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A NEW ANY-ORDER SCHEDULE GENERATION
SCHEME FOR RESOURCE-CONSTRAINED PROJECT

SCHEDULING
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Abstract. In this paper, a new schedule generation scheme for resource-
constrained project scheduling problems is proposed. Given a project sched-
uling problem and a priority rule, a schedule generation scheme determines a
single feasible solution by inserting one by one each activity, according to their
priority, inside a partial schedule. The paper proposes a generation scheme
that differs from the classic ones in the fact that it allows to consider the
activities in any order, whether their predecessors have already been sched-
uled or not. Moreover, activity insertion is performed so that delaying some
already scheduled activities is allowed. The paper shows that this strategy
remains polynomial and often gives better results than more classic ones.
Moreover, it is also interesting in the fact that some priority rules, which are
quite poor when used with classic schedule generation schemes, become very
competitive with the proposed schedule generation scheme.
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Résumé. Dans cet article, un nouveau schéma de génération de solution
est proposé pour les problèmes d’ordonnancement de projet sous contraintes
de ressources. Considérant un problème d’ordonnancement et une règle de
priorité donnée, un schéma de génération de solution détermine une solution
faisable en insérant une par une chaque activité du projet, en fonction de
leur priorité et des relations de précédence, dans un ordonnancement partiel.
Le schéma de génération décrit dans cet article diffère des schémas classiques
par le fait qu’il autorise l’insertion des activités dans n’importe quel ordre,
indépendamment de leurs relations de précédence. De plus, lors de l’insertion
d’une activité, le schéma autorise aussi de retarder des activités déjà ordon-
nancées, ce qui constitue une deuxième originalité. L’article montre que cette
stratégie conduit souvent à de meilleurs résultats que ceux obtenus avec les
schémas classiques, tout en conservant un temps de calcul polynomial. De
plus, on montre que certaines règles de priorité, peu efficaces avec les schémas
classiques, deviennent très compétitives avec ce nouveau schéma.
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Introduction

The paper focuses on project scheduling problems with resource and precedence
constraints. This problem class is denoted as PS|prec|Cmax in the literature (ac-
cording to Brucker’s notation [4]). A set of n interrelated activities has to be pro-
cessed without preemption in order to achieve the project. Precedence constraints
stipulate that an activity cannot start before all its predecessors have been com-
pleted. In order to carry out an activity, several limited-capacity resources are
used. During the processing window [sj , sj + pj ] of an activity j (sj being the
starting time of the activity and pj its duration), rj,k resource units of resource k
are used. A schedule is resource feasible if, at any time t, for any resource k, the
sum

∑
rj,k of the activities j in progress at time t never exceeds the maximum

resource capacity Rk. A schedule is said feasible if it is both precedence-feasible
(i.e. it satisfies the precedence constraints) and resource-feasible. The objective
is to find a feasible schedule that minimizes the total project duration Cmax.

This optimization problem is known to be NP-hard [5]. Exact solution pro-
cedures have been proposed which are quite efficient on medium-sized problem
instances [6,7]. A large collection of heuristics (Genetic Algorithms, Tabu Search,
multi-pass methods, . . . ) is also available to find good solutions for larger problem
instances within a reasonable amount of time. For a description and a compari-
son of those heuristics it is recommended to refer to the Hartmann and Kolisch’s
survey [8], as well as to its recent update [9].

A frequent ingredient used as a core component of most of these heuristics
is a Schedule Generation Scheme (SGS). Combined with a priority rule, a SGS
determines for a given problem a single feasible solution. Since a SGS can be
called very often in the same procedure, it has to run very fast in particular on
large problem instances. Two classic SGSs are mainly referred in the literature:
the serial-SGS and the parallel-SGS.

The serial-SGS consists of n iterations. At each iteration, an activity is selected
according to its priority and inserted inside a partial schedule at the earliest (re-
specting the precedence and resource constraints), while keeping unchanged the
starting time of the already scheduled activities. Only an eligible activity can be
selected at each iteration. An activity is eligible if all its predecessors have already
been scheduled. The activity priorities are determined according to a given rule
(minimum Latest Starting Time, Earliest Starting Time, . . . ).

A parallel-SGS is time oriented and requires, at most, n iterations. At each
iteration, several eligible activities can be scheduled. A time tk is associated with
one iteration k: tk equals the earliest finishing time of the activities in progress at
time tk−1. The activities having their earliest starting time lower or equals to tk
are scheduled at time tk, one by one, with respect to the priority order. If starting
activity i at time tk avoids the possibility to start activity j at the same time,
then j is considered later, in further iterations.

A serial-SGS produces active schedules (no activity can be started earlier with-
out scheduling another activity later), the class of the active schedules being dom-
inant with regards to the Cmax criterion. In contrast, a parallel-SGS produces
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Table 1. Problem data.

 

Figure 1. Precedence graph.

no-delay schedules, that class being not dominant regarding the Cmax criterion.
The time complexity of both SGSs is O(mn2) where m is the number of resources
and n the number of activities.

1. Motivations

A brief analysis of the parallel and serial SGSs brings the following remark. The
solution space that those SGSs potentially allow to explore is rather restricted
because, while inserting an activity, both SGSs do not allow to right-shift any
activity that is already scheduled. As a consequence, the considered activity is
often inserted at the end of the partial schedule, after all the other activities.
Therefore, if the selection order of the activities is not optimal (in the sense it
is not compatible with any optimal schedule), the probability for the produced
schedule to be optimal is null.

This is illustrated below on the short example of Table 1. Activities 1 . . . 4 have
to be processed on a single cumulative resource of capacity R = 6. In Table 1,
pi is the processing time of activity i, ri is its resource consumption (since there
is only one resource the index k is omitted) and lsti is its latest starting time.
The precedence constraints are described on the precedence graph of Figure 1.
Activities 0 and 5 are dummy activities representing the origin of time and the
end of the project respectively.
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Figure 2. Two feasible schedules.

Figure 2a shows the schedule that is obtained using a serial-SGS and a LST
priority rule which consists in selecting first the activity having the smallest latest
starting time. The selection order is 1 ≺ 2 ≺ 3 ≺ 4 which is not compatible with
the optimal sequence represented in Figure 2b (since activity 3 cannot be delayed).

Another remark concerning the parallel and serial SGSs is relative to the concept
of eligibility that they use. Indeed, in order to respect the precedence constraints,
only a subset of eligible activities is considered for insertion at each iteration in
both SGSs. Now it is known that the locations of some activities (e.g. those
having an important resource consumption or a large processing time) can be very
decisive regarding the final Cmax value. Therefore, if such an activity becomes
eligible too late, some poor decisions can be made at the beginning of the schedule
process that definitively make the schedule suboptimal.

In accordance with the previous remarks an alternative SGS is proposed below.
The activities can be considered in any order (hence the name Any-Order-SGS )
and consequently the eligibility of an activity is never considered. Moreover the
insertion of an activity can cause the right-shifting of some already scheduled
activities.

2. Description of the Any-Order-SGS

The core component of the Any-Order-SGS is the insertion procedure proposed
by Artigues et al. [1,2]. This procedure aims at solving the problem of inserting an
activity inside a partial schedule, minimizing the total project duration increase.
It is used in [1] for adapting reactively a schedule when unexpected activities occur
and, in [2], as a core component of a Tabu Search procedure which unschedules
some activities for inserting them in other positions. In the best of our knowledge,
the work presented in this paper is the first attempt to use this insertion procedure
as a component of a SGS.

In order to describe the insertion procedure, we need to define the activity-on-
node network N = 〈V, U≺, UR〉 associated with a current partial schedule. Each
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Figure 3. Graph G associated with a partial schedule.

vertex i ∈ V = {0, . . . , n+1, n+2} of N corresponds to a project activity. Classi-
cally, the dummy activities 0 and n + 1 correspond to the beginning and the end
of the project respectively. An arc u ∈ UR between two vertices i and j of N cor-
responds to a resource flow associated with a capacity vector (c1,i→j , . . . , cm,i→j)
(where ck,i→j is the number of resource units k which are transferred from i to j).
An arc u ∈ U≺ from i to j corresponds to a precedence constraint (i.e. sj−si ≥ pi).
The additional dummy activity n + 2 allows to measure the increase of the Cmax

value after the insertion. There is an arc between n+1 and n+2 having the length
δn+1,n+2 = −estn+1 and sn+2 is set to 0.

For instance, Figure 3 shows the network N associated with the schedules of
Figure 2a-b, just before the insertion of activity 4. The arcs of UR are in bold.

On the basis of such a network, the earliest starting time, esti, and the latest
finishing time, lfti, of each activity i can be easily computed using the Bellman-
Ford’s algorithm. Indeed, an arc u ∈ UR from activity i to activity j, correspond-
ing to a resource flow, obviously induces a precedence constraint between these
activities, i.e. sj − si ≥ pi. Therefore, replacing each arc u ∈ UR by the corre-
sponding precedence constraint, a precedence graph is obtained which can be used
for applying the Bellman-Ford’s algorithm.

The Artigues’s insertion procedure is described by Algorithm 1. It enumerates
a finite set of maximal insertion cuts. A maximal cut corresponds to a set of
arcs u ∈ UR having the sum of their capacity vectors equals to (R1, . . . , Rm). It
defines a bipartition of the activities. Each maximal cut characterizes in its turn
a set of subcuts, each one being composed by a specific set of arcs chosen among
those of the maximal cut. A subcut is said valid, with regard to the insertion
of a given activity j, when the sum of the capacity vectors of the arcs is greater
than (rj,1, . . . , rj,m). The major result that is stated in [1,2] is that the number of
maximal cuts and subcuts that need to be explored for finding an optimal insertion
position is polynomial (since a lot of maximal cuts and subcuts are dominated by
others).
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Given an initial dominant maximal cut C0, an activity x to insert with its
execution window [estx, lf tx], the insertion procedure visits all the dominant valid
subcuts still memorizing the best one. C−

α and C+
α refer to as the activities being

located at the left and at the right of the maximal cut Cα respectively. Given a
maximal cut Cα, the activities i of C−

α having the maximum efti are progressively
remove from C−

α , for generating the subcuts, until the remaining resource capacity
becomes lower than the resource consumption of x. In this case, the activity j
of C+

α having the minimum lstj is determined. If lstj < lftx then the procedure
ends. In the other case, the next maximal cut Cα+1 is determined. It is obtained
from the previous maximal cut Cα by transferring j from C+

α to C−
α . The time

complexity of this procedure is O(n2m) where n and m are the number of activities
and resources respectively.

Algorithm 1 Search Optimal Insertion Cut(x, N) - Artigues’s insertion proce-
dure

δ∗ ←∞;
C0 ← Search Initial Dominant Cut(x, N);
α← 0;
repeat

remcapk ← Rk, ∀k;
j ← argmin(lstl), ∀l ∈ C+

α ;
repeat

i← argmax (eftl), ∀l ∈ C−
α ;

δCmax = max(0, max(estx, efti) + px −min(lftx, lstj);
if δCmax < δ∗ then

C−
opt ← C−

α ;
δ∗ ← δCmax;

end if
remcapk ← remcapk − rik, ∀k;
C−

α ← C−
α \ {i};

until ∃k such that remcapk < rxk;
if lstj ≥ lftx then

α← α + 1;
Cα ← Transfer(Cα−1, j) ;

end if
until lstj < lftx

The Any-Order-SGS is described by Algorithm 2. At the beginning of the
algorithm, UR does not contain any arc, excepted the one between 0 and n + 1
having the maximum capacity (R1, . . . , Rm). The arcs of U≺ all correspond to
precedence constraints (excepted the arc between n + 1 and n + 2).

At each iteration, an activity j ∈ ε is selected according to the priority rule r.
Then an optimal insertion subcut C∗ is determined for the insertion of j in UR,
using the previous insertion procedure. In the next step, the insertion is performed
leading to an update of UR and possibly, an increase of sn+1 (in that case an update
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Algorithm 2 Any-Order SGS(N, r)

ε← {1...n};
for i ← 1 to n do

j ← Select Activity(ε, r);
C∗ ← Search Optimal Insertion Cut(j, N);
Insert(j, C∗, N);
Forward Backward Propagation(N);
ε← ε− {j};

end for

of the length of the arc between n + 1 and n + 2 has to be done). After insertion,
the earliest and latest starting time have to be updated using a forward-backward
propagation procedure. This update can be done in O(n2) [3]. The algorithm stops
after n iterations when all the activities have been scheduled. Its time complexity
is O(n3m) since the insertion procedure works in O(n2m).

An important issue is to determine whether it always exists a selection order
of the activities which leads the Any-Order-SGS to find an optimal schedule (i.e.
the Any-Order-SGS is dominant with regard to the makespan minimization). For
proving that this property holds, we use a recurrent reasoning.

Let us consider an optimal active schedule S∗ and let N∗ = 〈V ∗, U≺, U∗
R〉 be

its associated optimal activity-on-node network. We further refer to as C∗
i the

optimal insertion subcut chosen for activity i in N∗. Without loss of generality, it
is assumed that the activities are numbered with respect to the increasing order
of their finishing time fi in S∗. Now, we assume that the activity are selected
with respect to the increasing order of their number (i.e. 1 ≺ 2 · · · ≺ n) and
progressively inserted by the Any-order-SGS in the activity-on-node network N .

At the first iteration, activity 1 is obviously inserted at time 0 in N inside the
subcut C1 = C∗

1 , causing a makespan increase of p1. At iteration 2, activity 2 is
selected in its turn. Since schedule S∗ is active, activity 1 and 2 cannot be sched-
uled earlier. Therefore, when inserting activity 2, the optimal makespan increase
is exactly (f2 − f1) and, among the optimal insertion subcuts which are charac-
terized, there is necessarily the optimal subcut C∗

2 . Without loss of generality, we
assume that activity 2 is inserted inside this subcut (i.e. C2 = C∗

2 ). Now let us
consider the ith iteration of the Any-Order-SGS where activity i has to be inserted
inside the partial schedule composed by activities 1 . . . i − 1. It is assumed that
the already scheduled activities have been inserted at their optimal position (i.e.
Ci = C∗

i ). The current Cmax value is fi−1. Because schedule S∗ is active, none of
the activities 1 . . . i can be scheduled earlier. Therefore, when inserting activity i
in the partial schedule, the optimal makespan increase is exactly (fi − fi−1) and
the optimal insertion subcut C∗

i necessarily belongs to the set of optimal subcuts
that the insertion procedure characterizes. Under the hypothesis that, at each
iteration i, the optimal insertion subcut C∗

i is always chosen among the set of
optimal insertion subcuts which is characterized by the insertion procedure, the
final schedule is optimal.
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Table 2. Comparison between the serial-SGS and the Any-
Order-SGS.

3. Experiments

Both the serial-SGS and the Any-Order-SGS have been tested on the problem
instances of the PSPLIB library (http://129.187.106.231/psplib/datasm.html).
This library offers 480 problem instances with 30 activities - 480 problem instances
with 60 activities and 600 problem instances with 120 activities.

For each problem class, 4 priority rules A, B, C and D have been studied:
A: selecting the activity having the minimum latest starting time;
B: selecting the activity having the minimum latest finishing time;
C: selecting the activity having the greatest ratio pi/(lfti − esti);
D: selecting the activity having the greatest ratio (pi ∗

∑
k rik)/(lfti − esti).

Those rules were chosen since, after having tested numerous other priority rules,
they seem rather efficient, with regard to the average number of optimal solutions
that were found, for at least one of the SGSs.

For each problem class, each instance, each priority rule and each SGS, a sched-
ule is computed. Then, for each instance, the best schedule found using the Any-
Order-SGS is compared in terms of makespan with the best schedule found using
the serial-SGS (among the 4 ones computed using rules A-B-C-D). Table 2 reports
the number of times the Any-Order-SGS gets better, equivalent or worse results
than the Serial-SGS. For instance, for problem with 30 activities, the Any-Order-
SGS is better in 169 cases (35.21%), equivalent in 293 cases (61.04%) and worse in
18 cases (3.75%). That table shows that the percentage of times where the Any-
Order-SGS is better or equivalent to the serial-SGS is always important (96.25%
and 95.42% for problem with 30 and 60 activities!) even if it tends to decrease
for problem with 120 activities (78.66%). Moreover, when problem instances be-
come larger, we observe that the Any-Order-SGS tends to be efficient when the
serial-SGS fails and vice-versa. This observation shows that the Any-Order-SGS
produces solutions intrinsically different from the ones produced by the serial one.

Table 3 shows the number of optimal solutions that both SGSs were able to
find (the total number of known optimal solution is indicated in parentheses) and,
on the other hand, the average relative distance between the best found makespan
and the best known lower bound (i.e. (sn+1−LB)/LB). For example, for problem
having 60 activities, the Any-Order-SGS finds 304 optimal solutions out of the 357
which are known, while the serial-SGS only finds 283 optimal solutions. For the
same problem, the Any-Order-SGS produces solutions that are 4.31% distant in
average from the best known lower bound, when the serial-SGS produces solutions
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Table 3. Number of optimal solutions and average relative dis-
tance from the best known lower bounds.

that are 5.66% distant. For any problem class, the table shows that the Any-
Order-SGS is always better or equivalent than the serial one, regarding the number
of total optimal solution found, even if we again observe that for large problem
instances, the gap between both SGSs becomes smaller. However, when regarding
the average distance from the best known lower bound, the Any-Order-SGS always
produces better results, independently of the instance size.

In order to refine the analysis, the same criteria as those considered in the
previous table are reported for each priority rule separately (see Tabs. 4, 5 and 6).
First, we see that the Any-Order-SGS remains efficient for any considered priority
rule. We especially observe that rules C and D, which are quite poor when used
with the serial-SGS, become really competitive with the Any-Order-SGS. The
rule D seems particularly efficient since, with the Any-order-SGS, it produces in
average solution which are always closer to the best known lower bound than the
ones produces with the serial-SGS. This observation seems to indicate that, when
the priority rule changes, the Any-Order-SGS is able to diversify the solutions it
found, while the serial-SGS only produces efficient solutions for time-oriented rules
(A and B).

4. Conclusion

When solving resource-constrained project scheduling problems, most heuristics
use as a core component either the serial or the parallel SGSs. This paper pro-
poses an alternative Any-Order generation scheme that allows at each iteration
to insert any unscheduled activity in the partial schedule (whether their prede-
cessors are scheduled or not), allowing to delay some already scheduled activity.
As the serial-SGS, this new SGS is dominant with regard to the makespan min-
imization since there always exist a selection order of the activities which allows
to find an optimal schedule. Even if it is a bit slower (it runs in O(n3m) when
the serial and the parallel ones work in O(n2m)), the Any-Order-SGS produces
efficient solutions, often better than the ones found using other SGSs. So it can be
advantageously embedded in more sophisticated heuristics or metaheuristics for
determining initial feasible schedules which can be improved in further stages, or
for computing efficient upper bounds that allow to cut parts of search trees during
branch-and-bound procedures. Moreover, the performance of the Any-Order-SGS
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Table 4. Number of optimal solutions and average relative dis-
tance from the best known lower bounds for problems with 30
activities and for each priority rule.

Table 5. Number of optimal solutions and average relative dis-
tance from the best known lower bounds for problems with 60
activities and for each priority rule.

is rather insensitive to the nature of the priority rule which is used, this feature
being interesting for producing efficient diversified solutions. This kind of property
is desirable in neighborhood search for diversifying the search space by exploring
the neighborhood of various solutions which are not too similar.
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Table 6. Number of optimal solutions and average relative dis-
tance from the best known lower bounds for problems with 120
activities and for each priority rule.
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