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RATE OF CONVERGENCE OF THE SWENDSEN�WANG

DYNAMICS IN IMAGE SEGMENTATION PROBLEMS� A

THEORETICAL AND EXPERIMENTAL STUDY

ISABELLE GAUDRON

Abstract� We study in this paper the convergence rate of the Swend�
sen�Wang dynamics towards its equilibrium law� when the energy be�
longs to a large family of energies used in image segmentation problems�
We compute the exponential equivalents of the transitions which control
the process at low temperature� as well as the critical constant which
gives its convergence rate� We give some theoretical tools to compare
this dynamics with Metropolis� and develop an experimental study in
order to calibrate both dynamics performances in image segmentation
problems�

Introduction

Image processing requires several important preliminary tasks� called low
level tasks� among which a crucial one is the segmentation of the image�
This problem has been very e�ciently solved through probabilistic methods
�see Geman �����	 for a general presentation	� including Markov Random
Fields models �for more details one can read Wang ����
	 and Wang �����		�
and from a more general point of view turns out to be a cost function mini�
mization problem� A large class of stochastic dynamics� such as Metropolis
relaxation� can then be used� However these dynamics are quite slow� and
their elementary moves do not seem well adapted to image segmentation
problems
 it is very di�cult to change the label of a whole region� which
can remain a long time misclassi�ed� with the dynamics of Metropolis�

In the late ���s� a dynamics in which the elementary objects were not the
single sites of the image but regions� has been proposed by Swendsen and
Wang to speed�up the convergence rate towards equilibrium for the Potts
model �Swendsen and Wang �����	� Sokal �����		 near critical tempera�
ture� In this dynamics� auxiliary variables are introduced which allow us to
change in one single move the label of a whole region� Such a possibility
appears very attractive in image segmentation problems� and we refer here
to Besag and Green �����	 which discuss its current and future relevance
in Bayesian applications� We also refer to Besag et al� �����	 to have a
complete presentation of Bayesian Computation and Markov chains Monte
Carlo techniques� But� if careful studies of the speed�up of the convergence
rate towards equilibrium has been done for the Potts model and for the Ising
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model with a constant external �eld �see for instance Martinelli �����	� Mar�
tinelli et al� �����a	 and Martinelli et al� �����b		� an extensive comparison
in image segmentation problems has to be led�

This is the main object of this paper� The image segmentation energies
we will consider here are quite simple� They cover nevertheless a large class
of the energies used in image segmentation problems�
Our energies U are de�ned by

U��	 �
X

�i�j��B

��i ���j �
X
i�S

Di�F ��i	�

where

� S is a �nite set called the set of pixels or also the set of sites�
� F is the image to be segmented�
� � is an image of labels� i�e� � belongs to � with � � f�� � � � � LgS�
� B is a set of undirected bounds � i� j � between pixels giving the
neighborhood relations�

� Di�F is a non negative function� depending on the input image F around
the site i� Let l be a label in f�� � � � � Lg� and i be a site in S� The term
Di�F �l	 will be small if the label l is locally well adapted to the image
F � and large otherwise� It is built according to local characteristics of
the input image� such as grey level intensities� variances� or directional
contrasts� depending of the type of images or textures to be segmented�
This is usually a term which has to be carefully constructed�

This kind of energies has been already used in supervised image segmen�
tation problems� as in Gra�gne �����	� or in other problems �Geman et al�

�����	� Herlin et al� �����		 where we know the maximal number of labels
L in the image to be analyzed� and statistical features of each label� to be
able to build the functions Di�

In the Metropolis dynamics� a single site is allowed to change its label at
each step� whereas the Swendsen�Wang dynamics allows us to change the
labels of all sites in one step� As suggested before� it introduces auxiliary
variables and works on a state space X � larger than �


X � f��� n	 � �� f�� �gB� � � i� j �� B� �i �� �j � nij � �g�

Each con�guration is then a couple whose �rst component is the image of
labels �� and the second one is an edges �eld separating pixels with di�erent
labels� A nice characteristics of this dynamics is that the �rst marginal
of its equilibrium law is the equilibrium law of Metropolis� The problem
which has then to be faced here is to compare the dynamics of two processes
which have the same static behavior� Such a problem� partly because of
the high cardinality of the state spaces� is di�cult� We will develop then
in this article di�erent methods to tackle it� The �rst one is theoretical�
It is based on the approach of Freidlin and Wentzell ����
	� in their study
of small perturbations of dynamical systems� we compute the exponential
equivalents of the transitions which control the process at low temperature�
and deduce that there exist� at least at low temperature� a class of energies
for which the Metropolis dynamics runs faster� and an other one where the
Swendsen�Wang dynamics is preferable� The frontier between these two
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classes of energies can not be practically computed� and this approach is a
priori relevant only at low temperature�

We will develop then experimental methods� which can also be applied
to other similar problems� These methods focus on di�erent aspects of such
dynamics� The �rst one is relied to the quality of the results which are
obtained
 the lowest energies reached in a given number of iterations� the
precision of such estimates� are computed� The second one estimates the
time spent under some interesting levels of energy� The last one tries to
understand the proper dynamical behaviors through the computation of ex�
cursions out of low energy levels� These methods are described in our last
and main part� Our experimental results calibrate more precisely in very
simple cases the range of energies where we should run the Swendsen�Wang
dynamics� the main fact being that we have not found any case which was
relevant in image segmentation problems and where the Swendsen�Wang dy�
namics gave better results� This study con�rms the conclusions reached in
Gray ����
	 and in Hurn and Jennison �����	� In the �rst paper� A� Gray
explains in detail how the Swendsen�Wang algorithm may be used to simu�
late certain types of posterior Gibbs distribution� and empirically compares
the behavior of the algorithm with that of Gibbs sampler� when applied to
image restoration problems� The paper shows in particular the importance
of the starting con�guration� The paper of M� Hurn and C� Jennison fo�
cuses on the relative performances of Gibbs and Swendsen�Wang samplers
in MAP �maximum a posteriori	 and MPM �marginal posterior modes	 es�
timation� when applied to Ising models� either degraded or nondegraded
by additive pixel�wise independent Normal noise� Although both studies
concluded to disappointing performances of the Swendsen�Wang algorithm�
it was not clear that such conclusions were also relevant in the domain of
image segmentation� where the fundamental objects to tackle with are not
pixels but regions�

�� Description of the Swendsen�Wang dynamics

Let us �rst recall that the Metropolis dynamics is an homogeneous Markov
chain ��n	n�N� with transition matrix S� � �s���� �		������

� s���� �	 �
�

jSjL
exp��	�U��	� U��		�	 if there exists i in S such that

�j � �j � for all j �� i� and �i �� �i�
� s���� �	 � � if there exist two sites i and j in S such that �j �� �j and
�i �� �i�

� s���� �	 � ��
P

� ��� s���� �	�

� The parameter 	 is strictly non negative and 	�� is called a tempera�
ture�

The law of ��n	n�� converges towards the Gibbs law P� such that P���	 �
�
Z�

exp��	U��		� where Z� is the partition function
P

��� exp��	U��		�

At low temperature� this Gibbs law loads uniformly the ground states


lim
���

P� � P�� where P� �

P
�	U
���Umin

��

jf��U��	 � Umingj
� and Umin � inf

�
U��	�

Let us state now the notations we need to de�ne and study the Swendsen�
Wang dynamics�
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Notation ���� Let 	 be a strictly non negative parameter� we denote p�
the real valued number exp��		�
Let x � ��� n	 be a con�guration of X � We denote ��x	 the image of labels
�� and n�x	 the edges �eld n�
Let � � �� we denote n��	 the edges �eld associated to � satisfying
 for all
� i� j �� B� �i � �j if and only if nij � �� This �eld is the minimal edges
�eld associated with ��
Let n � f�� �gB� we call jnj the number of edges of n
 jnj �

P
�i�j��B nij �

The minimal value of the energy U is denoted Umin�
Let ��� n	 be a state ofX � � the Kronecker delta� andD��	 �

P
i�S Di�F� �i	�

We de�ne the following function u� from �� f�� �gB to R


u���� n	 � exp��	D��		
Y

�i�j��B

��nij����i��j ��� p�	 � p��nij��	� ����	

Let us remark here that u���� n	 �� � if and only if ��� n	 � X � and that
for all con�guration x � ��� n	 of X we have


u���� n	 � exp��	D��		��� p�	
jBj

�
p�

�� p�

�jnj
�

Moreover� using ����	� a straightforward computation gives that for any
� � �� X

n�f���gB

u���� n	 � exp��	U��		�

so that X
x�X

u��x	 �
X
���

exp��	U��		 � Z� �

Hence� considering
u�
Z�

as a probability measure on X � we get that its mar�

ginal on � is exactly the Gibbs measure P� � We have to de�ne now the
allowed moves of the Swendsen�Wang dynamics�

Definition ���� Let n be an edges �eld on B� A subset C of S is called a
connected component of n if and only if

� For all distinct sites i and j in C� there exists a sequence of sites in C�
i� � i� i�� � � � � ik � j� such that for all l � f�� � � � � k��g�� il� il�� �� B

and nilil�� � ��
� C is a maximal subset of S which satis�es the previous condition�

Let us remark here that for any con�guration x � X all the sites inside a
connected component of n�x	 have the same label�

Notation ���� Let n be an edges �eld on B� We denote C�n	 the sets of the
connected components of n� If C belongs to C�n	� and if � is a con�guration
of �� �C will be the restriction of � to C�

Definition ���� The transition graph G on X is a symmetric graph� with
vertices set X � where two distinct states x and y of X are neighbors if
��x	 � ��y	 or if n�x	 � n�y	� The notation x 	 y means that the two
con�gurations x and y are mutual neighbors�

We can notice here that the graph G is a connected graph� Steps of
the Swendsen�Wang dynamics are of two types� Let us call x � ��� n	 our
current con�guration� We can compute a new edges �eld m as following�
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Let � i� j � be any bound of B� If �i �� �j � mij is put to �� Otherwise�
mij is put to � with the probability exp��		� and to � with the probability
�� exp��		�

We can also compute the connected components associated to n and ad�
just the labels of these regions� For each connected component C� we choose
a label lC in f�� � � � � Lg� and compute � �

P
i�C�Di�lC	 � Di��i		� The

sites of C receive then the label lC with the probability exp��	��	� where
x� is equal to sup�x� �	� This informal description leads to the following
de�nition�

Definition ���� The Swendsen�Wang dynamics is an homogeneous Markov
chain �Yn	n�N whose transition matrix is Q� � �q��x� y		x�y�X such that� if
x �� y�

q��x� y	 �

���
��

�
�q

��
� �x� y	 if ��x	 � ��y	�

�
�q

��
� �x� y	 if n�x	 � n�y	�

� otherwise�

where

q

��
�

�x� y	 �
Y

�i�j��B	 �
x�i��
x�j

p
n
y�ij
�

��� p�	
��n
y�ij �

q

��
�

�x� y	 �
Y

C�C
n
y��

L��p

D
�
y�C��D
�
x�C��

�

�
�

As announced above� we can either create new bounds� and hence new
connected components� or update the label of each connected component�
We easily check that Q� is reversible for the probability law on X � 
� �

u�
Z�

�

whose marginal on the set � is the Gibbs law P� � The Swendsen�Wang
dynamics is then a tool to simulate the Gibbs law P� through 
�� We have
to study now its convergence rate towards equilibrium and to compare it to
the convergence rate of the Metropolis dynamics�

�� Convergence rate towards equilibrium�

The law 
� is reversible for the transitions q� � and the Swendsen�Wang
process is irreducible and aperiodic� The transition matrix Q� is diagonal�
izable then in an orthogonal basis of eigenvectors in L��
�	� its eigenvalues
are real valued� and satisfy� when noted in decreasing order


���		 � � � ���		 
 � � � 
 �min�		 � ���

Let x be a state of X � �Yn	n�� a Swendsen�Wang process starting from x�
and �xn the law of Yn� If V is a subset of X �

��xn�V 	� 
��V 		� � 
��V 	
�� 
��x	


��x	
��		�n� ����	

where ��		 � supf���		� j�min�		jg� We will derive the relations between
��		 and 	 at low temperature from the study of the transition costs and of
their exponential equivalents�
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Lemma ���� Let x and y be two con�gurations such that q��x� y	 � �� Then

lim
���

log�q��x� y		

	
� �V �x� y	�

where� if x �� y�

V �x� y	 �

�
jn�y	j � jn���x		j if ��x	 � ��y	P

C�C
n
y���D���y	C	�D���x	C		
� if n�x	 � n�y	�

Let x be a con�guration of X� Let us denote U�x	 � D���x		� jn�x	j� Then
a straightforward computation gives that


��x	 �
exp��	U�x		��� p�	

�jn
x�jP
y�X exp��	U�y		��� p�	�jn
y�j

�

Let x and y be two states of X such that q��x� y	 � �� Then

V �x� y	 � U�x	 � V �y� x	 � U�y	�

This means that the function U � de�ned on X� is a potential function for

the transition costs V�

Since our process is reversible and aperiodic in each irreducible class at
temperature zero� we have that �min�		 does not tend towards �� when 	

tends to in�nity �Diaconis and Stroock �����		� Applying results of Frei�
dlin and Wentzell ����
	 which concern the exponential equivalents of the
eigenvalues �i �chapter �� page ���	� we have that lim��� ���		 � �� ex�
cept in degenerated cases� where the Markov chain has only one irreducible
component at temperature zero� We deduce that ��		 � ���		 if 	 is large
enough�

Lemma ��� gives the relation between �� and 	�

Definition ���� Let x and y be two states of X � We call path between
x and y any sequence of vertices x� � x� x�� � � � � xk � y� such that for all
i � f�� � � � � k � �g� q��xi� xi��	 � �� The set of paths which join x to y will
be denoted Cxy�

Lemma ���� There exists a strictly non negative constant K which does not

depend on 	 such that

���		 � ��
exp��	m	

K
�

where

m � sup
x��y

inf
��Cxy

�sup
u��

�U�u	� U�y	� U�x	 � Umin	� ����	

Proof� The �rst part of the proof is based on lemmas 
���
� 
����� and the�
orem 
����� stated in Deuschel and Mazza ����
	 �pages ����� ���� and
���
	�

Let u and v be two states in X such that q��u� v	 � �� Let us de�ne

A�u� v	 � U�u	 � V �u� v	� For each path 
 we will denote e�
	 the set of its
edges� and Evel�
	 � max
u�v��e
��A�u� v	� Set now

m
�� � max
x��y

� min
��Cxy

Evel�
	� Umin � U�x	� U�y		�
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Since Q� is reversible for the probability law 
� one has

���		 � ��
exp��	m
��	

K
�

We shall prove now that m is equal to this constant m
���
Let x and y be two distinct states of X and 
 a path from x to y� We

always have that Evel�
	
 supu�� U�u	� We claim that there exists a path

g from x to y such that Evel�g	 is equal to supu�g U�u	 and to supu�� U�u	�
and such that Evel�g	� Evel�
	�

Let �u� v	 be an edge of 
 such that u � ��� n	 and v � ���m	� Hence
A�u� v	 � U�u	� jmj� jn��	j which is greater than U�u	�U�v	� Let guv be
the path u	 u� � ��� n��			 v� Then Evel�guv	 � U�u	� U�v	 
 U�u�	�
Hence the announced result is true in this case�

Let now �u� v	 be an edge of 
 such that u � ��� n	 and v � ��� n	� and
C�� C�� � � � � Ck be the connected components of n where � is di�erent from
� ordered in such a way that

D��C�	�D��C�	 � D��C�	�D��C�	 � � � � � D��Ck	�D��Ck	�

Let us denote �� � �� and ��� � � � � �k the following images of labels


�l � f�� � � � � kg� �l�i	 �

�
��i	 if i �

S
��j�l Cj �

��i	 otherwise�

Let us also denote ul � ��l� n	� for all l � f�� � � � � kg� Note here that uk is
equal to v� We replace the edge �u� v	 with the path guv � �u� u�� � � � � uk	�
and claim that Evel�guv	 � A�u� v	� that Evel�guv	 � supz�guv U�z	 and

Evel�guv	 � U�u	�U�v	 � We easily check that Evel�guv	 � supz�guv U�z	�

and that A�u� v	 
 U�u	 � U�v	�
Now three cases may appear�
In the �rst case� D���v	C�	 � D���u	C�	 
 �� Hence� we deduce that
D���u		 � D���	 � � � � � D��k	� and that Evel�guv	 � U�v	�
In the second case�D���v		�D��k��	 � �� Hence we deduce thatD���u		 

D���	 
 � � � 
 D���v		� and that Evel�guv	 � U�u	�
In the third case we suppose that D���v		�D��k��	 � � and that D���	�
D���u		 � �� Hence Evel�guv	 � U�u	� U�v	� and the proof is complete if
we build the path g in replacing each edge �u� v	 with the path guv�

Moreover� we have the exponential equivalence at low temperature


lim
���

log��� ���			

	
� �m�

Let us recall here that we have similar results with the Metropolis dynam�
ics� if we replace U with U � Umin with Umin� and the transition graph of
the Swendsen�Wang dynamics with the transition graph of the Metropolis
dynamics� The associated critical constant will be denoted m


m � sup
x��y

inf
��Cxy

�sup
u��

�U�u	� U�y	� U�x	 � Umin	�

Let us �rst compare U and U �

� For all x in X � U�x	 
 U���x		�
� For all x in X � U�x	 � U���x		 if and only if n�x	 � n���x		�
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� A con�guration x of X is a local minimum of U if and only if n�x	 �
n���x		 and if ��x	 is a local minimum of the function D�

� The energies U and U have the same minimal value� Let us denote
Xmin the set of global minimums of U 


Xmin � f��� n��		 � X �U���x		 � Uming�

The equilibrium law of the Swendsen�Wang process satis�es


lim
���


� � 
��

where 
� is the uniform measure on Xmin� Translating the results obtained
with the Metropolis dynamics� we have the following convergence at low
temperature�
Let us denote V � fx � X �U���x		 
 Eg� with E � Umin and such that
fx � X �U���x		 � Eg �� 
� When the constant m is not equal to �� the
rate of convergence of the Swendsen�Wang process to the ground states is
bounded by


lim sup
n��

�

logn
�inf
�

sup
x�X

log �xn�V 		 � �
E � Umin

m
�

�� Comparison of the Swendsen�Wang and Metropolis

dynamics

This comparison is based on the comparisons of their associated critical
constants m and m� This leads to a comparison of the convergence rates of
these dynamics which is relevant at low temperature only�

Let us recall �rst that the constant m is also equal to

m � sup
x�Xmin�y�Xloc�x��y

inf
��Cxy

sup
u��

�U�u	� U���y			�

where Xloc � fx � X � �y � X such that x 	 y� U�x	 � U�y	g� An other
important fact is thatm � � if and only if U has at least one local minimum
which is not in the same valley of energy as one of the global minimums�
We will focus in this section on the following family of energies


Uh��	 � hD��	 �
X

�i�j��B

��i ���j � where h � �� ����	

We recall here that the non negative function D is still equal to
P

i�S Di��i	�
Such family of energies is very often used in image segmentation problems�
where we usually try di�erent smoothing rates
 if we want to have a very
smooth result� i�e� to have quite large regions with smooth boundaries� we
run some relaxation steps with a small parameter h� if we want to have
a very precise segmentation� we would prefer a large parameter h� Let us
denote m the function such that

m�h	 � sup
x��y

inf
��Cxy

sup
u��

	
Uh�u	� Uh�x	� Uh�y	 � Uhmin



�

and m the similar function for the Metropolis dynamics� Since these func�
tions m and m are both continuous� we have the following proposition�
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Proposition ���� There exists a constant h� � � such that for all h � h��

m�h	 � m�h	� If D has a minimal value which is obtained with a unique

and non constant image of labels �� there exists a constant h� � � such that

for all h 
 h�� m�h	 � m�h	�

Proof� Let h � �� The set Xmin is equal to f��� �B	� �i� j � S �i � �jg�

where we denote �B the null �eld of edges� The energy U has then L global
minimums whose �rst components are the constant images� The set Xloc is
equal to f��� n��		 � � � Bf���gg� Let x � ��� �B	 be a state of Xmin and
y � ���y	� n���y			 be a state of Xloc�

� If y belongs to Xmin too� then x and y are neighbors and V �x� y	 � ��
� In the other case� let us consider the following path 
 from x to y

x� � x	 x� � ��� n�y			 x� � y� and compute U�u	�U�y	 for each
u � 
� We easily check that supu���U�u	� U�y		 � ��

It follows then that m��	 � ��
The Metropolis constant m��	 is strictly non negative
 the energy U�

has many strict local minimums� We end the proof of the �rst part of the
proposition with the continuity of the two functions m and m�

Let us prove now the second part of the proposition ���� For h large
enough� the energy U has a unique local and global minimum� for the graph
of Metropolis� which is equal to �� The minimal value of U is unique and
equal to x � ��� n��		� Let us consider the following con�guration of Xloc�
y � ���y	� �B	� with ��y	 equal to a minimal constant image
 for all site
i � S� ��y	i � l� where

P
iDi�l	 � infj�f����� �Lg

P
iDi�j	� Let 
 be a

path going from x to y� As � is not a constant image� 
 has to contain a
con�guration u � ���u	� n�u		� with ��u	 constant and n�u	 di�erent from
�B� some edges of n�u	 have to build a closed boundary� This fact gives us
that U�u	�U�y	 
 �� It follows then that m�h	 
 �� for h large enough� As
the two functions m and m are continuous� there exists h� � �� such that
for all h � h�� m�h	 � m�h	�

There exists then a wide domain of energies where we are sure that we
have a better rate of convergence with the Metropolis dynamics than with
the Swendsen�Wang dynamics� We should now estimate the domain where
it is preferable to run the Swendsen�Wang dynamics than the Metropolis
one� First of all we should answer the following question
 is the domain
��� h�� large enough to contain some h such that Uh has a global minimum
which is not a constant image� If it is not the case� it will be always worse
to run the Swendsen�Wang dynamics than the Metropolis one to reach the
ground states of U in practical cases of image segmentation� We have no
general answer to such a question� but we have run some simulations of these
two dynamics in a very simple case�

�� Experimental study


��� Framework and purposes

In all this section our goal is to compare the behaviors of Metropolis
and Swendsen�Wang dynamics� when they are applied on a wide range of
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energies� on quite large images� and at many temperatures� This comparison
will be led when both dynamics are run with the same �xed number of
iterations� We call iteration� or step� of the dynamics of Metropolis� one
sweep of all sites of an image� An iteration of the Swendsen�Wang dynamics
is also de�ned as a sweep of all sites of an image� it is cut into two steps� In
the �rst step� we update the edges �eld� in the second step� we compute the
associated connected components� and choose their new labels�

We will particularly focus our attention on three points� We will �rst
look at the lowest energies reached by each dynamics� We will then com�
pare their energy distributions� and compute some interesting quantiles� We
will compare at last their dynamical behaviors� when both processes are at
equilibrium �or when we can not at least discriminate their static behaviors	�
and derive from this comparison indications about their energy landscapes�

The energies we will work with belong to the family described in the
equation ����	� with the four nearest neighbors system� The second term of
the energy D��	 is very simple and easy to build

D��	 � DR��	 �
X
i�S

��i ��Ri
�

where the image R � �Ri	i�S can be interpreted as the result of a prior esti�
mate of the segmentation� based on a local classi�cation of the pixels which
does not take into account the spatial relationships between neighbors� We
think that even if this second term is too rough to give good segmentations�
it gives relevant conclusions about the comparison of the Metropolis and
Swendsen�Wang dynamics�

The energy Uh will then provide us with smooth segmentations close to
R� The value of the parameter h will be adjusted according to the expected
smoothness of the result
 a small value of h will provide us with a high
regularization �note that if h is close to zero� the energy ground states are
constant images� and are of no interest for image segmentation problems	�
if h is large� our segmented image will be very close to R�


��� Energies based on synthetic images

We have built several binary images R� of size ��� by ���� and present
here some signi�cant and generic results obtained with three of them� The
�rst image R� is a perfect segmented image� and provides us with a family
of energies where we know what are the ground states� and some important
local minimums� We will see that even in such an easy case� starting from
a random image� the Swendsen�Wang dynamics has some problems to �nd
the right segmentation� The second one� denoted R�� is the realization of
a �D Ising model with no external �eld at low temperature� to study the
behaviors of both dynamics when we want to segment images with wide
regions which have no linear boundaries� and where holes of misclassi�ed
pixels appear� The third one� called R�� is a noisy half white and black
image� we also know in this case what is the expected segmentation�

For each second term DR� we have run both dynamics with �ve di�erent
temperatures �	 belongs to f���� �� �� �� �g	� and with several parameters
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h which belong to a domain where the energy ground states are smooth
versions of the prior classi�cation R�

For each experiment� we have �rst run ���� steps of both dynamics�
starting from random noise� We have kept the �nal con�guration and dis�
carded the ��� �rst images� These ���� steps seem to be su�cient to reach
equilibrium for the Metropolis dynamics at all temperatures� and for the
Swendsen�Wang dynamics only at median or high temperatures �	 � �	�

Let X
R�h����
� be the �nal con�guration obtained with Metropolis and

X
R�h����
� the �nal con�guration obtained with Swendsen�Wang� We have

then run 
��� steps of each dynamics and computed the energy U of each

con�guration� Let us denote �XR�h����
i 	��i�
��� the 
��� con�gurations of

Metropolis and �XR�h����
i 	��i�
��� the con�gurations of Swendsen�Wang and

let us compare their energies�


����� Lowest energies reached by both dynamics�

Let h� R and the type j of the dynamics be �xed and let us call u �

�R� h� j	� For each sequence �Xu��
i 	��i�
��� we have computed the mini�

mal energy reached U
u��
m � min��i�
���U�Xu��

i 	� the mean energy U
u��

�

�
���	��
P
���

i�� U�Xu��
i 	� and the standard deviation� We have also com�

puted the energies of the two constant images Uwhite and Ublack and of the
image R� the two �rst images being at least local minima of both graphs in
the domain where lives h� In each following table we have reported Uwhite�
Ublack� UR and the lowest energy reached among all di�erent temperaturesbUu
min � min� U

u��
m � We have also reported the set B of the inverse tempera�

tures 	 for which bUu
min is reached� The bold typed parameter 	 corresponds

to values for which U low � min��B U
u��

is reached� The reported standard
deviation is associated to this bold typed parameter�

Figure �� Left
 �rst image R�� right
 best result obtained
with Swendsen�Wang for h � ��� and 	 � ��

In the �rst case �see table I and �gure �	� Uwhite � Ublack � ����h� and
U�R�	 � ���� The global minimum is a non constant image for h � ���
�
When h is equal or larger than 
� the Metropolis energy landscape has no
strict local minimum �in this case� m�
	 is equal to �	�

The second image �see �gure �	� denoted R�� is the realization of a Markov
random �eld of energy 	

P
�i�j� ��i ���j � with 	 large�

The third image �see �gure �	� denoted R�� is a half white and black image
I� corrupted with an independent noise W as follows
 R��i	 � I�i �Wi�� �
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Figure �� Examples of segmented images of lowest energy�
associated with the second image R�� Up�left
 Second image
R�� up�middle
 Metropolis with h � ��� and 	 � �� up�right

Metropolis with h � � and 	 � �� Down�middle
 Swendsen�
Wang with h � ��� and 	 � �� down�right
 Swendsen�Wang
with h � � and 	 � �� Results obtained with the two dy�
namics are very close from a qualitative point of view� even
if bUmin�Met	 is slightly smaller than bUmin�S�W�	�

Figure �� Left
 image R�� Right
 best result obtained by
Swendsen�Wang on R� with h � ��� and 	 � ��

�� � I�i 	�Wi��� for all site i in S� where the Wi are i�i�d� random variables
such that P �Wi � �	 � ���� and P �Wi � �	 � ���� In table III we have
reported the energy of the perfect corresponding segmented image I��

In all our experiments� the energies observed with both dynamics at high
and sometimes median temperatures �	 � �	 are very similar �we have sim�
ilar mean energies� standard deviations� and lowest energies	� When tem�
perature becomes too low� these dynamics have di�erent quantitative and
qualitative behaviors� The energies of Metropolis con�gurations are getting
smaller and smaller� whereas the energies of Swendsen�Wang con�gurations
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are much larger than they were at 	 � �� The best results of the Swendsen�
Wang dynamics are quite always obtained with 	 � �� At low temperature�
Swendsen�Wang stays in local minima� and can not create easily boundaries
to change the structure of the connected components of the image
 it has
to pay a high price whereas it does not know if it would be able to decrease
the energy� For instance it is very di�cult for this dynamics to move the
boundary of a region at low temperature� or to break a region into several
pieces�

h ���� ��� ��� 

Uwhite � Ublack ��� ��� ���� �� ���

U�R�	 ��� ��� ��� ���
MetropolisbUmin ������ ��� ��� ���

	 � � �� �� � �� �� �� �
U low ������ ������ ������ ���
Std ���� ���� ���
 �

Swendsen�WangbUmin ����� ������ ��� ���
	 � � � �� �� �

U low ������ ������ ������ ������
Std ���
� ����� ���� ����

Table I� Results obtained with the �rst image R�� For
h � 
� the energy U has no local minimum in the graph
of Metropolis� this explains why Metropolis reaches R� after
a few steps and stays in this state for 	 
 ��

h ��� ��� � ��� � 

Uwhite ����� ������ ���� ������ �� ��
 �����
Ublack 

��� ��
��� 

�� ���
�� ���� �����
U�R�	 ���� ���� ���� ���� ���� ����

MetropolisbUmin ����� ��� ���� ������ ���
 ����
	 � � � � �� � �� �� �

U low ��
��� ������ ������� ������� ���
��� �������
Std ����� ���� ��
� ��
� ���
 ����

Swendsen�WangbUmin 
���� ��� ��
� ���� ���� ���

	 � � � � � �

U low ������ ������ ���
��� ������� ��

��� ������
Std ����
 ���� ���� ������
 ���� ����

Table II� Results obtained with the second image R��
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h ��� ��� � 

Uwhite 
���� �
�� 
��� �����
Ublack ��
�� ���� ��
� �����
U�R�	 ���� ���� ���� ����
U�I�	 ����� ��� ���� 
���

MetropolisbUmin ����� ��� ���� ����
	 �� � �� �� � �� �� � �� �

U low ������ �����
 ������� ������
Std ��
� ���
 ���� ����

Swendsen�WangbUmin ����� ��� ���� ����
	 � � � �

U low ����� ��
���� ������ ������
Std ��� � � 
���

Table III� Results obtained with the third image R��

We also see in tables I� II and III that the lowest energies reached by the
Swendsen�Wang dynamics are higher than the lowest energies reached by
Metropolis� Even when the Swendsen�Wang dynamics reaches the minimal
energy� the standard deviation is worse than with the Metropolis dynamics
�we have to recall here that the minimal energy is reached by at a lower
temperature for Metropolis than for Swensen�Wang	�


����� Comparison of the energy distributions�

We have shown yet that the Metropolis dynamics reached ground states
at many temperatures� whereas the Swendsen�Wang dynamics was very of�
ten trapped in local minimums at low temperature� Since the Swendsen�
Wang dynamics always obtains its best results with 	 � �� we focus from
now on both dynamics at this inverse temperature� We limit our study
to the cases where global minimums were reached or nearly reached� Let
us look at the energy distributions of both sequences� and denote U� �

�U�XR�h����
i 		��i�
��� and U� � �U�XR�h����

i 		��i�
����
Each following �gure shows both distributions and cumulative distribu�

tion functions of U� �in solid line	 and U� �in dashed line	� as well as inter�
esting quantiles� The main fact is that both distributions are similar� and
can not be discriminated when h � ��� or �� con�rming the fact that both
dynamics seem to be at equilibrium�

This shows that if we have to work at a median temperature we will obtain
similar results with both dynamics� If we want to reach ground states with
a very precise value� which means that we have to work at low temperature�
we should run the Metropolis dynamics� which appears much more robust�
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����� Comparison of the energy landscapes�

What happens at this median temperature �
� gives us signi�cant informa�

tions about the proper dynamical behaviors of these Markov chains� More
precisely� we focus here on the energy landscape nearby interesting subsets
of �� i�e� sets of low energy states� and work with the complete processes U�

and U� �and not only with their distributions	� A simple way to proceed is
to look at the excursions out of these low energy level sets� Long excursions
will denote the existence of a barrier of high energy in the neighborhood of
these sets�

Let us denote V �
� � f� � ��U��	 � �� � �	Uming� and V �

� � fx �
X �U���x		� ����	Uming� Let us consider the Metropolis �resp� Swendsen�
Wang	 Markov chain starting from V �

� �resp� V �
� 	 with its equilibrium law�

Let ��� � inffi � �� X�
i�� � V �

� g be the return time associated with Me�

tropolis and ��� � inffi � �� X�
i�� � V �

� g be the return time associated with
Swendsen�Wang� We have estimated their distributions for small values of
�� They have similar means �we are at equilibrium	� � but look very di�er�
ent
 ��� has median values whereas the Swendsen�Wang process has quite a
lot of short excursions and always a few long ones� This implies that the
variance of ��� is always much larger than the variance of ��� � The existence
of long excursions also means that at low temperature� the Swendsen�Wang
process will take a long time to reach a ground state if it does not start from

�Let us recall here that EV 
�V � � �
��V � for an irreducible Markov chain� starting from

V with its equilibrium law �� and where �V is the return time in V �
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Figure 	� Distributions of U� and U� when R � R� and
	 � �� top
 h����� bottom
 h� �� Let us notice here that
these distributions are quite di�erent when h � ���� i�e� with
a high regularization rate and non constant global minimums�
this con�rms the fact that in this case Metropolis performs
better �see table II	� This di�erence disappears when h in�
creases�

the neighborhood of a global minimum �we see such a phenomenon in our
experiments	�

We show the di�erent results we have obtained with � � ��� with values
of h for which static results were similar for both dynamics� in the �gures
�� � and ��� The number of the return time lies on the x�axis� and its value
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on the y�axis� After each �gure� we express the mean value� denoted � � and
the empirical variance� denoted var��	�
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We have also estimated� for the inverse temperature 	 � � and for
h � f���� �g� the autocorrelation functions of the two processes U� and

U�� i�e� ��U�t	 �
cov
U
X�

� ��U
X
�
��t��

var
U
X�
���

� and ��U�t	 �
cov
U
X�

���U
X
�
��t��

var
U
X�
���

� The

autocorrelation function of the Swendsen�Wang process has a much slower
decrease than Metropolis �see �gures �� and ��	� This also con�rms the
fact that Swendsen�Wang has a slower rate of convergence to equilibrium
than Metropolis� One can read Sokal �����	 to have a quite complete idea
on the relations between the autocorrelation function and the convergence
rate of a Markov process to equilibrium in the reversible case� We also refer
to Gaudron and Trouv e �����	 in which we study the integrated autocor�
relation times of a Markov chain at low temperature with no reversibility
assumption�
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(1) Metropolis   
(2) Swendsen−Wang
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Figure ��� Autocorrelation functions of the energy of the
Metropolis and Swendsen�Wang processes for h � ��� and
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Figure ��� Autocorrelation functions of the energy of the
Metropolis and Swendsen�Wang processes for h � ���� 	 � �
and R��


��� Comparison when the ground states are constant images

We focus in this part on the energies Uh with a small value of h� i�e�
with a high regularization term� Although such family of energies is of no
interest in image segmentation problems �ground states are constant images
in such a case	� this study will help us to answer some questions about the
value of the threshold h� which satis�es
 �h � h�� m�h	 � m�h	� In all our
experiments� the fact that the energy ground states were constant images
did not appear to be su�cient to assure that the Swendsen�Wang dynamics
had a higher rate of convergence than Metropolis� In fact� the Swendsen�
Wang process behavior seems better than the Metropolis behavior for very
small values of h �h � �����	� and worse as soon as h 
 ���� �see tables IV
and V	�

We have also estimated return times of the two dynamics for h � ������
and we have noticed that both return times had very similar distributions�
Let us recall here that Swendsen�Wang seemed more e�cient than Metrop�
olis for such a small value of h� Hence we can deduce that the study of
some return times distributions is a very useful tool to compare di�erent
Markovian dynamics� In particular� the existence of long excursions out of
sets of low energy states at a median temperature will give a very slow rate
of convergence to equilibrium at low temperature�

ESAIM� P
S� July ����� Vol� �� pp� �	�
���



��� ISABELLE GAUDRON

h ����� ���� ����
Uwhite � Ublack � �� ���

U�R�	 ��� ��� ���
MetropolisbUmin � �� ���

	 �� �� � �� �� � �� �� �
U low ����� ������ ��
���
Std ���� ����� ���

Swendsen�WangbUmin � �
���� �
����
	 �� �� � � �

U low � ������ ������
Std � ����� �����

Table IV� Results obtained with the �rst image R��

h ����� ���� ���� ����
Uwhite ����� ����� �����
 ������
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�
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Table V� Results obtained with the second image R��
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Figure ��� Return times of Metropolis and Swendsen�Wang
for h � ������ 	 � �� R�� and � � ���� �the minimal energy
is very small	� Let us notice that both return times have
here similar distributions
 in this case �which has no inter�
est for image segmentation problems	� the Swendsen�Wang
dynamics is very e�cient�


�
� Segmentation of a real image

We will show here some results obtained with a real image of size ��������
which is composed of four di�erent textures ��	 � The energy we work with
is Uh��	 �

P
�i�j��B ��i ���j � h

P
i�S ��i ��Ri

� where � i� j �� B if and

only if ji� jj � �� and where R is our prior unsupervised segmentation we
have computed according to local statistical characteristics of the image�
This energy is too simple to solve such a problem
 a realistic second term
would involve a kind of distance between statistical characteristics of the
di�erent textures� Anyway� the quantitative and qualitative comparisons of
the convergence rates of Metropolis and Swendsen�Wang dynamics would
lead to similar conclusions�

The experiment is the following
 we start from the �rst segmented image
R� and run n� simulations of the Metropolis dynamics and n� simulations
of the Swendsen�Wang dynamics� Let us remark that R is here a local mini�
mum for the Swendsen�Wang transition graph
 this dynamics has to increase
its energy quite a long time� before being able to decrease it� Hence its sta�
bilization time is much longer than the stabilization time of Metropolis� and
this explains why we have taken n� much larger than n�� On �gure �
� we
show the initial image to be segmented� as well as the �rst segmentation
based on statistical features of the textures� The image of smallest energy
obtained with the Swendsen�Wang dynamics is quite close from the image
obtained with the Metropolis dynamics� but after much more steps�

�We thank very much Professor C� Gra�gne who has kindly provided us with this
image�
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Figure ��� Left
 original image� right
 prior segmentation R�
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Figure ��� Experiments with h � ���� and 	 � �� Up�
left
 Metropolis energy values� up�right
 segmented image
of lowest energy obtained with Metropolis dynamics� Down�
left
 Swendsen�Wang energy values� down�right
 segmented
image of lowest energy obtained with Swendsen�Wang dy�
namics� Note that the Swendsen�Wang dynamics has not
reached equilibrium at the last step of Metropolis�
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�� Conclusion

We have theoretically stated in this article that we should better run
Swendsen�Wang than Metropolis for energies with a large regularization
term� and that we should run Metropolis when the regularization term is
very small� In our experiments we have tried to calibrate what was the
meaning of small and large�

The �rst point which has appeared in all our experiments is that we shall
not run the Swendsen�Wang dynamics at too low temperatures
 we have
always obtained the best results with 	 � �� i�e� at a median temperature�
For 	 � � or 	 � � the Swendsen�Wang dynamics gets trapped in the
neighborhood of local minimums of the energy� We can also notice here
that results obtained with Swendsen�Wang are very sensitive to this choice
of temperature�

In a second step� we have studied more precisely the Swendsen�Wang and
Metropolis dynamics at this median temperature 	 � �

� � in signi�cant cases
for image segmentation problems �i�e� h � ��� or �	� and when stationarity
seemed to be reached� We have computed and compared the distributions
of the excursions out of sets of low energy� In all cases� these distributions
were very di�erent
 the Swendsen�Wang dynamics has always very short
excursions and a few very long ones� whereas the excursions of Metropolis
have a median length�

This behavior at a median temperature explains what happens at low
temperature
 the Swendsen�Wang state space seems to have deeper cycles�
standing not too far from sets of low energy� than the Metropolis state space�
At a median temperature� it stays quite a long time in these cycles� but can
still get out of them� When the temperature decreases� it gets trapped in
them� We also think that the qualitative properties of such excursions is a
very e�cient and helpful way to compare Markovian dynamics�

The main disappointing conclusion is that we did not �nd any interesting
case for the image segmentation problem� which means that the global min�
imums of the energy are not constant images� where the Swendsen�Wang
dynamics provided us with better results than the Metropolis dynamics�

Hence we do not believe that the Swendsen�Wang dynamics is interesting
to be run by alone for image segmentation problems� Nevertheless it may
be interesting to follow a mixed strategy� and we refer here to the current
thesis work of O� Cherif �CMLA	 who builds an e�ective image segmenta�
tion algorithm� partly based on the Swendsen�Wang dynamics� and to Hurn
�����	 who considers adaptative strategies in a classi�cation task in confocal
!uorescence microscopy�
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