one population against a mixture�

� For an integer q less than p� test q populations against p populations�
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As noted before� the model is not identi�able for the parameters � �
��	� � � � � �p	 and 
 � ��	� � � � � �p	� If reparameterized in an identi�able
manner� lack of di
erentiability appears� When using the non identi�able
parameterization with parameter ��� 
	� the lack of identi�ability leads to a
degeneracy of the Fisher information� so that� when using classical Taylor
expansions for the log likelihood statistics� the remainder terms may not
be bounded uniformly� Moreover� the asymptotic variance of the maximum
likelihood estimator �which is the inverse of the Fisher information	� when
one of the parameters � or 
 is �xed is unbounded� This is why Ghosh and
Sen had to separate strongly the � parameters to develop the asymptotics
of the maximum likelihood statistic �see Ghosh and Sen ���
�		 when test�
ing two populations against one population� that is� they assumed that the
model for two populations veri�ed k�	 � ��k � � for a �xed positive � and
some norm k�k on �� This assumption is rather unnatural�
For each mixture problem� we exhibit a locally conic parameterization that
will solve the problem completely with no such separation on the parameters
of the mixing family�
We make the following assumptions on the mixing family F �
�M�	 There exists a function h in L	�g��	 such that� �f � F � j log f j 


h ��a�e�

���� Simple mixture

Here� the model is the subset of G� given by�
g��� � ��� �	f�� � �f� ����	

where � � ��� ��� � � � and the true density is g� � f�� � �
� in the interior of

�� Recall that H is the Hilbert space L��g��	� De�ne ��� �	 by�

� � kg��� � g�
g�

kH � � � kf� � f��

f��
kH � � � ��

So that the new parameterization is given by�

g��� � g����� � g�

�
� � � � f� � f��

f��
�kf� � f��

f��
kH
�
� ����	

It is easy to see that here�

D �

�
f� � f��

f��
� kf� � f��

f��
k�	H � � � �

�
�

We make the following assumption�

�M�	
f� is continuously di
erentiable � almost everywhere with respect
to � � ��	� � � � � �k	 in the interior of �� Moreover� there exists a
function l such that�

�� � �� j �
f�

�f�
��i

j 
 l� i � �� � � � � k Eg�� �l
�� � ���

Theorem ���� Under assumptions �M��� �M��� and if

�S�� D is a Donsker class and 
d has continuous sample paths

then the parameterization veri�es all assumptions �A��� �A��� �A	�� �AD��
�AN�� �AC�� �A
�� and Theorem 	�� holds�
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Proof� �M�	 implies �AC	� �M�	 implies �A�	� �A�	� �A�	 and �A�	� In
particular

g����� � g� 
� � � �

is obviously a consequence of the weak identi�ability� since

T � f��� �	 � � 
 kf� � f��

f��
kHg�

Then� �AN	 holds by construction�

Remark ���� A simple and useful example where the assumptions hold is
the case of a mixture of Gaussian variables� If the mixture is only on the
means� it is enough to assume that the means are in a compact set� If the
mixture is also on the variances� easy computations show that the variances
have to be restricted in a set of the form ��� ���� ��� if �� is the variance of
g�� for the assumption �AC	 to hold� However� in this case� a close look at
the expansions giving the form of the likelihood statistic shows that theorem
��� still holds even when the variance is allowed to take bigger values� the
bigger values play a negligible role when taking the maximum� This will be
fully developed in further work�

���� One population against two populations

In the case of the simple mixture� the locally conic parameterization is
linear in the parameter �� The Taylor expansion till order � is trivial� and
the simple asymptotic result Theorem ��� holds� This will be the same for
contamination models as explained in section �� But this will no longer be
the case for mixtures of unknown populations� Let us explain the situation
in the most simple case of real parameters� Here� � will be a compact subset
of R� We suppose again that the underlying distribution is g� � f�� � �

� in
the interior of �� But the model is the whole G�� De�ne� � � ��� �	 � � ��
� � ���M �� A locally conic parameterization is given by�

g����� �
�

N��	
f� � ��� �

N��	
	f��� �

N��� �

where

N��	 � k� �
g�

�f�
��

j�
�� �
f� � g�
g�

kH �
If f� possesses su�ciently many derivatives with respect to �� we have the

following derivatives for g��� �g�k� denotes the k�th derivative of g����� with

respect to � and f �k� the k�th derivative of f� with respect to � 	�

g������ �
�

N��	
��� �

N��	
	�f �

��� �
N��� �

	 �
�

N��	
�f� � f��� �

N��� �
	�

g
�k�
����� � � k�k�	

N��	k
f
�k�	�
��� �

N��� �
�

�k

N��	k
��� �

N��	
	f

�k�

��� �
N��� �

�

Observe now that N��	 goes to � as soon as � goes to �� and � goes to ��
Then it can be seen that �

N���� can not be uniformly bounded� so that g������
divided by g����� may not be uniformly dominated by an integrable function
as required in �A�	� To �nd the result� the locally conic parameterization is
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still a key point� but the Taylor expansion has to be made till an order bigger
than � in a region where N��	 goes to �� We shall need the assumptions�

�M�	 N��	 � � if and only if � � �� and � � ��

�M�	 f� possesses derivatives till order �� For all k 
 ��
f
�k�

��

g�
� L��g��	�

Moreover� there exist functions m�� m� and a positive � such that�

sup
�����


jf��
g�

j 
 m� Eg�� �m
�
�� � ���

sup
�����


jf
���
�

g�
j 
 m� Eg�� �m

�
�� � ���

De�ne D as the set of functions d

d �
�

N��	

	
f� � f�� � �f ���

g�



�

De�ne also

d	 �
f �
��
�g�

kf �
��
�g�kH � d� �

f����g�

kf����g�kH
� u � hd	� d�i�

Notice that d	� d� are in D as well as ��d	 � �d�	�
p
�� � �� � �u��� We

may now state the Theorem�

Theorem ���� Assume that �M��� �M	�� �M
� hold� that D is a Donsker
class and that 
d has continuous sample paths� Then Tn � ln��	 converges
in distribution to the following variable�

sup

�
�

�
� sup
d�D

�
d	
� � ��d���

�

�

�d� �

�

�

�
�d��ud��


p
	�u����d��ud���

p
��u�

��

�
�

The asymptotic distribution is the supremum of two terms� The �rst one
is the sup term which was expected� and which is obtained for parameters
that do not approach too fast the non identi�able point� The second term
comes from the boundary of the set D� that is from approaching the non
identi�able point� This second term has an unexpected form� since it seems
to be twice than an ordinary term �it adds two terms	� and appears as a
boundary term coming from second order�

Remark ���� If moreover f ���g� is uniformly bounded in H � it is easily seen
that

k
f��f����f ���

g�

kf��f����f
�

��

g�
k
�

f���f�����f ���
g�

kf���f����
�f �
��

g�
k
k

is upper bounded by

�
kf��f�������

��f �
��

g�
k

kf��f����f
�

��

g�
k

�

The number of covering balls in H is then easily seen to be of order ����

when N��	 does not approach zero� and of order ���� whenN��	 approaches
zero� The Donsker condition then holds�
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���� One population against a mixture

Here� we suppose again that the underlying distribution is g� � f�� � �
�

in the interior of �� But the model is the whole Gp for some known integer
p� De�ne�

� � ��	� � � � � �p�	� �	� � � � � �p�	� �	� �i � ��

p�	X
i
	

�i � ��

�i � �� i � �� � � � � p� � and � � R�
The locally conic parameterization is given by�

g����� �

p�	X
i
	

�i
�

N��	
f�i � ���

�

N��	
	f��� �

N��� �
�

D is the subset of the unit sphere of H of functions of the form�	
�
�

g�

�f�
��

j�
�� �
p�	X
i
	

�i
f�i � g�

g�



�

N��	

where �i � �� �i � �� i � �� � � � � p� �� � � R� and
p�	X
i
	

�i � ��

and

N��	 � k� �
g�

�f�
��

j�
�� �
p�	X
i
	

�i
f�i � g�

g�
kH �

The following assumption will replace �M�	�

�M��	 N��	 � � if and only if
Pp�	

i
	 �i�� � ��	� � � and � � ��

For non negative �	� � � � � �p�	� any � and � � � or �� if  � ��	� � � � � �p�	�
�� �	� de�ne

d� 	 �

Pp�	
i
	 �i

f
�i
�f��
g�

� �d	 � �d�

kPp�	
i
	 �i

f�i�f��
g�

� �d	 � �d�kH
and de�ne D	 to be the subset of D of functions d� 	 which are orthogonal
to d	� Then

Theorem ���� Under �M��� �M	
� and �M
�� if D is a functional Donsker
class and 
d has continuous sample paths� then Tn � ln��	 converges in dis�
tribution to the following variable�

sup

�
�

�
� sup
d�D

�
d	
� � ��d���

�

�

�d� � sup

d�D�

�

�

�d � ��d��

�
�

Theorem ��� is obviously an extension of Theorem ��� since in case p � ��
D	 contains only one direction�
The addressed problem of testing one population �known or unknown	 again�
st a p�mixture can now clearly be solved using Theorem ��� when the pop�
ulation is known� and using Theorem ��� together with Theorem ��
 when
the population is unknown�
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������ q populations against p populations� In the �rst version of the
paper� we claimed that we believed that the asymptotic distribution of the
maximum likelihood statistic in the general model could be derived using the
following locally conic parameterization� This claim has further be proved
in subsequent work� see Dacunha�Castelle and Gassiat �����	�
De�ne B� the set of parameters � � ��	� � � � � �p�q� �	� � � � � �p�q� �	� � � � � �q�
�	� � � � � �q	 such that �i � �� �i � �� i � �� � � � � p � q� �l � Rk� �l � R�
l � �� � � � � q� and

Pp�q
i
	 �i �

Pq
l
	 �l � �� Let then

N��	 � k
qX
l
	

kX
i
	

��l �
l
i

�

g�

�f�
��i

j�
�l�� �
p�qX
i
	

�i
f�i

g�
�

qX
l
	

�l
f�l��

g�
kH �

For any � in B� and any non negative � such that for any integer l � �� � � � � q�
��l � �l

�
N��� � �� de�ne the mixture�

g����� �

p�qX
i
	

�i
�

N��	
f�i �

qX
l
	

���l � �l
�

N��	
	f�l��� �

N��� �
l � ����	

Such parameterization may be viewed as a perturbation of g� in the following
way� perturb the q mixture g� through a perturbation of the parameters
�l�� and the weights ��l � and add a perturbation as a p � q�mixture with
weight tending to �� Such equation does not completely set a locally conic
parameterization� Indeed� the equation ����	 does not de�ne unambiguously
��� �	 for a given mixture� For instance� di
erent sets of parameters may
give g�� It is then important to de�ne the set B such that g����� � g� 
�
� � �� which is not an immediate consequence of the de�nition of g������
We shall then precisely describe the set B� The asymptotic distribution of
the likelihood ratio will take a similar form than when testing � against p
populations�
The locally conic parameterization� Let g be any p�mixture�

g �

pX
i
	

�i � f�i �

To describe it through equation ����	� one has to associate the parameters
of g to those of g�� that is to give a special order to the parameters� In other
words� for any permutation � of the set f�� � � � � pg� we de�ne the parameters
�� such that g������� � g� This leads to�

�� � ��	��� � � � � �p�q��� �	��� � � � � �p�q��� �	��� � � � � �q��� �	��� � � � � �q��	

with�

�i � �� � � � � p� q� �i�� � �� � ���i� �N���	�

�i � �� � � � � p� q� �i�� � ���i��

�i � �� � � � � q� �i�� � �� � ����p�q�i� � �i��	 �N���	�

�i � �� � � � � q� �i�� � �� � ����p�q�i� � ��i 	 �N���	�
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It is easily seen that

�� � k
qX

l
	

kX
i
	

��
��p�q�l�
i � �l��i 	

�

g�

�f�
��i

j�
�l�� �
p�qX
i
	

���i�
f���i�

g�

�

qX
l
	

����p�q�l� � ��l 	
f�l��

g�
kH �

The system is then ambiguous on the scale of �� since a multiplication by
a scalar of � leads to the same result to N��	�
The problem is then to choose between the permutations� The following
choice is a good one� The idea is to associate step by step the nearest points
�i involved in g to the set of points �l�� involved in g�� Look for�

min
l
	�			 �q�i
	�			 �p

k�l�� � �ik�

It is attained for l	 and i	� De�ne then ��p� q � l		 � i	� Look then for

min
l
	�			 �q�l �
l��i
	�			 �p�i�
i�

k�l��� �ik�

It is attained for l� and i�� Set then ��p � q � l�	 � i�� By induction�
de�ne in the same way ��p� q� lj	 � ij for j � �� � � � � q� In this algorithm�
consider only points truly involved in g �eventually less than p points	� Then
complete the permutation � in some ordered way� You then have de�ned a
permutation ��g	� The locally parameterization is then given by equation
����	 with�

T � f��� ���g�	 � � 
 ���g�� g � Gg�
This induces the set B as the intersection of all directions approaching � in
T � Such parameterization is locally conic�

�� Possible extensions

We brie�y show how the theory of locally conic models could be used
in two other situations� leaving complete exposition and details for further
investigation�

���� Contamination or perturbation models

Let g� be �xed� Suppose we want to test� H� � fg�g against the per�
turbation H	 � fg����� � g� � ��g �or against the contamination model
fg����� � ��� �	g� � �g	g which is similar to the perturbation model	�
Assume � � ��� ��� � � B where B is a subset of the unit ball of L����g���	
such that all � in B verify R �d� � �� We then have here�

D �
�

g�
B�

Assume there exist Banach spaces C	 and C� with canonical injections C	 	
C� 	 L����g���	 and real numbers K	 and K� such that B is a subset of
C	 with�

�� � B� k�kC� 
 K	� k�kC� 
 K��

B is equipped with the topology induced by C�� Then� we may apply the
theory of locally conic models as soon as�
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� The image in C� of the unit ball of C	 is compact in C��
� The continuity of the linear forms � 	 ��x	 follows from the condition
j�	�x	� ���x	j 
 k�	 � ��kC� �

� 	
g�
B is a Donsker class�

A simple example is the following� C	 � H�� C� � H� where Hp is the
Sobolev space of functions with p derivatives� equipped with the normPp

j
� kf �j�k�� Then if we choose as perturbation set
B � f� � H� �H� � L����g���	� k�kL��	
g�	�� � ��

k�kH� 
 K	� k�kH� 
 K�� ���	 � �g�
We then have�

j�	�x	� ���x	j � j
Z x

�
�

Z u

�
���	�v	� ����v	�dv	j


 k�	 � ��kH� �

In such situations� Theorem ��� holds� so that�

k�g � g�k converges to � at speed ��
p
n

where �g is the maximum likelihood of g in the perturbation model� In other
words� the norm of the density may be estimated at rate ��

p
n in such non

parametric model� The estimation of non linear functionals of a density in
non parametric models is a widely studied problem with known results and
still open questions� It is already known that some non linear functionals
of a density may be estimated at rate ��

p
n in non parametric settings� see

for instance Donoho �Donoho ���

		� It is however not in the scope of
this paper to discuss this subject� Let us only notice that it is also known
that maximum likelihood estimators and functional Donsker class theory do
not lead to the optimal results for some critical non parametric situations�
compare for instance with the results of Laurent �Laurent �����		�

���� ARMA models

Let ��n	n�N be a sequence of independent centered Gaussian random vari�
ables with common variance ��� An ARMA�p�q	 process �Xn	n�N is given
by the following equation �see for instance Azencott and Dacunha�Castelle
���
�		�

Xn � a	Xn�	 � � � �� apXn�p � �n � b	�n�	 � � � �� bq�n�q

where a	� � � � � ap� b	� � � � � bq are real parameters�
Let X � �Xn	n�N be a given process� and suppose we have to test that X
is an ARMA�p�� q�	 process against X is an ARMA�p� q	 process� As for
the mixture model� the ARMA�p�q	 model is non identi�able when using
parameters a	� � � � � ap� b	� � � � � bq� For example an i�i�d� sequence has all �
parameters� and also any equal parameters a	 � b	� � � � � ak � bk� k 
 p and
k 
 q� the other parameters being set to �� We shall prove in a forthcoming
paper �Dacunha�Castelle and Gassiat �����		 that it is possible to de�ne
a locally conic parameterization to deduce the asymptotic behavior of the
maximum pseudo�likelihood statistic for the case of Gaussian processes� or
of the minimum contrast statistic for general second order processes�

ESAIM� P
S� July ����� Vol� �� pp� �	
����



TESTING IN LOCALLY CONIC MODELS ���

This leads to a simpler presentation than in Hannan ���
�	� This new pre�
sentation also makes clearer the reason why the asymptotic limit distribution
is the supremum of a function of a Gaussian process over some space�

�� Proofs

Proof of Theorem ���� K�g�� g�����	� the Kullback information� is con�
tinuous with respect to the parameter ��� �	� thanks to �A�	� �A�	 and �AC	�
De�ne�

k��	 � inf
��B � ������T

K�g�� g�����	�

Since T is a compact set and using assumption �A�	 we have that�

�� 	 �� k��	 	 ��

Moreover� k is continuous� De�ne now�

Un��	 � sup
��B � ������T

�

n
�ln��� �	� ln��� �		 �

First of all� we obviously have�

lim inf
n��	 Un��	 � �k��	 a�s�

De�ne m��x� �	 � supd��������� j log g�������x	 � log g�������x	j� Since B is
precompact� for any positive � there exists a �nite number N� of balls with
diameter ��� covering B and with centers �i� i � �� � � � � N�� Now� obviously

Un��	 
 sup
i
	�			 �N�

�

n
�ln��� �i	� ln��� �		 �

�

n

nX
i
	

m��Xi� �	

so that a�s�

lim sup
n��	

Un��	 
 sup
i
	�			 �N�

��K�g�� g����i�	�� Eg�	��m��X� �		

so that

lim sup
n��	

Un��	 
 �k��	 � Eg�	��m��X� �		�

Now� we have lim���m��x� �	 � � a�s�� and �AC	 implies

lim
���

Eg�	��m��X� �		 � �

so that

lim sup
n��	

Un��	 
 �k��	

and we may conclude that Un��	 converges a�s� to �k��	 for all ��
Now� �� is a maximizer of Un��	� Let � be a positive real number� We have�
since k is continuous�

�� 	 �� �� 	 �� k��	 � ���

Let � be a positive real number� and let ��i	i
	�			 �N be N real numbers such
that �i � �i�	 � �� �	 � � � �� �N �M � We have�

Un��	 � Un��i	 � Un��	� Un��i	�
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We have�

P ��� � �	 
 P �sup
���

Un��	 	 �	


 P �wn��	 	 �	 � P �� inf
i
	�			 �N

Un��i	� � ��	

where

wn��	 � sup
j����j��

jUn��	� Un��
�	j�

Now� inf i
	�			 �N Un��i	 converges a�s� to inf i
	�			 �N �k��i	 which is less than
��� so that P ��inf i
	�			 �N Un��i	� � ��	 tends to � as n tends to in�nity� It
only remains to show that P �wn��	 	 �	 tends also to � for a good choice
of �� To do this� notice that� if r��x	 � supj����j�� sup��B j log g������x	 �
log g�������x	j we have�

lim
���

Eg�	��r��X		 � �

thanks to assumptions �A�	 and �AC	� Now�

wn��	 
 �

n

nX
i
	

r��Xi	�

So that almost surely�

lim sup
n��	

wn��	 
 Eg�	��r��X		

which is smaller than � for small enough ��

Proof of Theorem ���� An obvious consequence of assumption �AC	
together with �A�	 and �A�	 is that� if a submodel is �xed by the parameter

�� the estimator of maximum likelihood ��� converges to � as n tends to
in�nity� Moreover�

Lemma ���� Under assumptions �A��� �A��� �AC�� ��� converges to � in
probability uniformly in the parameter ��

Proof� We have�

fsup
�

��� 	 �g � fsup
�
sup
���

�ln��� �	� ln��� �		 	 �g

so that�

P �sup
�

��� 	 �	 
 P �sup
���

Un��	 	 �	

and the end of the proof is the same as that of Theorem ����

Let Vn��	 be the log likelihood ratio statistic in the submodel� Vn��	 �

ln���� � �	� We have�

Tn � sup
��B

Vn��	�

Now� Assumption �A�	 implies that� if ��� 	 �� the derivative of ln��� �	

with respect to � is zero at the point ��� � On f��� 	 �g�
nX
i
	

g�
���� ���

g���� ���
�Xi	 � ��
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Expanding this equation leads to�

� �
nX
i
	

g������
g�����

�Xi	� ��� �
nX
i
	

	
g������
g�����


�

�Xi	�� � Rn	

where

Rn �

Z 	

�

Zn�t��� � �	

An��	
dt�

with

Zn�u� �	 �
�

n

nX
i
	

	
g��u���
g�u���


�

�Xi	�An��	� �

n

nX
i
	

�
g��u���

g�u���

�
�Xi	

and

An��	 �
�

n

nX
i
	

	
g������
g�����


�

�Xi	�

Now� de�ne�

Z�u� �	 �

Z 	
�
g��u���
g�u���

	�g� � �
g������
g�

	�g� �
g��u���

g�u���
g�



d��

Using the same tricks as for Theorem ���� we have�

lim
���

sup
�
sup
juj��

jZ�u� �	j� �

and then

lim
���

lim sup
n��	

sup
�
sup
juj��

jZn�u� �	j � � in probability�

An immediate consequence of this result together with Theorem ��� and
�A�	 is that Rn � oP ��	 in Probability uniformly over �� We may then
state�

Lemma ���� The following equation holds�

��� �

Pn
i
	

g������
g�

�Xi	Pn
i
	

�
g������
g�

��
�Xi	

� �� � oP ��		 � �Pn
i��

g�
�����
g�

�Xi���

where the oP ��	 holds in probability uniformly over ��

Expansion of the logarithm in Vn��	 and similar arguments lead to�

Vn��	� ln��	 �
nX
i
	

g������� � g�

g�
�Xi	

��
�

nX
i
	

�g
�������

� g�

g�

��
�Xi	�� � oP ��		

� ���

nX
i
	

g������
g�

�Xi	�� � oP ��		

��
���	�

�

nX
i
	

	
g������
g�


�

�Xi	�� � oP ��		�
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We may then state�

Lemma ����

Vn��	� ln��	 �
�

�

�Pn
i
	

g������
g�

�Xi	

��
Pn

i
	

�
g������
g�

��
�Xi	

� �� � oP ��		 � �Pn
i��

g�
�����
g�

�Xi���

where the oP ��	 holds uniformly over ��

Theorem ��� is then an immediate consequence of the previous lemma
and assumptions �AD	 and �A�	�

Proof of Theorem ���� Previous results lead to�

Tn � ln��	 �
�

�
���	� �

	
nX
i
	

�
g�
����

g����
	��Xi	



�� � oP ��		

where the oP ��	 holds uniformly over �� so that�

p
n�� �

p
��Tn � ln��		 �

vuut �

n

nX
i
	

�
g�
����

g����
	��Xi	 � �� � oP ��		� ����	

Now�

Lemma ����

�

n

nX
i
	

�
g�
����

g����
	��Xi	

converges to � in g��� probability as n tends to in�nity�

Proof� Since a Donsker class is Glivenko�Cantelli in probability� we have�

lim
n��	 supd�D

j �
n

nX
i
	

d��Xi	� kdk�H j� � in g��� probability�

Now� using assumption �A�	 we have

lim
n��	 supd�D

j �
n

nX
i
	

d��Xi	� � j� � in g��� probability�

Moreover� denoting
g�
����

g����
by �d we have�

j �
n

nX
i
	

� �d	��Xi	� � j
 sup
d�D

j �
n

nX
i
	

d��Xi	� � j

and the lemma follows�

Now� equation ����	 and lemma ��� prove Theorem ����
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Proof of Theorem ���� First of all� �g��n���� � �	
n and �g� � �	
n are
contiguous� Indeed the log�likelihood ratio is�

 n �
nX
i
	

log
g��n����

g�
�Xi	

�
c

n

nX
i
	

g�������
g�

�Xi	 �
c�

�n

nX
i
	

�
g�������
g�

� �
g���	���
g�

	�	�Xi	�� � oP ��		

which converges in distribution under g� � � to the Gaussian distribution
N ��c���� c�	� This proves the contiguity� see Roussas �����	 Proposition
��� p� ��� This implies� see Roussas �����	 p���

� �� converges to � in g��n���� � � probability�
� For all � in Bc� ��� converges to � in g��n���� � � probability�

so that lemma ��� stays true under g��n���� � �� Now� de�nition ��� p�� of
Roussas �����	 again implies that�

�

n

nX
i
	

�
g������
g�

	��Xi	

converges to � in probability under g��n���� � �� Moreover� applying Theorem
��� p� �� of Roussas �����	 we see that�

�p
n

nX
i
	

g������
g�

�Xi	

converges in distribution under g��n���� � � to the Gaussian distribution with
mean chg

�

�����

g�
�
g�������
g�

i and variance �� and Theorem ��� follows�

Proof of Theorem ���� The proof of the theorem follows the same lines
as that of Theorem ���� except that we use Le Cam!s third Lemma for metric
spaces �see Van der Vaart and Wellner �����	 p� ���	� which gives that

�

n

nX
i
	

�
g������
g�

	��Xi	

converges to � uniformly �over B	 in probability under g��n���� � �� and that
the process 	

�p
n

nX
i
	

g������
g�

�Xi	



��B

converges in distribution under g��n���� �� to the Gaussian process with mean
function chg

�

�����

g�
�
g�������
g�

i and covariance the scalar product in H � Theorem

��� follows�

Proof of Theorem ���� De�ne �n � sup� ��� � which is known to tend to
� in probability� The proof relies on separating the domain into two regions�

An � f� �
�

N��	�

 �

��n
g

Bn � f� �
�

N��	�
� �

��n
g
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for a suitable choice of 
� Then we have�

Tn � ln��	 � sup



sup
��An

ln���� � �	� ln��	� sup
��Bn

ln���� � �	� ln��	

�
�

Then we prove�

Lemma ���� Under the assumptions of Theorem 
�	� sup��An
ln����� �	 �

ln��	 converges in distribution to

�

�
sup
d�D

�
d	
� � ��d � ��

and

Lemma ���� Under the assumptions of Theorem 
�	� sup��Bn
ln����� �	 con�

verges in distribution to

�

�

�d� �

�

�

�
�d��ud��


p
	�u�

��
�d��ud���

p
�	u�

��g�
The following lemma will be a basic tool�

Lemma ��	� Let � � �
N����

Then

� 
 A

�	
�
� N��	 
 B

��
�

where A and B are some �xed constants�

The lemma says that� when N��	 goes to �� its speed and that of � may
be controlled via ��

Proof� It is enough to prove that

��

N��	

is uniformly bounded� Indeed� if not� let �n be a sequence such that

lim
n

��n
N��n	

� ���

Then� using �M�	� �n tends to � and �n tends to �
�� Letting

f���

g�
� a

f ���
g�

� t� t �� ��

be an orthogonal decomposition in H � we have�

N��n	
� �

�
��n � ��� �n � a�����n � ��	�	� � k

f ���
g�
k�H

�a�������n� ��	�ktk�H
�
�� � o��		�

Let �n � �� � �n � an��n � ��	�� Then�

��n
N��n	

�
�an��n � ��	� �	�r

�an � a��	�kf
�

��

g�
k�H � a����ktk�H

which is always bounded�
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Remark ��
� Notice that the only constraint on the parameters is given by

�

N��	

 ��

In particular the speed of � is unconstrained� this will be useful when opti�
mizing the approximating polynomial for proving Lemma ����

Proof of lemma ���� First� the following expansion holds for � tending
to ��

ln��� �	� ln��	 �
nX
i
	

g����� � g�

g�
�Xi	 ����	

��
�

nX
i
	

�
g����� � g�

g�

��
�Xi	

�
� � O

�
g����� � g�

g�
�Xi	

��
�

Let us now write an expansion of g����� till order ��

g������x	 � g��x	 � � � g�������x	 �
��

�
� g��������x	

for a �� 
 � and depending on x� Now as � tends to ��

g��������x	 � �� �

N��	�
f ����x	 � ��

��

N��	�
�m��x	g��x		

since � is bounded and using �M�	� Write�

Dn��	 �
nX
i
	

g������
g�

�Xi	�

Fn �
nX
i
	

f ���
g�
�Xi	�

De�ne also

a� � k
f �
��

g�
k�H

and

u��	 � hd	�
g������
g�

iH �
Notice that

nX
i
	

	
g������
g�


�

�Xi	 � n � �� � oP ��		�

nX
i
	

	
g������
g�



d	�Xi	 � nu��	 � �� � oP ��		�

where the o��	 are uniform in probability� thanks to �AD	 and �A�	� Let
us now see what happens on An and for � 
 �n� Applying lemma ��� we
obtain

��

N��	�
� 
 �	���
�n
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which goes to � as soon as 
 � ���� It is now not too hard to prove�

ln��� �	� ln��	 � �Dn��	� �

N��	�
Fn�

� � oP �n�
�	

��
�

�
n�� � oP ��		 �

�

N��	�
��nau��	�� � oP ��		

��
�

�

��

N��	�
na��� � oP ��		 � oP �n�

�	

where all the oP ��	 are uniform in probability over � in An� Now�

�

N��	�
� 
 �	��n

and since �Dn��	� Fn	�
p
n converges uniformly in distribution using �AD	

we have easily

�

N��	�
Fn�

� � oP ��Dn��		

where the oP ��	 is uniform in probability over � in An� We �nally get for �
in An and for � 
 �n�

ln��� �	� ln��	 �

�
�Dn��	� ��

�
n

�
�� � oP ��		

where again the o��	 is uniform in probability over � in An� Since ��� 
 �n

this obviously leads� by maximizing �Dn��	� ��

� n to�

Vn��	 �
�

�

Dn��	
�

n
�Dn������� � oP ��		

for � in An and where the o��	 is uniform in probability over � in An� The
conclusion of Lemma ��� follows using �M�	 and the fact that �nAn � D�
Proof of lemma ���� We shall use again expansion ����	� but the expan�
sion for g����� has now to be done till order ��

g������x	 � g��x	 � � � g�������x	 �
�X

i
�

�i

i�
� g�i�������x	 �

��

��
� g����������x	

for a �� 
 � and depending on x� The aim is now to prove that for � 
 �n
and for � � Bn we have�

ln��� �	� ln��	 � Pn��� �	�� � oP ��		 ����	

where all the o��	 are uniform in probability over � in Bn and with

Pn��� �	 � �Dn��	� �

N��	�
Fn�

� � ��

�
n

�
�

N��	�
��nau��	� ��

�

��

N��	�
na��
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First of all� notice that on Bn� � and N��	 are bounded by �
�
�
n and tend

uniformly to �� So that we may write�

g������x	 � g��x	 � � � g�������x	�
�X
i
�

�i

i�
� i�

i�	

N��	i
f
�i�	�
��

�x	�� � oP ��		

��
�

��

��

N��	�
f
���
��
�x	 �O�

��

N��	�
��m��x		�

From now on� all the o��	 will be in probability uniformly for � in Bn� Now�
using expansion ����	 together with the previous result leads to

ln��� �	� ln��	 �

nX
i
	

�
� �

g������
g�

�Xi	�
�X

k
�

�k

�k � �	�
�k�	

N��	k

f
�k�	�
��

g�
�Xi	�� � oP ��		

�O�
��

N��	�
��
m�

g�
�Xi		

�
� �

�

nX
i
	

�
� �

g������
g�

�Xi	

�
�X

k
�

�k

�k� �	�
�k�	

N��	k

f
�k�	�
��

g�
�Xi	�� � oP ��		� O�

��

N��	�
��
m�

g�
�Xi		

��

�O

� nX
i
	

�� �
g������
g�

�Xi	�
�X

k
�

�k

�k � �	�
�k�	

N��	k

f
�k�	�
��

g�
�Xi	�� � oP ��		

�O�
��

N��	�
��
m�

g�
�Xi			

�

�

which� when keeping only the two �rst terms in the �rst sum and when
taking the squares in the second sum� leads to the fact that ln��� �	� ln��	
equals Pn��� �	�� � oP ��		 plus terms which may be bounded with one of
the following forms�

�k�k�	

N��	k

nX
i
	

f
�k�	�
��

g�
�Xi	� k � ��

����

N��	�
n

�k�	�k�	

N��	k
n

�k�l�k�l��

N��	k�l
n� k� l � ��

��n
�k���k�	

N��	k
n

�k�l�	�k�l��

N��	k�l
n

�k�l�m�k�l�m��

N��	k�l�m
n� k� l�m � ��

Now� since ��N��	 
 �� the �rst term in this list may be bounded by�

� � ���

N��	�

nX
i
	

f
�k�	�
��

g�
�Xi	

which is uniformly in probability

oP �
���

N��	�
Fn	�
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Some of the other terms will be proven to be oP �n�
�	 using Lemma ��� and

the fact that � is in Bn�

����

N��	�
n � O�n��

��

N��	�
	 � O�n����
�	�

�k�	�k�	

N��	k
n � O�n��

�k�	

N��	
	 � O�n�����k���
�	� k � ��

�k�l�k�l��

N��	k�l
n � O�n��

�k�l��

N��	�
	 � O�n�����k�l���
�	� k� l � ��

��n � o�n��	
�k���k�	

N��	k
� O�n���k�		�

�k�l�	�k�l��

N��	k�l
n � O�n��

�k�l��

N��	
	 � O�n�����k�l��
���	� k� l � ��

�k�l�m�k�l�m��

N��	k�l�m
n �O�n��

�k�l�m��

N��	�
	 �O�n�����k�l�m�
�
�	� k�l�m � 
�

The remaining terms may be proven to be o�n ����

N����
	� They are�

n����

N��	�
� O�N��	 � n ����

N��	�
	�

n����

N��	�
� O�� � n ����

N��	�
	�

n����

N��	�
� O�� � n ����

N��	�
	�

n�
��

N��	

� O��� � n ����

N��	�
	�

It is not possible now to conclude that ����	 holds since the remaining terms
are shown to be negligible with respect to one of the terms of Pn� However�
they are uniformly negligible with respect to the involved term� Moreover�
it will be seen that� at the optimizing value ��� �	� all terms in Pn have the
same order� Our aim is to conclude that ����	 holds and that to optimize
ln��� �	 � ln��	 we just have to maximize Pn and verify that all terms in
Pn have the same order at the maximum point� To be able to conclude� we
shall then only need to prove that� it is not possible that Pn��� �	 becomes
small together with the fact that some of its terms become of order bigger
than that of the maximum value� Now� at the maximum value� all terms of
Pn have the same order� which is ���	� and not o��	� Let us prove that the
supremum of ln is not reached when one of the terms of Pn tends to in�nity�
together with the fact that Pn is close to �� De�ne � �

�
N���� �

� If �Fn�� tends to in�nity� then it is small with respect to �����na�
which is negative� If this last term is compared to n���� it is much
smaller only in case �� tends to �� in which case n��� is small with
respect to �n�� which is negative� We may conclude that in this case�
Pn is not small�

� If �Dn��	 tends to in�nity� it is much smaller than �n�� which is
negative� In case n��� is much bigger than �n��� �� tends to in�nity
and the only leading term is then �n���� which is negative�
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� If �n�� tends to in�nity� then it has been seen that in case �� tends
to in�nity� the only leading term is �n����� and in case �� tends to ��
the only leading term is �n��� Now� in case �j�j is lower and upper
bounded� let 
 be an accumulation value of ��� On the subsequence�

nau�� � 	

�

���na� � 	

�n�
� is negative�

We may conclude that the supremum value of ln is attained in the region
where all terms of Pn are O��	� where ����	 holds�
Now� we then have to optimize Pn��� �	 for � 
 �n and � in Bn� First notice
that on Bn

Dn��	 �
�

N��	

	
�� � �� � �	

nX
i
	

f ���
g�

�
�� � ��	�

�

nX
i
	

f���

g�



�Xi	���oP ��		

where N��	 has the same expansion� Depending on the leading terms in the
expansion� the only possible approximations of Dn��	 are the following�

Dn��	 �

	
nX
i
	

d	�Xi	



�� � oP ��		 ����	

or

Dn��	 �

	
nX
i
	

�d	�Xi	 � d��Xi	p
� � �� � �u�



�� � oP ��		 � Dn��	��� oP ��		 ����	

for some real number �� Moreover� the o��	 terms may be uniformly bounded
using a function of �n� It follows that�

Bn � Bn��	 � ����R	Bn��		

where Bn��	 is the set of � such that ��N��	� � ����n and ����	 holds� and
Bn��	 is the set of � such that ��N��	� � ����n and ����	 holds�
Maximization over Bn��	� On this set� we have� up to a multiplying factor
� � o��	�

Pn��� �	 � �
Fn
a
� ��

�
n� �Fn�

� � �na�� � ��

�
na���

where � � ��N��	�� We shall maximize it over � and then over �� and
then verify that the optimizing values verify � � Bn��	 and ��N��	 
 ��
Maximizing in � leads to

� �
�

a�
� Fn
na���

and the value of Pn��� �	 for this value of � is then

F �
n

�na�

which does not depend on �� and converges to ��� � 
�d� �
Let us now verify that the optimizing value may correspond to some � �
Bn��	 and ��N��	 
 �� Indeed� we may choose � such that N��	 � c� for
a constant c� so that � � ��c��� and ��N��	 � c��� Now for the optimizing
value of � we have

� � � � �

a
� Fn
na��
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and since any � now is an optimizing value we may choose � �
jFnj
n where

the constraints hold�
Maximization over Bn��	� On this set� we have� up to a multiplying factor
� � o��	�

Pn��� �	 � �Dn��	� ��

�
n � �Fn�

� � �nau��	�� � ��

�
na���

where � � ��N��	� and u��	 � �� � u	�
p
� � �� � �u�� We shall again

maximize it over � and then over �� and then verify that the optimizing
values verify � � Bn��	 and ��N��	 
 �� Maximizing in � leads to

� �
u��	

a�
� Fn
na���

�

and the value of Pn��� �	 for this value of � is then

F �
n

�na�
� ��Dn��	� u��	

Fn
a
	� n

��

�
��� u���	�

The maximization over � leads to

� �
�

n

�
Dn��	� Fnu��	�a

�� u���	

�
�Dn����Fnu���
a���

On the event

�Dn����Fnu���
a�� � ��
we have

sup
��������Bn

Pn��� �	 
 F �
n

�na�

and then� letting � tend to ��

sup
��������Bn

Pn��� �	 �
F �
n

�na�
�

On the event

�Dn����Fnu���
a�� � ��
easy computation gives

� �
�

n

�
Dn��	� uFn�a

�� u�

p
� � �� � ��u

�
�Dn����uFn
a���

The maximizing value of Pn��� �	 is then

F �
n

�na�
�

�

�n

�Dn��	� uFn�a	
�

�� u�
�Dn����uFn
a���

In all cases� the optimizing value of Pn converges to

�

�

�d� �

�

�

�
�d��ud��


p
	�u����d��ud���

p
��u�

���

Let us now verify that the optimizing value may correspond to some � �
Bn��	 and ��N��	 
 �� Indeed� we may choose � such that N��	 � c��	��

for a constant c��	 �depending on �	� so that ��N��	 � "c��	���
�� Now for
the optimizing value of � we have

��
� � � � u

a

p
� � Fn

na��

p
��
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Now� Fn
na��

converges in distribution for the optimizing value of �� � converges
to � in probability� so that the constraints hold� Lemma ��� is thus proved�

Proof of Theorem ���� The proof follows the same line as that of The�
orem ���� We �rst prove that Lemma ��� still holds� Again� assume that

�n is a sequence such that
��n

N��n�
tends to in�nity� Then� using �M��	� �n

tends to � and also �i�n��
i
n � ��	� for each i � �� � � � � p� �� By eventually

extracting convergent subsequences� let now I be the set of i such that �in
converges to some �i�� di
erent from ��� and let J be the complementary
set of indices� Then�

N��n	 � k�
X
i�I

�i�n
f�i�� � f��

g�
	�� � oP ��		 � �

X
i�J

�i�n��
i
n � ��	 � �n	

f ���
g�
	

�
�

�
�
X
i�J

�i�n��
i
n � ��	�

f���

g�
	�� � oP ��		k�

There are only three possibilities�
�	� If

N��n	 � k�
X
i�I

�i��
f�i�� � f��

g�
	��

f ���
g�
�
f���

g�
k�
�
�
X
i�J

�i�n��
i
n���	�	���oP ��		

where the �i�� are non negative real numbers and � is a real number� Then

��n
N��n	

� O

�
�
P

i�J �i�n��
i
n � ��		�P

i�J �i�n��in � ��	�

�
� O��	�

�	� If

N��n	 � k�
X
i�I

�i��
f�i�� � f��

g�
	 � �

f ���
g�
k � j

X
i�J

�i�n��
i
n � ��	 � �nj�� � oP ��		

where now � is � or ��� Then
��n

N��n	
� O

�
��n

�
P

i�J �i�n��in � ��	 � �n	�

�
� O��	�

�	� If

N��n	 � k�
X
i�I

�i��
f�i�� � f��

g�
	k � Cmax

i�I
�i�n�� � oP ��		

where C is some constant� ThenX
i�J

�i�n��
i
n � ��	 � �n � o�max

i�I
�i�n	 and

X
i�J

�i�n��
i
n � ��	� � o�max

i�I
�i�n	�

This implies that

�n � o�
q
max
i�I

�i�n	

so that
��n

N��n	
� O

�
��n

maxi�I �i�n

�
� o��	

and Lemma ��� is proved�
The formula for g�k� still holds for k � �� and that for k � � is obviously
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changed� Now� in all expansions� only Lemma ��� is used� and not the par�
ticular form of Dn��	� till the end of the proof of Lemma ���� So that�
following the same lines we see that Lemma ��� still holds� and that on
��N��	 � ����n we have the uniform approximation of ln��� �	 � ln��	 by
Pn��� �	 with the same formula� Di
erence in the proof comes when ap�
proximating Dn��	� For non negative �	� � � � � �p�	� any � and � � � or �� if
 � ��	� � � � � �p�	� �� �	� de�ne

d� 	 �

Pp�	
i
	 �i

f�i�f��
g�

� �d	 � �d�

kPp�	
i
	 �i

f�i�f��
g�

� �d	 � �d�kH
then the only possible approximations of Dn��	 take the form

Dn��	 �

	
nX
i
	

d� 	�Xi	



�� � oP ��		 � Dn� 	�� � oP ��		� ����	

De�ne u� 	 � hd� 	� d	i� Following the same lines as for Lemma ���� we
only need to maximize Pn��� �	 replacing Dn��	 by some Dn� 	 and u��	
by u� 	 �The fact that we only need to maximize Pn��� �	 follows the same
arguments a posteriori than in the proof of Lemma ���	� We perform the
maximization similarly in � then in �� which leads to the optimizing values�

� �
u� 	

a�
� Fn
na���

� �
Dn� 	� u� 	Fn�a

n��� u�� 		
�Dn����u���Fn
a���

On the event
�Dn����u���Fn
a�� � ��

we again have supPn �
F �
n

�na�
� On the event

�Dn����u���Fn
a�� � ��

computation leads to the maximum value for Pn�

F �
n

�na�
�
�

�n

�Dn� 	� u� 	Fn�a	
�

�� u�� 	
�Dn����u���Fn
a���

Veri�cation that the optimizing values lie in the right set are straightforward�
Then� notice that d� 	 � u��	d	 is orthogonal to d	� and use assumption
�AD	 to end the proof�
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