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FINITE BUFFER GI/Geo/1 BATCH SERVICING QUEUE
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Abstract. This paper analyzes a discrete-time finite buffer renewal
input queue with multiple working vacations where services are per-
formed in batches of maximum size “b”. The service times both during
a regular service period and vacation period and vacation times are
geometrically distributed. Employing the supplementary variable and
imbedded Markov chain techniques, we derive the steady-state queue
length distributions at pre-arrival, arbitrary and outside observer’s ob-
servation epochs. Based on the queue length distributions, some per-
formance measures and waiting time distribution in the queue have
been discussed. Finally, numerical results showing the effect of model
parameters on the key performance measures are presented.
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1. Introduction

Discrete-time queueing models have received significant interest during the last
few decades owing to their wide applications in many areas such as digital comput-
ers, communication networks, etc., because of their clock-driven operations. These
models are more accurate and efficient than their continuous-time counterparts to
analyze and design digital transmitting systems. Modeling of discrete-time queues
is more involved and quite different from the corresponding continuous-time queue-
ing models. Further, the advantage of analyzing discrete-time queues is that one
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can obtain the continuous-time results from it as a limiting case but the con-
verse is not true. However, from an application point of view, both discrete- and
continuous-time queues have equal importance. In discrete-time queueing systems,
the arrivals and departures can occur simultaneously at a slot boundary. Their
order may be taken care of by either arrival-first (AF) or departure-first (DF)
management policies, which are commonly known as late arrival system with de-
layed access (LAS-DA) and early arrival system (EAS), respectively. Extensive
analysis of a wide variety of discrete-time queueing models have been reported
in Bruneel and Kim [1], Gravey and Hébuterne [5], Hunter [8], Takagi [15] and
Woodward [16].

During the past two decades, discrete-time queues with server vacations have
been widely used in the performance analysis of communication systems. In the
classical vacation models, authors often assume that the server stops serving com-
pletely during the vacation period. However, there are numerous situations where
the server remains active during the vacation period and serves the customers at
a different service rate. Motivated by the analysis of a reconfigurable wavelength-
division multiplexing optical access network, Servi and Finn [13] introduced a kind
of working vacation (WV) policy: the sever will not completely remain inactive
during the vacation period rather it will render service to the queue with a slower
rate. When a vacation ends and if there are customers in the queue, a regular
service period begins and the server serves the queue with its original service rate,
otherwise it takes another vacation and continues to do so till it finds at least
one waiting customer at a vacation termination epoch. Such a vacation policy is
called multiple working vacations (MWV). The discrete-time Geo/Geo/1 queue
with MWV has been discussed by Tian et al. [14]. They have obtained the distri-
butions for the number of customers in the system using matrix-geometric method.
Li et al. [11] studied an infinite buffer GI/Geo/1 queue with MWV under EAS
and LAS schemes. Using the matrix-geometric solution method, they have ob-
tained the steady-state distribution of the number of customers in the system and
presented the stochastic decomposition property of the queue length and waiting
time. Goswami an Mund [3] obtained the system length distributions of a finite
buffer GI/Geo/1 queue with MWV using supplementary variable and imbedded
Markov chain techniques. Li and Tian [12] studied the GI/Geo/1 queue with WV
and vacation interruptions. Yu et al. [17] analyzed a GI/Geo/1/N queue with
MWV and changeover times.

All the above studies on discrete-time MWV queues have been carried out under
the assumption that the server serves the customers one at a time. However, there
are many instances where services are carried out in batches to enhance the perfor-
mance of the system. Such a service mechanism is called bulk/batch service. For a
wide variety of bulk service queues, see Chaudhry and Templeton [2]. Gupta and
Goswami [6] have considered a finite buffer Geo/Geo/1 queue with bulk service
under AF and DF management policies. Goswami and Vijaya Laxmi [4] have ana-
lyzed a finite buffer GI/Geo/1 batch service queue with multiple vacations (MV)
using supplementary variable and embedded Markov chain techniques. Recently,
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Jiang et al. [9] studied the Geo/Geo/1 queue with bulk service and MWV for an
EAS policy.

The present literature shows that the analysis of a finite buffer bulk service
GI/Geo/1 queue with MWV has not been carried out so far, to the best of our
knowledge. The model has potential applications in many areas such as in telecom-
munication networks, manufacturing systems, computer and switching systems,
etc, where jobs are processed in batches. For example, consider Broadband Inte-
grated Services Digital Network (B-ISDN) based on the Asynchronous Transfer
Mode (ATM) technology that provides a common interface for multimedia service
including data, voice and video. The ATM is a multiplexing and switching tech-
nology that transfers information through the network in fixed size units, called
cells. It is assumed that only a limited number of packets are transmitted during
a slot and that a well-defined polling protocol is used to serve input packets. Since
ATM is based on packet switching principle, all events such as arrivals and trans-
mission of packets are allowed only at regularly spaced points in time. Therefore,
the underlying mechanism of such system is modeled adequately by the discrete-
time queues. Motivated by such situations, we analyze a finite buffer discrete-time
bulk service queue with MWV wherein arrivals occur according to discrete-time
renewal input. One may note that the uncorrelated arrival process generally gives
a reasonably good approximation than geometric distribution and also it can in-
clude the special cases of geometric, deterministic and other discrete distributions.
The service times both during regular service period and WV period and vacation
times are assumed to be independent and geometrically distributed. The model
is analyzed using supplementary variable and imbedded Markov chain techniques.
The steady-state distributions of the number of customers at pre-arrival, arbitrary
and outside observer’s observation epochs have been obtained under an EAS pol-
icy. Some performance measures and the analysis of waiting time distribution in
the queue have been discussed. Numerical results have been presented in the form
of table and graphs to show the effect of model parameters on the performance
indices.

The rest of the paper is organized as follows. Section 2 presents the description of
the model. In Sections 3 and 4, the supplementary variable and imbedded Markov
chain techniques are employed to analyze the steady-state distributions at different
time epochs. Various performance measures of the model and waiting time analysis
is carried out in Section 5. Using some numerical results, we demonstrate the
parameter effect on the performance measures of the system in Section 6. Finally,
Section 7 concludes the paper.

2. Model description

Let us consider a discrete-time finite buffer bulk service queue with MWV for
an EAS. Customers are served by a single server in batches of maximum size “b”.
The server is allowed to take WV whenever the system becomes empty. On return
from a WV if the system is non-empty, it switches to a regular service period;
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Figure 1. Various time epochs in EAS.

otherwise another vacation follows until it finds at least one waiting customer in
the queue at a vacation completion epoch. During vacation, customers are served
in batches of maximum size “b” but with a slower rate. The system has finite buffer
capacity of size N (> b) that is, the maximum number of customers allowed in the
system at any time is (N + b).

The inter-arrival times A of two successive arrivals are assumed to be inde-
pendent and identically distributed (i.i.d.) random variables (r.v.s) with common
probability mass function (p.m.f.) ai = P (A = i), i ≥ 1, probability generating
function (p.g.f.) A∗(z) =

∑∞
i=1 aiz

i and mean inter-arrival time 1/λ = A∗(1)(1),
where A∗(1)(1) is the first derivative of A∗(z) with respect to z evaluated at z = 1.
The service times of the batches are assumed to be independent and geometrically
distributed with probability mass function (p.m.f.) P (S = i) = μμ̄i−1, i ≥ 1 and
mean service time 1/μ, where for any real number x ∈ [0, 1], we denote x̄ = 1− x.
The service times during a WV period and the vacation times are also assumed
to be independent and geometrically distributed r.v.s with rates η and θ, respec-
tively. Further, it is also assumed that the inter-arrival times, service times during
regular service period and service times during WV are independent. The traffic
intensity is given by ρ = λ/bμ.

Let us assume that the time axis is slotted into intervals of equal length with the
length of a slot being unity. Further, let the time axis be marked by 0, 1, 2, . . . , t, . . .,
and assume that a potential arrival takes place in (t, t+) and a potential departure
occurs in (t−, t). The WV can only start or end in (t−, t) just after the departure,
see Figure 1. The state of the system at time t, is described by the following r.v.s:

• Nq(t) = number of customers in the queue (excluding the batch in service),

• Ns(t) = number of customers in service,
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• U(t) = the remaining inter-arrival time for the next arrival,

• ξ(t) =
{

0, if the server is on working vacation,
1, if the server is in regular service period.

Let us define the joint probabilities as

ϑ0,0(u, t) = P
{
Nq(t) = 0, Ns(t) = 0, U(t) = u, ξ(t) = 0

}
,

ϑi,j(u, t) = P
{
Nq(t) = i, Ns(t) = j, U(t) = u, ξ(t) = 0

}
,

0 ≤ i ≤ N, 1 ≤ j ≤ b, u ≥ 0,

πi,j(u, t) = P
{
Nq(t) = i, Ns(t) = j, U(t) = u, ξ(t) = 1

}
,

0 ≤ i ≤ N, 1 ≤ j ≤ b, u ≥ 0.

At steady-state, let ϑi,j(u) = limt→∞ ϑi,j(u, t) and πi,j(u) = limt→∞ πi,j(u, t).

3. Steady-state distribution at arbitrary epoch

To obtain the queue length distribution at arbitrary epoch, we develop the
difference equations using the remaining inter-arrival time as the supplementary
variable. Observing the state of the system at two consecutive time epochs t and
(t + 1) and using the probabilistic arguments, we have the following system of
difference equations at steady-state, for u ≥ 1:

ϑ0,0(u− 1) =ϑ0,0(u) + μ
b∑

k=1

π0,k(u) + η
b∑

k=1

ϑ0,k(u) + ηauϑ0,0(0), (3.1)

ϑ0,j(u− 1) = θ̄η̄ϑ0,j(u) + θ̄η

b∑
k=1

ϑj,k(u) + θ̄ηau

b∑
k=1

ϑj−1,k(0) + I(j = 1)

× θ̄η̄auϑ0,0(0), 1 ≤ j ≤ b, (3.2)

ϑi,j(u− 1) = θ̄η̄ϑi,j(u) + θ̄η̄auϑi−1,j(0), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b− 1, (3.3)

ϑN,j(u− 1) = θ̄η̄ϑN,j(u) + θ̄η̄au (ϑN−1,j(0) + ϑN,j(0)) , 1 ≤ j ≤ b, (3.4)

ϑi,b(u− 1) = θ̄η̄ (ϑi,b(u) + auϑi−1,b(0)) + θ̄η

b∑
k=1

(au(ϑi+b−1,k(0)

+ I(i = N − b)ϑN,k(0)) + ϑi+b,k(u)), 1 ≤ i ≤ N − b, (3.5)
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ϑi,b(u− 1) = θ̄η̄ϑi,b(u) + θ̄η̄auϑi−1,b(0), N − b+ 1 ≤ i ≤ N − 1, (3.6)

π0,j(u− 1) = μ̄π0,j(u) + μ

b∑
k=1

πj,k(u) + μau

b∑
k=1

πj−1,k(0) + θη̄ϑ0,j(u)

+ θη
b∑

k=1

ϑj,k(u) + θηau

b∑
k=1

ϑj−1,k(0) + I(j = 1)θη̄auϑ0,0(0),

1 ≤ j ≤ b, (3.7)

πi,j(u− 1) = μ̄πi,j(u) + μ̄auπi−1,j(0) + θη̄ϑi,j(u)

+ θη̄auϑi−1,j(0), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b − 1, (3.8)

πN,j(u− 1) = μ̄πN,j + μ̄au(πN−1,j(0) + πN,j(0)) + θη̄ϑN,j(u)

+ θη̄au (ϑN−1,j(0) + ϑN,j(0)) , 1 ≤ j ≤ b, (3.9)

πi,b(u− 1) = μ̄πi,b(u) + μ

b∑
k=1

πi+b,k(u) + μ̄auπi−1,b(0)

+ μau

b∑
k=1

(πi+b−1,k(0) + I(i = N − b)πN,k(0))

+ θη̄ (ϑi,b(u) + auϑi−1,b(0)) + η
b∑

k=1

(au(ϑi+b−1,k(0)

+ I(i = N − b)ϑN,k(0)) + ϑi+b,k(u)), 1 ≤ i ≤ N − b, (3.10)

πi,b(u− 1) = μ̄πi,b(u) + μ̄auπi−1,b(0) + θη̄ϑi,b(u)

+ θη̄auϑi−1,b(0), N − b+ 1 ≤ i ≤ N − 1, (3.11)

where I(x) is an indicator function which yields 1 if the expression x is true,
otherwise, it takes the value 0.

Let us define the z-transforms of ϑi,j(u) and πi,j(u) as

ϑ∗0,0(z) =
∞∑

u=0

ϑ0,0(u)zu,

ϑ∗i,j(z) =
∞∑

u=0

ϑi,j(u)zu, 0 ≤ i ≤ N, 1 ≤ j ≤ b,

π∗
i,j(z) =

∞∑
u=0

πi,j(u)zu, 1 ≤ i ≤ N, 1 ≤ j ≤ b.
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It follows that ϑ∗0,0(1) = ϑ0,0 is the probability that the server is idle during WV
at an arbitrary epoch, ϑ∗i,j(1) = ϑi,j and π∗

i,j(1) = πi,j , where ϑi,j (πi,j) denotes
the probability that there are i customers in the queue when the server is busy
with a batch of j customers during WV (regular service) at an arbitrary epoch.
Multiplying the system of difference equations (3.1) to (3.11) by zu and summing
over u from 1 to ∞, we obtain

(z − 1)ϑ∗0,0(z) = η

b∑
k=1

(
ϑ∗0,k(z) − ϑ0,k(0)

)

+ μ
b∑

k=1

(
π∗

0,k(z) − π0,k(0)
)

+ ηA∗(z)ϑ0,0(0) − ϑ0,0(0), (3.12)

(z − θ̄η̄)ϑ∗0,j(z) = θ̄η

b∑
k=1

(
ϑ∗j,k(z) − ϑj,k(0)

)
+ θ̄ηA∗(z)

b∑
k=1

ϑj−1,k(0)

+ I(j = 1)θ̄η̄A∗(z)ϑ0,0(0) − θ̄η̄ϑ0,j(0), 1 ≤ j ≤ b, (3.13)

(z − θ̄η̄)ϑ∗i,j(z) = θ̄η̄A∗(z)ϑi−1,j(0) − θ̄η̄ϑi,j(0), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b− 1,
(3.14)

(z − θ̄η̄)ϑ∗N,j(z) = θ̄η̄A∗(z) (ϑN−1,j(0) + ϑN,j(0)) − θ̄η̄ϑN,j(0), 1 ≤ j ≤ b, (3.15)

(z − θ̄η̄)ϑ∗i,b(z) = θ̄η
b∑

k=1

(
ϑ∗i+b,k(z) − ϑi+b,k(0)

)

+ θ̄η̄A∗(z)ϑi−1,b(0) − θ̄η̄ϑi,b(0) + θ̄ηA∗(z)
b∑

k=1

(ϑi+b−1,k(0)

+ I(i = N − b)ϑN,k(0)), 1 ≤ i ≤ N − b, (3.16)

(z − θ̄η̄)ϑ∗i,b(z) = θ̄η̄A∗(z)ϑi−1,b(0) − θ̄η̄ϑi,b(0), N − b+ 1 ≤ i ≤ N − 1, (3.17)

(z − μ̄)π∗
0,j(z) =μ

b∑
k=1

(
π∗

j,k(z) − πj,k(0)
)

+ μA∗(z)
b∑

k=1

πj−1,k(0)

+ θη̄
(
ϑ∗0,j(z) − ϑ0,j(0)

)
+ θη

b∑
k=1

(ϑ∗j,k(z) − ϑj,k(0))

+ θηA∗(z)
b∑

k=1

ϑj−1,k(0) + I(j = 1)θη̄A∗(z)ϑ0,0(0)

− μ̄π0,j(0), 1 ≤ j ≤ b, (3.18)

(z − μ̄)π∗
i,j(z) = μ̄A∗(z)πi−1,j(0) + θη̄A∗(z)ϑi−1,j(0) + θη̄(ϑ∗i,j(z) − ϑi,j(0))

− μ̄πi,j(0), 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b− 1, (3.19)
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(z − μ̄)π∗
N,j(z) = μ̄A∗(z) (πN−1,j(0) + πN,j(0)) + θη̄

(
ϑ∗N,j(z) − ϑN,j(0)

)
+ θη̄A∗(z) (ϑN−1,j(0) + ϑN,j(0)) − μ̄πN,j(0), (3.20)

(z − μ̄)π∗
i,b(z) =μ

b∑
k=1

(
π∗

i+b,k(z) − πi+b,k(0)
)

+ μ̄A∗(z)πi−1,b(0)

+ θη̄A∗(z)ϑi−1,b(0) + μA∗(z)
b∑

k=1

(πi+b−1,k(0)

+ I(i = N − b)πN,k(0))

+ θη̄
(
ϑ∗i,b(z) − ϑi,b(0)

)
+ θη

b∑
k=1

(
ϑ∗i+b,k(z) − ϑi+b,k(0)

)

+ θηA∗(z)
b∑

k=1

(ϑi+b−1,k(0) + I(i = N − b)ϑN,k(0))

− μ̄πi,b(0), 1 ≤ i ≤ N − b, (3.21)

(z − μ̄)π∗
i,b(z) = μ̄A∗(z)πi−1,b(0) + θη̄

(
ϑ∗i,b(z) − ϑi,b(0)

)
+ θη̄A∗(z)ϑi−1,b(0)

− μ̄πi,b(0), N − b+ 1 ≤ i ≤ N − 1. (3.22)

Using equations (3.12) to (3.22), one important result is presented below in the
form of a theorem.

Theorem 3.1. The mean number of entrances into the system per unit time
equals the mean arrival rate i.e.,

ϑ0,0(0) +
N∑

i=0

b∑
j=1

(ϑi,j(0) + πi,j(0)) = λ. (3.23)

Proof. Adding equations (3.12) to (3.22), we get

ϑ∗0,0(z) +
N∑

i=0

b∑
j=1

(
ϑ∗i,j(z) + π∗

i,j(z)
)

=
A∗(z) − 1
z − 1

{
ϑ0,0(0) +

N∑
i=0

b∑
j=1

(ϑi,j(0) + πi,j(0))

}
.

Taking limit as z → 1 and using the normalization condition

ϑ0,0 +
N∑

i=0

b∑
j=1

(ϑi,j + πi,j) = 1, (3.24)

we get the desired result. �
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3.1. Relation between queue length distributions at arbitrary

pre-arrival epochs

In order to obtain the relations between queue length distribution at arbitrary
and pre-arrival epochs we first connect pre-arrival epoch probabilities ϑ−0,0, ϑ

−
i,j

and π−
i,j with the rate probabilities ϑ0,0(0), ϑi,j(0), 0 ≤ i ≤ N, 1 ≤ j ≤ b and

πi,j(0), 0 ≤ i ≤ N, 1 ≤ j ≤ b as follows:

ϑ−0,0 = ϑ0,0(0)/λ; ϑ−i,j = ϑi,j(0)/λ, 0 ≤ i ≤ N, 1 ≤ j ≤ b;

π−
i,j = πi,j(0)/λ, 0 ≤ i ≤ N, 1 ≤ j ≤ b, (3.25)

where λ is given by (3.23). Our main objective is to obtain the distribution of
number of customers in the queue at an arbitrary epoch when the server is on
vacation, ϑ0,0, ϑi,j (0 ≤ i ≤ N, 1 ≤ j ≤ b) or busy πi,j (0 ≤ i ≤ N, 1 ≤ j ≤ b).
This is discussed in the following theorem.

Theorem 3.2. The relation between the pre-arrival epoch probabilities{
ϑ−i,j , π

−
i,j

}
and arbitrary epoch probabilities

{
ϑi,j , πi,j

}
are given by

ϑN,j =
λθ̄η̄

1 − θ̄η̄
ϑ−N−1,j , 1 ≤ j ≤ b, (3.26)

ϑi,j =
λθ̄η̄

1 − θ̄η̄

(
ϑ−i−1,j − ϑ−i,j

)
, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b− 1, (3.27)

ϑi,b =
λθ̄η̄

1 − θ̄η̄

(
ϑ−i−1,b − ϑ−i,b

)
, N − b+ 1 ≤ i ≤ N − 1, (3.28)

ϑi,b =
θ̄

1 − θ̄η̄

[
λ

(
η̄(ϑ−i−1,b − ϑ−i,b) + η

b∑
k=1

(ϑ−i+b−1,k − I(i �= N − b)ϑ−i+b,k)

)

+ η

b∑
k=1

ϑi+b,k

]
, 1 ≤ i ≤ N − b, (3.29)

ϑ0,j =
θ̄

1 − θ̄η̄

[
λ

(
η

b∑
k=1

(ϑ−j−1,k − ϑ−j,k) + η̄(I(j = 1)ϑ−0,0 − ϑ−0,j)

)
+ η

b∑
k=1

ϑj,k

]
,

1 ≤ j ≤ b, (3.30)

πN,j =
1
μ

[
μ̄λπ−

N−1,j + θη̄
(
ϑN,j + λϑ−N−1,j

)]
, 1 ≤ j ≤ b, (3.31)



530 P. VIJAYA LAXMI AND K. JYOTHSNA

πi,j =
1
μ

[
μ̄λ(π−

i−1,j − π−
i,j) + θη̄

(
ϑi,j + λ(ϑ−i−1,j − ϑ−i,j)

) ]
, 1 ≤ i ≤ N − 1,

1 ≤ j ≤ b− 1, (3.32)

πi,b =
1
μ

[
μ̄λ
(
π−

i−1,b − π−
i,b

)
+ θη̄

(
ϑi,b + λ(ϑ−i−1,b − ϑ−i,b)

) ]
,

N − b+ 1 ≤ i ≤ N − 1, (3.33)

πi,b =
b∑

k=1

(
πi+b,k + λ

(
πi+b−1,k − I(i �= N − b)π−

i+b,k

))
+
λμ̄

μ

[
π−

i−1,b − π−
i,b

]

+
θ

μ

[
η̄
(
ϑi,b + λ

(
ϑ−i−1,b − ϑ−i,b

))

+ η

b∑
k=1

(
ϑi+b,k + λ

(
ϑ−i+b−1,k − I(i �= N − b)ϑ−i+b,k

))]
, 1 ≤ i ≤ N − b,

(3.34)

π0,j =
b∑

k=1

(
πj,k + λ

(
π−

j−1,k − π−
j,k

))
− λμ̄

μ
π−

0,j

+
θ

μ

[
η̄
(
ϑ0,j + λ

(
I(j = 1)ϑ−0,0 − ϑ−0,j

))
+ η

b∑
k=1

(
ϑj,k + λ

(
ϑ−j−1,k − ϑ−j,k

))]
,

1 ≤ j ≤ b, (3.35)

ϑ0,0 = 1 −
⎛
⎝ N∑

i=0

b∑
j=1

(ϑi,j + πi,j)

⎞
⎠ . (3.36)

Proof. Setting z = 1 in (3.13) to (3.22) and using (3.25), we get ϑi,j , (0 ≤ i ≤
N, 1 ≤ j ≤ b) and πi,j , (0 ≤ i ≤ N, 1 ≤ j ≤ b). Finally the only unknown ϑ0,0 is
obtained using the normalization condition (3.24). �

3.2. Outside observer’s distribution

Steady-state queue length distribution at an outside observer’s observation
epoch plays an important role in evaluating various performance measures of the
model. In EAS, an outside observer’s observation epoch falls in a time interval
after a potential arrival and before a potential departure. Let ϑo

0,0, ϑ
o
i,j , π

o
i,j (0 ≤

i ≤ N, 1 ≤ j ≤ b) denote the probabilities that an outside observer finds the server
idle during vacation, i customers in the queue and j customers in service when the
server is in WV and regular service period, respectively. These probabilities can
be obtained by observing the arbitrary and outside observer’s observation epochs
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presented in Figure 1 and are given by

ϑo
N,j =

1
θ̄η̄
ϑN,j, 1 ≤ j ≤ b,

ϑo
i,j =

1
θ̄η̄
ϑi,j , 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b− 1,

ϑo
i,b =

1
θ̄η̄
ϑi,b, N − b+ 1 ≤ i ≤ N − 1,

ϑo
i,b =

1
θ̄η̄

(
ϑi,b − θ̄η

b∑
k=1

ϑo
i+b,k

)
, 1 ≤ i ≤ N − b,

ϑo
0,j =

1
θ̄η̄

(
ϑ0,j − θ̄η

b∑
k=1

ϑo
j,k

)
, 1 ≤ j ≤ b,

πo
N,j =

1
μ̄

(
πN,j − θη̄ϑo

N,j

)
, 1 ≤ j ≤ b,

πo
i,j =

1
μ̄

(
πi,j − θη̄ϑo

i,j

)
, 1 ≤ i ≤ N − 1, 1 ≤ j ≤ b − 1,

πo
i,b =

1
μ̄

(
πi,b − θη̄ϑo

i,b

)
, N − b+ 1 ≤ i ≤ N − 1,

πo
i,b =

1
μ̄

(
πi,b − μ

b∑
k=1

πo
i+b,k − θ

(
η̄ϑo

i,b + η

b∑
k=1

ϑo
i+b,k

))
, 1 ≤ i ≤ N − b,

πo
0,j =

1
μ̄

(
π0,j − μ

b∑
k=1

πo
j,k − θ

(
η̄ϑo

0,j + η

b∑
k=1

ϑo
j,k

))
, 1 ≤ j ≤ b,

ϑo
0,0 = ϑ0,0 − μ

b∑
k=1

πo
0,k − η

b∑
k=1

ϑo
0,k.

4. Imbedded Markov chain analysis

In this section, we obtain the queue length distribution at pre-arrival epoch. Let
fn (n ≥ 0) and gn (n ≥ 0) be the conditional probabilities that n customers have
been served during an inter-arrival time in the regular service period and in a WV
period, respectively. Let hn (n ≥ 0) be the conditional probability that there are
n service completions during an inter-arrival time when the WV terminates and
the server enters into the regular service period. Hence, for all n ≥ 0, we have

fn =
∞∑

i=n

ai

(
i

n

)
μnμ̄i−n, gn =

∞∑
i=n

aiθ̄
i

(
i

n

)
ηnη̄i−n,

hn =
∞∑

u=max(1,n)

au

n∑
j=0

u∑
k=max(1,j)

θθ̄k−1

(
k

j

)
ηj η̄k−j

(
u− k

n− j

)
μn−jμ̄u−k−n+j .
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The probability generating functions of fn, gn and hn are given by

F (z) =
∞∑

i=0

fiz
i = A∗(μ̄+ μz), G(z) =

∞∑
i=0

giz
i = A∗ {θ̄(η̄ + ηz)

}
,

H(z) =
∞∑

i=0

hiz
i =

θ(η̄ + ηz)
[
A∗(μ̄+ μz) −A∗ {θ̄(η̄ + ηz)

} ]
μ̄+ μz − θ̄(η̄ + ηz)

·

Let t0, t1, . . . be the time epochs at which an arrival occurs and t−n denote the time
epoch just before the arrival instant tn. The inter-arrival times Tn+1 = tn+1 − tn,
n = 0, 1, 2, . . . are i.i.d. r.v.s with common distribution function A(u). The state
of the system at t−i is defined as {Nq(t−i ), Ns(t−i ), ξ(t−i )}, where Nq(t−i ), Ns(t−i )
denote the number of customers in the queue and in service, respectively, and ξ(t−i )
indicates whether the server is in WV (ξ(t−i ) = 0) or busy with regular service
(ξ(t−i ) = 1). The process {Nq(t−i ), Ns(t−i ), ξ(t−i )} forms an imbedded Markov chain
with finite state space Ω= {(0, 0, 0)} ∪ {(i, j, k); 0 ≤ i ≤ N, 1 ≤ j ≤ b, k = 0, 1}.
At steady-state assume that

ϑ−0,0 = lim
n→∞Pr{Nq(t−n ) = 0, Ns(t−n ) = 0,

ξ(t−n ) = 0},

ϑ−i,j = lim
n→∞Pr{Nq(t−n ) = i, Ns(t−n ) = j, ξ(t−n ) = 0}, 0 ≤ i ≤ N,

1 ≤ j ≤ b,

π−
i,j = lim

n→∞Pr{Nq(t−n ) = i, Ns(t−n ) = j, ξ(t−n ) = 1}, 0 ≤ i ≤ N,

1 ≤ j ≤ b,

where ϑ−i,j (π−
i,j) represents the probability of i customers in the queue prior to an

arrival epoch when the server is busy with a batch of j customers in WV period
(regular service period). Observing the state of the system at two consecutive
imbedded points, we have the one step transition probability matrix (TPM) P of
dimension (2b(N + 1) + 1) × (2b(N + 1) + 1) with four block matrices of the form

P =

[
Δ((N+1)b+1)×((N+1)b+1) Φ((N+1)b+1)×((N+1)b)

Λ((N+1)b)×((N+1)b+1) Υ((N+1)b)×((N+1)b)

]
.

The block Δ refers to the transitions from vacation state to vacation state and the
block Φ refers to the transitions from vacation state to service state of the TPM.
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The elements of these blocks can be obtained from the following expressions:

Δ(k,i)(m,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(k+1−m
b ) : b ≤ k ≤ N − 1, 1 ≤ m ≤ N − b, j = b, 1 ≤ i ≤ b,

(k + 1) ≥ (m+ j), k+1−m
b is an integer,

g[k
b ]+1 : 0 ≤ k ≤ N − 1, m = 0, 1 ≤ i, j ≤ b, j = 	k/b
+1,
g0 : 0 ≤ k ≤ N − 1, 1 ≤ m ≤ N, 1 ≤ i, j ≤ b, i = j,

k + 1 = m,
g0 : k = m = i = 0, j = 1,

Δ(k−1,i)(m,j) : k = N, 0 ≤ m ≤ N, 1 ≤ i, j ≤ b,
ψ(k, i) : k = m = i = j = 0,

0 : otherwise,

Φ(k,i)(m,j) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h( k+1−m
b ) : b ≤ k ≤ N − 1, 1 ≤ m ≤ N − b, j = b, 1 ≤ i ≤ b,

(k + 1) ≥ (m+ j), k+1−m
b is an integer,

h[k
b ]+1 : 0 ≤ k ≤ N−1, m = 0, 1 ≤ i, j ≤ b, j = 	k/b
+1,
h0 : 0 ≤ k ≤ N − 1, 1 ≤ m ≤ N, 1 ≤ i, j ≤ b, i = j,

k + 1 = m ,
h0 : k = m = i = 0, j = 1,

Φ(k−1,i)(m,j) : k = N, 0 ≤ m ≤ N, 1 ≤ i, j ≤ b,
0 : otherwise,

where ψ(k, i) = 1 −
N∑

m=0

b∑
j=1

(
Δ(k,i)(m,j) + Φ(k,i)(m,j)

)
.

The block Λ refers to the transitions from service state to vacation state and
the block Υ refers to the transitions from busy state to busy state. The structure
of these blocks is as follows:

Λ(k,i)(m,j) =

⎧⎨
⎩

ϕk,i : 0 ≤ k ≤ N − 1, 1 ≤ i ≤ b, m = j = 0,
Λ(k−1,i)(m,j) : k = N, 0 ≤ m ≤ N, 1 ≤ i, j ≤ b,

0 : otherwise,

Υ(k,i)(m,j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f( k+1−m−b
b ) : b ≤ k ≤ N − 1, 1 ≤ m ≤ N − b, j = b, 1 ≤ i ≤ b,

(k + 1) ≥ (m+ j), k+1−m−b
b is an integer,

f[ k
b ]+1 : 0 ≤ k ≤ N−1, m = 0, 1 ≤ i, j ≤ b, j = 	k/b
+1,
f0 : 0 ≤ k ≤ N − 1, 1 ≤ m ≤ N, i = j, k + 1 = m,

Υ(k−1,i)(m,j) : k = N, 0 ≤ m ≤ N, 1 ≤ i, j ≤ b,
0 : otherwise,

where ϕ(k, i) = 1 −
N∑

m=0

b∑
j=1

Υ(k,i)(m,j).

One may note that here [x] and 	x/y
 denote the greatest integer contained in
x and remainder of x when both x and y are integers, respectively.
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Now the pre-arrival epoch probabilities ϑ−0,0, ϑ
−
i,j , (0 ≤ i ≤ N, 1 ≤ j ≤ b) and

π−
i,j (0 ≤ i ≤ N, 1 ≤ j ≤ b) can be obtained by solving the system of equations

Π = ΠP , Πe = 1,

where Π = (ϑ−0,0, ϑ
−
0,1, . . . , ϑ

−
0,b, ϑ

−
1,1, . . . , ϑ

−
1,b, . . . , ϑ

−
N,1, . . . , ϑN,b, π

−
0,1, . . . , π

−
0,b,

π−
1,1, . . . , π

−
1,b, . . . , π

−
N,1, . . . , πN,b) and e is (2b(N + 1) + 1) dimensional column

vector with all its components being unity. For solving such system of equations
we have used the GTH algorithm given in Latouche and Ramaswami [10].

Remark 4.1. By taking batch size b = 1, our model reduces to GI/Geo/1 queue
with MWV. In this case, the joint probabilities ϑi,j , πi,j (0 ≤ i ≤ N, 1 ≤ j ≤ b)
become ϑi,1, πi,1 (0 ≤ i ≤ N). To obtain the relations between pre-arrival and
arbitrary epoch probabilities, let us define P0,0 = ϑ0,0, Pi+1,0 = ϑi,1, 0 ≤ i ≤ N
and Pi+1,1 = πi,1, (0 ≤ i ≤ N) where Pi+1,0 (Pi+1,1) represents the probability
of i+ 1 customers in the system when the server in WV (regular service) period.
The equations (3.27), (3.28), (3.32) and (3.33) do not exist and the remaining
equations reduce to

PN+1,0 =
λθ̄η̄

θ + η − θη
P−

N,0,

Pi,0 =
θ̄

θ + η − θη

[
ηPi+1,0 + ληP−

i,0 − λη̄P−
i,0 + λη̄P−

i−1,0 − I(i �= N)ληP−
i+1,0

]
,

i = N, N − 1, . . . , 1,

PN+1,1 =
θη̄

μ
PN+1,0 +

λ

μ

[
μ̄P−

N,1 + θη̄P−
N,0

]
,

Pi,1 =Pi+1,1 +
λ

μ

[
μP−

i,1 + I(i �= 1)μ̄P−
i−1,1 + θηP−

i,0 + θη̄P−
i−1,0 − μ̄P−

i,1

− I(i �= N)
(
μP−

i+1,1 + θηP−
i+1,0

)− θη̄P−
i,0

]
+
θ

μ

[
η̄Pi,0 + ηPi+1,0

]
, i = N, N − 1, . . . , 1,

P0,0 =1 −
N+1∑
i=1

(Pi,0 + Pi,1).

The above results match with Goswami and Mund [3] by taking the number in
system as N + 1 in their paper.

Remark 4.2. η = 0, that is, the model reduces to GI/Geo[b]/1 queue with MV
and our results match numerically with those of Goswami and Vijaya Laxmi [4].
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5. Performance measures

Once the distribution of number of customers in the queue at different epochs is
known, various performance measures of the model can be evaluated. The expected
queue length (Lo

q) at an outside observer’s observation epoch, the expected queue
length (Lq) at an arbitrary epoch are given by

Lo
q =

N∑
i=1

b∑
j=1

i
(
ϑo

i,j + πo
i,j

)
, Lq =

N∑
i=1

b∑
j=1

i (ϑi,j + πi,j) .

The probability of blocking or loss is given by Ploss =
∑b

j=1

(
ϑ−N,j + π−

N,j

)
. Using

Little’s rule the expected waiting time in the queue (Wq) of a customer is given
by Wq = Lo

q/λ
′
, where λ

′
= λ(1 − Ploss) is the effective arrival rate.

5.1. Waiting time analysis

In this section, we obtain waiting time (in the queue) distribution (measured in
slots) of an arriving customer under first come first served (FCFS) discipline. Let us
define Wqa and W ∗

qa(z) as the steady-state waiting time and its p.g.f., respectively.
An arriving customer may observe the system in any one of the following cases.
Case 1. The server is in WV and nb+ j, (0 ≤ n ≤ m− 1, 0 ≤ j ≤ b− 1), where
m = [N/b], customers are in the queue. Then, on arrival a customer waits for the
service completion of (n+1) batches. The server serves the customers during WV
and/or service period.
Case 2. The server is in WV and nb+ j, (n = m, 0 ≤ j ≤ N−1−mb), customers
are in the queue. Then, on arrival a customer waits for the service completion
of (m + 1) batches. The server serves the customers during WV and/or service
period.
Case 3. The server is busy and nb+ j, (0 ≤ n ≤ m− 1, 0 ≤ j ≤ b− 1) customers
are in the queue. On arrival a customer waits for the service completion of (n+ 1)
groups.
Case 4. The server is busy and nb+ j, (n = m, 0 ≤ j ≤ N − 1−mb), customers
are in the queue. An arriving customer waits for the service completion of (m+1)
groups.

Combining all the above cases, the p.g.f of the waiting time is obtained as

W ∗
qa(z) =

1
1 − Ploss

[
m−1∑
n=1

(
μz

1 − μ̄z

)n+1 b∑
i=1

b−1∑
j=0

π−
nb+j,i

+
(

μz

1 − μ̄z

)m+1 b∑
i=1

N−mb−1∑
j=0

π−
mb+j,i
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+
m−1∑
n=0

1
θ̄

(
ηθ̄z

1−θ̄η̄z
)n+1 b∑

i=1

b−1∑
j=0

ϑ−nb+j,i+
1
θ̄

(
ηθ̄z

1−θ̄η̄z
)m+1

×
b∑

i=1

N−mb−1∑
j=0

ϑ−mb+j,i

+
m−1∑
n=0

(
θη̄z

1 − θ̄η̄z

)(
μz

1 − μ̄z

)n+1 b∑
i=1

b−1∑
j=0

ϑ−nb+j,i

+
(

θη̄z

1 − θ̄η̄z

)(
μz

1 − μ̄z

)m+1 b∑
i=1

N−mb−1∑
j=0

ϑ−mb+j,i

+
m−1∑
n=1

n∑
k=1

1
θ̄

(
ηθ̄z

1 − θ̄η̄z

)k (
θ

1 − θ̄η̄z

)(
μz

1 − μ̄z

)n+1−k

×
b∑

i=1

b−1∑
j=0

ϑ−nb+j,i

+
m∑

k=1

1
θ̄

(
ηθ̄z

1 − θ̄η̄z

)k (
θ

1 − θ̄η̄z

)(
μz

1 − μ̄z

)m+1−k

×
b∑

i=1

N−mb−1∑
j=0

ϑ−mb+j,i

]
.

Therefore, the expected waiting time in the queue is given by

Wqa =
1

1 − Ploss

[m−1∑
n=1

(
n+ 1
μ

) b∑
i=1

b−1∑
j=0

π−
nb+j,i +

(
m+ 1
μ

)

×
b∑

i=1

N−mb−1∑
j=0

π−
mb+j,i +

m−1∑
n=0

(
n+ 1
ηθ̄2

)(
ηθ̄

1 − θ̄η̄

)n+2

×
b∑

i=1

b−1∑
j=0

ϑ−nb+j,i +
(
m+ 1
ηθ̄2

)(
ηθ̄

1 − θ̄η̄

)m+2 b∑
i=1

N−mb−1∑
j=0

ϑ−mb+j,i

+
m−1∑
n=0

{
θη̄(

1 − θ̄η̄
)2 +

(
θη̄

1 − θ̄η̄

)(
n+ 1
μ

)} b∑
i=1

b−1∑
j=0

ϑ−nb+j,i

+
{

θη̄(
1 − θ̄η̄

)2 +
(

θη̄

1 − θ̄η̄

)(
m+ 1
μ

)} b∑
i=1

N−mb−1∑
j=0

ϑ−mb+j,i

+
m−1∑
n=1

n∑
k=1

{
k(ηθ̄)kθ

θ̄(1 − θ̄η̄)k+2
+
(

ηθ̄

1 − θ̄η̄

)k
θη̄

(1 − θ̄η̄)2
+
(

ηθ̄

1 − θ̄η̄

)k
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×
(

θ

1 − θ̄η̄

)(
n+ 1 − k

μθ̄

)} b∑
i=1

b−1∑
j=0

ϑ−nb+j,i

+
m∑

k=1

{
k(ηθ̄)kθ

θ̄(1 − θ̄η̄)k+2
+
(

ηθ̄

1 − θ̄η̄

)k
θη̄

(1 − θ̄η̄)2

+
(

ηθ̄

1 − θ̄η̄

)k (
θ

1 − θ̄η̄

)(
m+ 1 − k

μθ̄

)} b∑
i=1

N−mb−1∑
j=0

ϑ−mb+j,i

]
. (5.1)

It may be noted that the expected waiting time in the queue Wqa obtained
from (5.1) matches numerically with the waiting time Wq obtained using Little’s
rule.

6. Numerical results and discussions

To demonstrate the applicability of the formulae obtained in the previous sec-
tions, we present some numerical results in the form of table and graphs. We fix
the capacity of the system as N = 15 and batch size as b = 2. The various param-
eters of the model are chosen to be λ = 0.2, μ = 0.3, η = 0.2 and θ = 0.1, unless
they are considered as variables or their values are mentioned in the respective
table and figures. All the calculations have been done on Mathematica software
package. Distribution of number of customers in the queue at various epochs for
geometric inter-arrival time distribution is given in Table 1. It can be seen from
the table that the pre-arrival and arbitrary epoch probabilities are same due to
Bernoulli arrivals.

Figure 2 illustrates the dependence of blocking probability (Ploss) on traffic
intensity (ρ) for various inter-arrival time distributions. The inter-arrival time
distributions are taken as geometric, deterministic (a5 = 1.0) and arbitrary (a1 =
0.3, a4 = 0.4, a9 = 0.2, a13 = 0.1) with same mean λ = 0.2. As one would
intuitively expect, it is observed that the blocking probability increases as traffic
load increases for any inter-arrival time distribution. Further, deterministic inter-
arrival time distribution minimizes the blocking probability as shown in the proof
of a folk theorem on queueing delay by Hajek [7].

The effect of η on expected queue length (Lq) for different values of vacation
parameter (θ) when inter-arrival times are geometric is presented in Figure 3. For
fixed θ, Lq decreases as η increases, which is consistent with our intuition that
larger the value of η, more the number of service completions. Further, it can be
observed that for η ≤ μ the expected queue lengths decrease with the increase of
θ and when η crosses μ this trend is reversed. This strengthens our choice of the
value of η being less than μ.

Figure 4 depicts the effect of ρ on the expected queue length (Lq) for
Geo/Geo[2]/1/15 queue with MWV and MV. It is observed that as ρ increases
Lq increases in both the models. Further, the expected queue lengths are lower in
the case of MWV model when compared to MV model. This shows that MWV
models perform better than MV models.
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Table 1. Queue length distribution at various epochs when inter-
arrival time is geometric.

i
∑b

j=1 ϑ−
i,j

∑b
j=1 π−

i,j

∑b
j=1 ϑi,j

∑b
j=1 πi,j

∑b
j=1 ϑo

i,j

∑b
j=1 πo

i,j

0 0.193531 0.141781 0.193531 0.141781 0.236065 0.113425

1 0.071230 0.077665 0.071230 0.077665 0.095690 0.090488

2 0.026217 0.037807 0.026217 0.037807 0.035219 0.045779

3 0.009649 0.017252 0.009649 0.017252 0.012962 0.021363

4 0.003551 0.007557 0.003551 0.007557 0.004771 0.009496

5 0.001307 0.003218 0.001307 0.003218 0.001756 0.004086

6 0.000481 0.001342 0.000481 0.001342 0.000646 0.001718

7 0.000177 0.000551 0.000177 0.000551 0.000237 0.000709

8 0.000065 0.000223 0.000065 0.000223 0.000087 0.000289

9 0.000023 0.000089 0.000023 0.000089 0.000032 0.000116

10 0.000008 0.000035 0.000008 0.000035 0.000011 0.000046

11 0.000003 0.000014 0.000003 0.000014 0.000004 0.000018

12 0.000001 0.000005 0.000001 0.000005 0.000001 0.000007

13 0.000000 0.000002 0.000000 0.000002 0.000000 0.000002

14 0.000000 0.000000 0.000000 0.000000 0.000000 0.000001

15 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Sum 0.712450 0.287550 0.712450 0.287550 0.712450 0.287550

ϑ−
0,0 = 0.406203, ϑ0,0 = 0.406203, ϑo

0,0 = 0.324962

Lo
q = 0.563628, Lq = 0.444869, Wq = 2.81814, Wqa = 2.81814.
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Figure 2. Effect of ρ on blocking probability.
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Figure 4. Effect of ρ on Lq.

Figure 5 illustrates the dependence of the blocking probability (Ploss) on the
buffer size (N) varying from 10 to 15 and batch size (b) varying from 3 to 10 in
a Geo/Geo/1 queue with MWV. We observe that for a fixed batch size (b) the
blocking probability decreases as N increases. Further, for small values of N , Ploss

decreases with increase of b and when N becomes large the effect of b on Ploss is
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Figure 5. Impact on Ploss for various b and N .

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

Traffic intensity,  ρ

E
xp

ec
te

d 
w

ai
tin

g 
tim

e,
 W

q

 

 

Geo/Geo[2]/1/15/MWV

D/Geo[2]/1/15/MWV

Figure 6. Effect of ρ on Wq.

insignificant. Hence, we can setup an admissible batch size and buffer capacity of
the system in order to have lower blocking probabilities.

The effect of traffic load (ρ) on the expected waiting time in the queue (Wq)
is shown in Figure 6 for geometric (λ = 0.2) and deterministic (a5 = 1.0) inter-
arrival time distributions with MWV. The other parameters of the model are
μ = 0.3, η = 0.2 and θ = 0.1. As expected, the expected waiting time increases
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Figure 7. Effect of λ on Wq with varying b.

with the increase of ρ. Further, the expected waiting time is lower in the case of
deterministic inter-arrival time distribution.

Figure 7 shows the effect of arrival rate (λ) on the expected waiting time in the
queue (Wq) for various batch sizes b in a Geo/Geo/1/15/MWV queue. The other
parameters of the model are same as in Figure 6. From the figure, one may observe
that for fixed b, the expected waiting time increases as λ increases. But for fixed
λ, as the batch size b increases the expected waiting time in the queue decreases
due to the fact that larger the value of b, more the number of customers served in
batches.

Figures 8 and 9, respectively, show the dependence of expected queue length
(Lq) and expected waiting time (Wq) onN and b forGeo/Geo/1 queue with MWV.
Observe that Lq and Wq decrease with the increase of b. This is due to the fact
as the batch size (b) increases the number of customers served in batches increase
resulting in the decrease of Lq and Wq. Further, the expected queue length and
expected waiting time increase with the increase of buffer capacity (N). However,
the effect of N on Lq and Wq is insignificant when compared to the effect of b.

7. Conclusions

In this paper, we have carried out an analysis of discrete-time finite buffer
bulk service queue with MWV that has potential applications in many areas such
as telecommunication systems, manufacturing systems, computer networks, etc.,
where jobs are processed in batches. The inter-arrival times of customers are arbi-
trarily distributed while the service times during regular busy period, during WV
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and vacation times are geometrically distributed. We have obtained the queue
length distributions at different time epochs using supplementary variable and
imbedded Markov chain techniques. Utilizing these distributions, some impor-
tant performance measures of the model such as expected queue length, blocking
probability, etc., have been derived. The analysis of actual waiting time in the
queue is also carried out. Computational experiences are demonstrated with a va-
riety of numerical results in the form table and graphs. Extension of our results
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to DMAP/Geo[b]/1/N and GI [X]/Geo[b]/1/N queues with WV is left for future
research.
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