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Abstract. In this paper, we study the differentiability of the tra-
jectories of the logarithmic barrier algorithm for a nonlinear program
when the set Λ∗ of the Karush-Kuhn-Tucker multiplier vectors is empty
owing to the fact that the constraint qualifications are not satisfied.
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Introduction

In this paper, we analyze the differentiability of the trajectories of the logarith-
mic barrier algorithm for a nonlinear program when the constraint qualifications
are not satisfied at the optimal solution. During our analysis, we establish sufficient
conditions, which make it possible to conclude that the trajectory is differentiable.
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Consider the problem⎧⎨
⎩

min f(x)

s.t. gi(x) ≤ 0, i ∈ I = {1, 2, .., m}
(1)

as well as the associated penalized subproblems

φ(r, x) = f(x) − r
m∑

i=1

log(−gi(x)). (2)

Fiacco and McCormick [5,6] showed, under some hypotheses, the existence of a
differentiable function x(r) in the neighborhood of r = 0 and such that lim

r−→0
x(r) =

x∗, where x∗ is an optimal solution of the problem (1). Moreover, they showed that
x(r) is a strict local minimum of problem (2). Mifflin [9] showed that without the
constraints qualification, any cluster point x∗ satisfy the Fritz John [7] conditions.

The differentiability of the trajectories of the logarithmic barrier algorithm can
be shown in two ways, either by using the Primal-Dual approach or Primal ap-
proach. These two approaches are respectively the subjects of the two following
subsections.

0.1. Primal-Dual formulation

The first results of Fiacco and McCormick [5,6] concerning the differentiability
properties of the trajectory x(r) were obtained by using the implicit functions
theorem to show that the following system:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∇f(x) +
∑m

i=1 λi∇gi(x) = 0

λi + r
gi(x) = 0 i ∈ J∗ = {i ∈ I | gi(x∗) < 0}

gi(x) + r
λi

= 0 i ∈ I∗ = {i ∈ I | gi(x∗) = 0},

implicitly defines C1 functions (x(r), λ(r)) in the neighborhood of r = 0.

Theorem 0.1 [5]. If the sufficient optimality conditions for problem (1) hold at
(x∗, λ∗); and moreover if:

• x∗ is a regular point: {∇gi (x∗) | i ∈ I∗} is linearly independent;
• the strict complementarity is verified: gi (x∗) < 0 ⇐⇒ λ∗

i = 0 for
1 ≤ i ≤ m ,

then the system ⎧⎨
⎩

∇xφ (r, x) = ∇f(x) +
∑m

i=1 λi∇gi(x) = 0

λi + −r
gi(x) = 0, 1 ≤ i ≤ m

(3)
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is equivalent to

∇xφ (r, x) = ∇f(x) − r
m∑

i=1

∇gi(x)
gi(x)

= 0 (4)

and defines in a neighborhood V0 of r = 0 isolated functions x(r) and λi(r) =
−r

gi (x(r)) , 1 ≤ i ≤ m of class C1 in V0 such that when r ↘ 0:

{
x(r) → x∗,
λi(r) → λ∗

i .

Moreover x(r) is a strict local minimum of φ(r, x) .

0.2. Primal formulation

In this section, we suppose that the hypotheses of Theorem 0.1 are satisfied and
we show that the preceding result can be obtained without the dual variables λ.

Since x(r) is a solution of problem (2) then

Φ(r, x(r)) = ∇xφ(r, x(r)) = 0.

Thus, if the derivative x′(r) exists then it must satisfy the following system:

∇xΦ(r, x(r))x′(r) + ∇rΦ(r, x(r)) = 0,

where ∇rΦ(r, x(r)) is the derivative of Φ(r, x(r)) with respect to r, or that

∇xΦ(r, x(r))x′(r) = −∇rΦ(r, x(r)).

With an orthogonal transformation Q satisfying the relation

QT
x(r)∇g(x(r)) =

(
U R

0(n−m∗)×m∗ S

)
,

where U is a non singular upper triangular matrix and m∗ = |I∗|, we can write

QT
x(r)∇xΦ(r, x(r))Qx(r)Q

T
x(r)x

′(r) = −QT
x(r)∇rΦ(r, x(r)). (5)

We introduce the notation
y(r) = QT

x(r)x
′(r) (6)

and

G = QT
x(r)(∇2

xf(x(r)) +
m∑

i=1

λi(r)∇2
xgi(x(r)))Qx(r). (7)

Then, by relations (6) and (7), relation (5) can be rewritten as

(G +
1
r

(
U R
0 S

)(
VI∗ 0
0 VJ∗

)(
U R
0 S

)T

)y(r) =
−1
r

QT
x(r)∇g(x(r))λ(r)
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or ⎛
⎝ G11 + 1

r
(UVI∗UT + RVJ∗RT ) G12 + 1

r
RVJ∗ST

G21 + 1
r
SVJ∗RT G22 + 1

r
SVJ∗ST

⎞
⎠ y(r) =

⎛
⎝ −1

r
(UλI∗(r) + RλJ∗(r))

−1
r

SλJ∗(r)

⎞
⎠ , (8)

where VI∗ and VJ∗ are diagonal matrices with components λ2
i associated with

respectively the active and nonactive constraints.
To show the differentiability of the trajectories generated by the logarithmic

barrier algorithm, it is sufficient to show that system (8) possesses a solution at
r = 0. However, the 1

r terms diverge when r −→ 0. Broyden and Attia [3]
proposed a technique to solve the problem of the ill conditioning for the quadratic
penalty. Dussault [4] generalized this technique so that system (8) is written in
the form

My(r) = b̄,

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M =

⎛
⎝ rU−1G11 + VI∗UT + U−1RVJ∗RT rU−1G12 + U−1RVJ∗ST

G21 + 1
r SVJ∗RT G22 + 1

r SVJ∗ST

⎞
⎠

b̄ =

⎛
⎝ λI∗(r) + U−1RλJ∗(r))

−1
r SλJ∗(r)

⎞
⎠ .

when r −→ 0 this system approaches⎛
⎝ VI∗UT 0

G21
∗ G22

∗

⎞
⎠ y(0) =

(
λI∗(0)

h

)

where
• VI∗UT is invertible because

◦ the hypothesis of the linear independence of ∇gI∗(x∗) ensures that U
is an invertible matrix;

◦ the strict complementarity hypothesis ensures that VI∗ is an invertible
diagonal matrix;

• G∗
22 is invertible since the second order sufficient condition is satisfied;

• h = lim
r−→0

−1
r SλJ∗(r) is a bounded vector because ∀j ∈ J∗, lim

r−→0

−1
r λj(r) =

1
gj(x∗) .
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The developments above prove the following.

Theorem 0.2 [5]. If the sufficient optimality conditions for problem (1) hold at
(x∗, λ∗) , and moreover if:

– x∗ is a regular point: {∇gi (x∗) | i ∈ I∗} is linearly independent,,
– strict complementarity is verified: gi (x∗) < 0 ⇐⇒ λ∗

i = 0 for 1 ≤ i ≤ m ,
then the system

∇xφ(r, x)) = 0 (9)
defines in a neighborhood V0 of r = 0 an isolated function x(r) of class C1 in V0

such that when r ↘ 0: x(r) → x∗. Moreover, x(r) is a strict local minimum of
φ(r, x) .

We just presented two techniques to prove the differentiability of the logarithmic
barrier trajectories under the traditional hypotheses used by Fiacco & McCormick.
These hypotheses are

(i) the objective function is of class C2;
(ii) the gradients of the active constraints are linearly independent;

(iii) strict complementarity is satisfied;
(iv) the second order sufficient condition is satisfied;
(v) ∀i ∈ I, gi is a C2 function.

Let us recall that, when hypotheses (i) and (ii) are satisfied, the set Λ∗ of Karush-
Kuhn-Tucker multiplier vectors [8] is nonempty. The study of the case Λ∗ = ∅
where hypothesis (ii) is satisfied (which can occur only if the objective function is
not differentiable at the optimum), is in [1,2] . In this paper, we study the case
where Λ∗ = ∅ and hypothesis (i) is satisfied. That can occur only if no constraint
qualification is satisfied. The following example shows us that the trajectory may
be differentiable even if no constraint qualifications is satisfied.

Example 0.1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Min x1 + x3 + x2
5

s.t.

x4 − x5
1 ≤ 0

x2 − x1
3 ≤ 0

−x3 ≤ 0
−x4 ≤ 0
−x2 ≤ 0

x3 − 1 ≤ 0.

Notice that the origin is the unique isolated solution, but that the active constraint
gradients are linearly dependent there, and that Λ∗ = ∅.

The penalized objective functions are written

φ(r, x) = x1 + x3 + x2
5 − r log(x5

1 − x4) − r log(x1
3 − x2)

−r log(x3) − r log(x4) − r log(x2) − r log(1 − x3),
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and their gradients are

∇φ(r, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − (3x1
2r)

(x13−x2)
− (5x1

4r)
(x15−x4)

−r
x2

+ r
(x13−x2)

1 + −r
x3

− ( r
x3−1 )

−r
x4

+ r
(x15−x4)

2x5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where x = (x1, x2, x3, x4, x5). The values which cancel ∇xφ(r, x) and the associated
λi(r) quantities are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(r) = 16r, x2(r) = 2048r3

x3(r) = 1
2 + r − 1

2

√
1 + 4r2, x4(r) = 524288r5, x5(r) = 0

λ1(r) = 1
524288r4 , λ2(r) = 1

2048r2

λ3(r) = r
1
2 +r− 1

2

√
1+4r2

λ4(r) = 1
524288r4 , λ5(r) = 1

2048r2

λ6(r) = r
1
2−r+ 1

2

√
1+4r2 ·

Therefore the trajectories, x(r) = (x1(r), x2(r), x3(r), x4(r), x5(r)), are differen-
tiable at r = 0 but λ1(r), λ2(r), λ4(r) and λ5(r) diverge when r −→ 0. Notice
that the optimal solution x∗ satisfies the Fritz John [7] conditions. �
The paper is organized as follows. In Section 2, we will show some preliminary
results. Then, in Section 3 we will give conditions to ensure that the trajectory of
the barrier algorithm is differentiable even if Λ∗ = ∅. An illustrative example and
the proof of lemmas in Section 3.2.3 are presented respectivly in Appendix A2 et
A1 and finally some concluding remarks close our paper.

1. Preliminary results

It is possible to weaken hypothesis ii), but hypothesis iii) is a necessary condi-
tion as shown in the following theorem:

Theorem 1.1. If there is an i ∈ I∗ such that λi(r) = −r
gi(x(r)) approaches λ∗

i = 0
when r −→ 0 then the trajectory x(r) is not differentiable at r = 0.
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Proof. Suppose that there is an i ∈ I∗ such that λi(r) = −r
gi(x(r)) approaches λ∗

i = 0

when r −→ 0. If x′(0) exists, then limr−→0
x(r)−x(0)

r = x′(0) is bounded. By the
mean value theorem we have that, since i ∈ I∗,

gi(x(r))
r

=
x(r) − x(0)

r
∇gi(ξr),

therefore

lim
r−→0

gi(x(r))
r

= x′(0)∇gi(ξ∗) < ∞.

Thus

lim
r−→0

λi(r) = lim
r−→0

−r

gi(x(r))
=

−1
x′(0)∇gi(ξ∗)

�= 0,

which implies that λ∗
i �= 0. �

The following example illustrates Theorem 1.1.

Example 1.1.

⎧⎨
⎩

min x1

s.t. x2
2 − x1 ≤ 0
−x2 ≤ 0.

The values which cancel ∇φ(r, x) and the associated λi(r) quantities are

⎧⎪⎪⎨
⎪⎪⎩

x1(r) = 3
2r

x2(r) =
√

r
2

λ1(r) = 1
λ2(r) = 2

√
r.

The optimal solution is x∗ = (0, 0). The second constraint is active and λ2(r)
approaches 0 when r −→ 0. According to the preceding theorem, the trajectory is
not differentiable. Indeed, we have x2(r) =

√
r
2 .

As previously stated, in this paper we are interested in the case Λ∗ = ∅. In
this context notice that necessarily some λi(r) = −r

gi(x(r)) diverge as shown in the
following theorem.

Theorem 1.2. Let I∗d = {i ∈ I∗ : λi(r) −→ +∞, when r −→ 0}.
(1) If Λ∗ = ∅ then I∗d �= ∅.
(2) If I∗d �= ∅ then there is a λ0(r) such that:

⎧⎪⎨
⎪⎩

lim
r−→0

λ0(r) = 0

lim
r−→0

λ0(r)λi(r) = µ∗
i

where 0 ≤ µ∗
i < ∞ for i = {1, 2, .., m}.
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Proof. (1) Suppose that I∗d = ∅; then we have

φ(r, x) = f(x) − r

m∑
i=1

log(−gi(x))

and its gradient

∇xφ(r, x) = ∇f(x) −
m∑

i=1

r

gi(x)
∇gi(x).

That is to say, if x(r) is a local minimum of φ(r, x), then

∇xφ(r, x(r)) = ∇f(x(r)) −
m∑

i=1

r

gi(x(r))
∇gi(x(r)) = 0.

We use the notation λi(r) = −r
gi(x(r)) . Then ∀i ∈ I λi(r) ≥ 0 and

∇f(x(r)) + ∇g(x(r))T
λ(r) = 0.

• If i /∈ I∗ then lim
r−→0

λi(r) = 0.

• If i ∈ I∗ then, since I∗d = ∅, lim
r−→0

λi(r) =

⎧⎨
⎩

0
or
λ∗

i > 0 .

Therefore,

lim
r−→0

∇f(x(r)) + ∇g(x(r))T
λ(r) = ∇f(x∗) + ∇g(x∗)T

λ∗ = 0

and lim
r−→0

λ(r) = λ∗ ≥ 0, which implies that Λ∗ �= ∅.
(2) It is sufficient to take λ0(r) = 1

max(λi(r),i∈I∗d)
to have the result. �

Since we are interested in the case Λ∗ = ∅, the strict complementarity condition
is adapted as follows:

Definition 1.1. The generalized strict complementarity condition is satisfied if
lim

r−→0
λi(r) = 0 implies lim

r−→0
gi(x(r)) < 0.

Remark 1.1. When Λ∗ �= ∅, the generalized strict complementarity condition is
equivalent with the usual strict complementarity condition.

2. Differentiability of the primal trajectories x(r)

In this section, we propose to study the differentiability of the trajectory x(r)
even if the constraint qualifications are not satisfied, in particular the matrix
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∇gI∗(x∗) is not of full rank. Let us recall that

I∗ = {i : gi(x∗) = 0} m∗ = |I∗|
J∗ = {i : gi(x∗) < 0}
λi(r) = −r

gi(x(r)) ·

Suppose that rank(∇gI∗(x∗)) = k where 1 ≤ k ≤ m∗ and that

K = {i1, · · · , ik ∈ I∗ | ∇gi1(x∗), · · · ,∇gik
(x∗) are linearly independent}, k = |K|

Kd = {i ∈ K | lim
r−→0

λi(r) = +∞}, kd = |Kd|
Kc = {i ∈ K | lim

r−→0
λi(r) = λ∗

i > 0}, kc = |Kc|
I∗\K = {i ∈ I∗ | ∇gi(x∗) and the columns of∇gK(x∗) are linearly dependent},
m∗ − k = |I∗\K|.

Remark 2.1. The set K is not unique, it can be chosen.

Remark 2.2. For all i ∈ J∗ we have:

lim
r−→0

−r

gi(x(r))
= lim

r−→0
λi(r) = 0.

Then λ(r) can be written:

λ(r) =

⎛
⎜⎜⎝

λKd(r)
λKc(r)

λI∗\K(r)
λJ∗(r)

⎞
⎟⎟⎠ . (10)

Let

V (r) =

⎛
⎜⎜⎝

VKd(r) 0 0 0
0 VKc(r) 0 0
0 0 VI∗\K(r) 0
0 0 0 VJ∗(r)

⎞
⎟⎟⎠ , (11)

with

VKd(r) = diag(λ2
i (r), i ∈ Kd),

VKc(r) = diag(λ2
i (r), i ∈ Kc),

VI∗\K(r) = diag(λ2
i (r), i ∈ I∗\K),

VJ∗(r) = diag(λ2
i (r), i ∈ J∗).

In the following we suppose, without loss of generality, that the components of
λKd(r) are subscripted in descending order, and consider the following hypotheses:

H1: x∗ is an isolated stationary point not necessarily regular and the se-
quence x(rk) converges to x∗;
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H2: the generalized strict complementarity condition is satisfied (Def. 2.1);
H3: f is a function of class C2;
H4: ∀i ∈ I, gi is a function of class C2;
H5: λKc(r) approaches λ∗

Kc when r −→ 0.
In what follows we suppose that these hypotheses are always satisfied. First, we
recall a well-known lemma:

Lemma 2.1. Let A be a n×m matrix, (m < n). If rank(A) = k < m, then there
exists a permutation B such that AB = QZ where Q is an orthonormal matrix
and

Z =
(

U Ur

0(n−k)×k 0(n−k)×(m∗−k)

)
,

with U an k × k non singular upper triangular matrix.

Let x(r) be the solution of ∇xφ(r, x) = 0; then ∇g(x(r)) can be written

∇g(x(r)) =
( ∇gKd(x(r)) ∇gKc(x(r)) ∇gI∗\K(x(r)) ∇gJ∗(x(r))

)
and thus by the Gram-Schmidt orthogonalisation process, there exists an orthog-
onal matrix Qx(r) such that

QT
x(r)∇g(x(r)) =

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 R4(r)

⎞
⎟⎟⎠ (12)

where

–:

⎛
⎝ U11(r) U12(r) U13(r)

0 U22(r) U23(r)
0 0 U33(r)

⎞
⎠ is a m∗ × m∗ upper triangular matrix.

–: U11(r), U22(r) and U33(r) are respectively kd×kd, kc×kc and (m∗ − k)×
(m∗ − k) upper triangular matrices.

–: U12(r), U13(r) and U23(r) are respectively kd × kc, kd × (m∗ − kd) and
kc × (m∗ − k) matrices.

Then, according to the lemma 2.1,

(i): lim
r−→0

U33(r) = 0(m∗−k)×(m∗−k),

(ii):
(

U11(r) U12(r)
0 U22(r)

)
is a k × k non singular upper triangular matrix,

(iii): lim
r−→0

(
U11(r) U12(r)

0 U22(r)

)
=
(

U∗
11 U∗

12

0 U∗
22

)
is a k × k non singular

upper triangular matrix.
According to the same decomposition, we write:

Qx(r) =
(
QKd QKc QI∗\K QJ∗

)
(13)
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where QKd , QKc and QI∗\K are matrices associated respectively with the gra-
dients of the active constraints, ∇gKd , ∇gKc , ∇gI∗\K , and QJ∗ being a matrix
associated with the gradients of the inactive constraints ∇gJ∗ .

In what follows we first show the existence of x′(r) for r ∈]0, r̄] and r̄ > 0 and
then that x′(0) exists.

2.1. Trajectory analysis of x(r) at r = r̄ > 0

If the derivative x′(r) exists, then it must satisfy the following system:

∇xΦ(r, x(r))x′(r) + ∇rΦ(r, x(r)) = 0,

where ∇rΦ(r, x(r)) is the derivative of Φ(r, x(r)) with respect to r. We have

∇xΦ(r, x(r))x′(r) = −∇rΦ(r, x(r)). (14)

To show the differentiability of the trajectory x(r) at r = r̄ > 0, it is sufficient to
show that ∇xΦ(r, x(r)) is an invertible matrix for r > 0. With this intention, let

D∗
K = {d | ∇gK(x∗)T d = 0}.

Lemma 2.2. If d ∈ D∗
K then ∇gI∗\K(x∗)T d = 0.

Proof. Since for each i ∈ I∗\K, ∇gi(x∗) and some columns of the matrix ∇gK(x∗)
are linearly dependent, then there exists a matrix Z such that ∇gI∗\K(x∗) =
∇gK(x∗)Z and thus we have

∇gT
I∗\K(x∗)d = ZT∇gT

K(x∗)d

= 0. �

As we are presently interested in the case Λ(x∗) = ∅ and since according to Theo-
rem 1.2 some λi(r) diverge, then ∇2L(x(r), λ(r)) may diverge and thus we cannot
satisfy the second order sufficient condition quoted by Fiacco and McCormick.
This motivates us to consider the following hypothesis:

H6: there exists an r̂ such that ∀d ∈ D∗
K , d �= 0 and ∀r ∈]0, r̂] we have

dT∇2L(x(r), λ(r))d > 0.

Theorem 2.1. If hypothesis H6 is satisfied then the trajectory x(r) is differentiable
on ]0, r̂].
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Proof. To show that the trajectory x(r) is differentiable on ]0, r̂] it is sufficient to
check that ∀d ∈ R

n\{0}, dT∇xΦ(r, x(r))d > 0 ∀r ∈]0, r̂]. We have

∇xΦ(r, x(r)) = ∇2f(x(r)) −
m∑

i=1

r

gi(x(r))
∇2gi(x(r))

+
m∑

i=1

r

gi(x(r))2
∇gi(x(r))∇gi(x(r))T

= ∇2f(x(r))+
m∑

i=1

λi(r)∇2gi(x(r)) +
m∑

i=1

λi(r)2

r
∇gi(x(r))∇gi(x(r))T

= ∇2L(x(r), λ(r)) +
m∑

i=1

λi(r)2

r
∇gi(x(r))∇gi(x(r))T

.

We notice that
m∑

i=1

λi(r)2

r dT∇gi(x(r))∇gi(x(r))T
d ≥ 0 for d ∈ R

n\{0} and thus we

have two cases:

(1): if d ∈ D∗
K then dT∇2L(x(r), λ(r))d > 0 for r ∈]0, r̂];

(2): if d /∈ D∗
K then ∀r ∈]0, r̂] we have

dT∇xΦ(r, x(r))d = dT∇2L(x(r), λ(r))d +
m∑

i=1

λi(r)2

r
dT∇gi(x(r))∇gi(x(r))T

d

=
m∑

i=1

λi(r)(dT∇2gi(x(r))d +
λi(r)2

r
dT∇gi(x(r))∇gi(x(r))T

d)

+dT∇2f(x(r))d.

However the term λi(r)2

r ∇gi(x(r))∇gi(x(r))T
> 0 diverges and domi-

nates the converging term dT∇2gi(x(r))d, as well as the term
m∑

i=1

λi(r)

(dT∇2gi(x(r)) d + λi(r)2

r ∇gi(x(r))∇gi(x(r))T ) > 0 dominates the term
dT∇2f(x(r))d, which implies that dT∇xΦ(r, x(r))d > 0, ∀r ∈]0, r̂].

Therefore we have ∀d �= 0, dT∇xΦ(r, x(r))d > 0, ∀r ∈]0, r̂]. �

2.2. Trajectory analysis of x(r) at r = 0

With the orthogonal transformation introduced above, we have

QT
x(r)∇xΦ(r, x(r))Qx(r)Q

T
x(r)x

′(r) = −QT
x(r)∇rΦ(r, x(r)).
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Let us put

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(r) =

⎛
⎜⎜⎝

y1(r)
y2(r)
y3(r)
y4(r)

⎞
⎟⎟⎠ = QT

x(r)x
′(r)

Ω(r) = QT
x(r)∇xΦ(r, x(r))Qx(r)

b(r) = −QT
x(r)∇rΦ(r, x(r));

then we proceed by analyzing the following system:

Ω(r)y(r) = b(r). (15)

2.2.1. Analysis of y1(r) and y2(r)

Consider the following lemma the object of which is to show that lim
r−→0

y1(r)

and lim
r−→0

y2(r) exists.

Lemma 2.3. If hypotheses H6 and H5 are satisfied then the vector y1(r) ap-
proaches 0 and vector y2(r) approaches a bounded vector when r −→ 0.

Proof. For each i ∈ K, consider the function hi(r) = gi ◦ x(r). According to
Theorem 2.1, there exists r̂ such that hi(r) is differentiable on ]0, r̂] . By the mean
value theorem, there exists r̄ ∈]0, r[ such that

hi(r) − hi(0) = gi(x(r)) − gi(x(0))
= (r − 0)h′

i(r̄)

= r∇gi(x(r̄))T
x′(r̄),

which implies

−1
λi(r)

=
gi(x(r))

r
= ∇gi(x(r̄))T x′(r̄)

= ∇gi(x(r̄))T Qx(r)Q
T
x(r)x

′(r̄)

= (QT
x(r)∇gi(x(r̄)))T y(r̄).
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Thus, we have

(
−V

−1/2

Kd (r) 0
0 −V

−1/2
Kc (r)

)(
eKd

eKc

)
= (QT

x(r)∇gK(x(r̄)))T y(r̄)

=

⎛
⎜⎜⎝

U11(r) U12(r)
0 U22(r)
0 0
0 0

⎞
⎟⎟⎠

T ⎛
⎜⎜⎝

y1(r̄)
y2(r̄)
y3(r̄)
y4(r̄)

⎞
⎟⎟⎠

=
(

UT
11(r) 0

UT
12(r) UT

22(r)

)(
y1(r̄)
y2(r̄)

)
,

where eKd and eKc are unit vectors with respectively kd and kc components. Since
U11(r) and U22(r) are nonsingular matrices, then y1(r̄) and y2(r̄) can be expressed
as follows:

{
y1(r̄) = −(U−1

11 (r))T V
−1/2

Kd (r)eKd

y2(r̄) = (U−1
22 (r))T (−V

−1/2
Kc (r)eKc − UT

12(r)y1(r̄)).
(16)

When r −→ 0, r̄ −→ 0 and V
−1/2

Kd (r)eKd approaches a null vector, therefore

{
y1(0) = 0
y2(0) = (U∗−1

22 )T V
−1/2
Kc (0)eKc .

�

Remark 2.3. Equation (16) expresses y1(r̄) according to V
−1/2

Kd (r). However, r̄
approaches 0 as r −→ 0, but we do not know yet how r̄ behaves close to r = 0;
also, we have that

λi(r)∇gi(x(r̄))T
x′(r̄) = −1.

2.2.2. Analysis of the term b(r)

We have

b(r) = −QT
x(r)∇r(∇xφ(r, x(r)))

=
1
r
QT

x(r)∇g(x(r))λ(r).
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By using relations (10) and (12), we obtain:

b(r) =
1
r

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 R4(r)

⎞
⎟⎟⎠λ(r)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r (U11(r)λKd(r) + U12(r)λKc (r) + U13(r)λI∗\K(r) + R1(r)λ∗

J∗ (r))

1
r (U22(r)λKc (r) + U23(r)λI∗\K(r) + R2(r)λ∗

J∗ (r))

1
r (U33(r)λI∗\K(r) + R3(r)λ∗

J∗ (r))

1
r R4(r)λ∗

J∗(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝

b1(r)
b2(r)
b3(r)
b4(r)

⎞
⎟⎟⎠ .

Consider the following lemma which enables us to show that rb1(r), rb2(r), rb3(r),
and b4(r) are bounded in the neighborhood of r = 0.

Lemma 2.4. When r −→ 0, the vectors U11(r)λKd (r) + U13(r)λI∗\K(r), U23(r)
λI∗\K(r) and U33(r)λI∗\K(r) approach bounded vectors.

Proof. We have

QT
x(r)Φ(r, x(r)) = QT

x(r)(∇f(x(r)) + ∇g(x(r))λ(r))

= QT
x(r)∇f(x(r)) + QT

x(r)∇g(x(r))λ(r)

= QT
x(r)∇f(x(r)) +

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 R4(r)

⎞
⎟⎟⎠

⎛
⎜⎜⎝

λKd(r)
λKc(r)

λI∗\K(r)
λJ∗(r)

⎞
⎟⎟⎠

= 0.
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Let us define

F (r) =

⎛
⎜⎜⎝

F1(r)
F2(r)
F3(r)
F4(r)

⎞
⎟⎟⎠ = QT

x(r)∇f(x(r))

to express the system in the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

U11(r)λKd(r) + U13(r)λI∗\K(r) = −F1(r) − U12(r)λKc (r) − R1(r)λJ∗ (r)

U23(r)λI∗\K(r) = −F2(r) − U22(r)λKc (r) − R2(r)λJ∗ (r)

U33(r)λI∗\K(r) = −F3(r) − R3(r)λJ∗(r)

F4(r) + R4(r)λJ∗ (r) = 0.

Since F (r) is a continuous function at the points x(r) and by the hypothesis
x(r) −→ x∗, F (r) is bounded when r approaches 0. Moreover QT

x(r)Φ(r, x(r)) = 0
and λJ∗(r) approaches 0 so that

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

lim
r−→0

(U11(r)λKd (r) + U13(r)λI∗\K(r)) = −(F1(0) + U∗
12λ

∗
Kc)

lim
r−→0

(U23(r)λI∗\K(r)) = −(F2(0) + U∗
22λ

∗
Kc)

lim
r−→0

U33(r)λI∗\K(r) = −F3(0). �

On the basis of Lemma 2.4 we can prove the following corollary:

Corollary 2.1. If hypotheses H1, H2, H3, and H4 are satisfied then⎛
⎜⎜⎝

F1(r)
F2(r)
F3(r)
1
r F4(r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

rb1(r)
rb2(r)
rb3(r)
b4(r)

⎞
⎟⎟⎠ is a bounded vector in the neighborhood of r = 0.

Proof. Since⎛
⎜⎜⎝

rb1(r)
rb2(r)
rb3(r)
b4(r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U11(r)λKd (r) + U12(r)λKc (r) + U13(r)λI∗\K(r) + R1(r)λ∗
J∗ (r)

U22(r)λKc (r) + U23(r)λI∗\K(r) + R2(r)λ∗
J∗ (r)

U33(r)λI∗\K(r) + R3(r)λ∗
J∗ (r)

1
r R4(r)λ∗

J∗ (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
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and ⎛
⎜⎜⎝

F1(r)
F2(r)
F3(r)
F4(r)

⎞
⎟⎟⎠ = QT

x(r)∇f(x(r))

= −QT
x(r)∇g(x(r))λ(r)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

U11(r)λKd (r) + U12(r)λKc (r) + U13(r)λI∗\K(r) + R1(r)λ∗
J∗ (r)

U22(r)λKc(r) + U23(r)λI∗\K(r) + R2(r)λ∗
J∗ (r)

U33(r)λI∗\K(r) + R3(r)λ∗
J∗ (r)

R4(r)λ∗
J∗ (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

we have ⎛
⎜⎜⎝

F1(r)
F2(r)
F3(r)
1
r F4(r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

rb1(r)
rb2(r)
rb3(r)
b4(r)

⎞
⎟⎟⎠ .

Since lim
r−→0

1
r R4(r)λ∗

J∗ (r) is a bounded vector, 1
r F4(r) is a bounded vector in the

neighborhood of r = 0 and thus according to Lemma 2.4 the result follows. �

2.2.3. Analysis of the term Ω(r)

We present here the high level analysis of Ω(r). Details of the proofs of several
lemmas will be found in Appendix A1. Now, we study the matrix Ω(r) from
system (15). Let us define

H = H(x(r), r) = ∇2
xf(x(r)) +

m∑
i=1

λi(r)∇2
xgi(x(r)), (17)

G(r) = QT
x(r)HQx(r) =

⎛
⎜⎜⎝

G11(r) G12(r) G13(r) G14(r)
G21(r) G22(r) G23(r) G24(r)
G31(r) G32(r) G33(r) G34(r)
G41(r) G42(r) G43(r) G44(r)

⎞
⎟⎟⎠ , (18)

and, recalling our splitting of variables into four part,

S(r) =

⎛
⎜⎜⎝

S11(r) S12(r) S13(r) S14(r)
S21(r) S22(r) S23(r) S24(r)
S31(r) S32(r) S33(r) S34(r)
S41(r) S42(r) S43(r) S44(r)

⎞
⎟⎟⎠ (19)
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with Sij(r) = Ri(r)VJ∗ (r)Rj(r), and

W (r) =

⎛
⎜⎜⎝
⎛
⎝ W11(r) W12(r) W13(r)

W21(r) W22(r) W23(r)
W31(r) W32(r) W33(r)

⎞
⎠ 0m∗×(n−m∗)

0(n−m∗)×m∗ 0(n−m∗)×(n−m∗)

⎞
⎟⎟⎠ (20)

where

W11(r) = U11(r)VKd (r)UT
11(r)+U12(r)VKc (r)UT

12(r)+U13(r)VI∗\K(r)UT
13(r)

W12(r) = U12(r)VKc (r)UT
22(r) + U13(r)VI∗\K(r)UT

23(r),

W13(r) = U13(r)VI∗\K(r)UT
33(r),

W21(r) = U22(r)VKc (r)UT
12(r) + U23(r)VI∗\K(r)UT

13(r),

W22(r) = U22(r)VKc (r)UT
22(r) + U23(r)VI∗\K(r)UT

23(r),

W23(r) = U23(r)VI∗\K(r)UT
33(r),

W31(r) = U33(r)VI∗\K(r)UT
13(r),

W32(r) = U33(r)VI∗\K(r)UT
23(r),

andW33(r) = U33(r)VI∗\K(r)UT
33(r).

Recall that Ω(r) = QT
x(r)∇2

xφr(r, x(r))Qx(r), which allows to write

Ω(r) = QT
x(r)(∇2

xf(x(r)) +

m∑
i=1

λi(r)∇2
xgi(x(r)))Qx(r)

+
1

r
QT

x(r)∇g(x(r))V (r)(QT
x(r)∇g(x(r)))T

= G(r) +
1

r

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 R4(r)

⎞
⎟⎟⎠

×V (r)

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 R4(r)

⎞
⎟⎟⎠

T

.
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Next by using relations (11), (18), (19), (20), we obtain the following form of Ω(r)

Ω(r) = G(r) +
1
r
S(r) +

1
r
W (r)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω11(r) Ω12(r) Ω13(r) Ω14(r)

Ω21(r) Ω22(r) Ω23(r) Ω24(r)

Ω31(r) Ω32(r) Ω33(r) Ω34(r)

Ω41(r) Ω42(r) Ω43(r) Ω44(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

So that the system (15) is writen as:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r F1(r)

1
r F2(r)

1
r F3(r)

1
r F4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω11(r) Ω12(r) Ω13(r) Ω14(r)

Ω21(r) Ω22(r) Ω23(r) Ω24(r)

Ω31(r) Ω32(r) Ω33(r) Ω34(r)

Ω41(r) Ω42(r) Ω43(r) Ω44(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

y1(r)

y2(r)

y3(r)

y4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us put

y1(r) = U−1
11

T
(r)VKd

−1/2(r)z1(r);

then we have the following equivalent modified system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
r F1(r)

1
r F2(r)

1
r F3(r)

1
r F4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω11(r)U−1
11

T
(r)VKd

−1/2(r) Ω12(r) Ω13(r) Ω14(r)

Ω21(r)U−1
11

T
(r)VKd

−1/2(r) Ω22(r) Ω23(r) Ω24(r)

Ω31(r)U−1
11

T
(r)VKd

−1/2(r) Ω32(r) Ω33(r) Ω34(r)

Ω41(r)U−1
11

T
(r)VKd

−1/2(r) Ω42(r) Ω43(r) Ω44(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1(r)

y2(r)

y3(r)

y4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Multiply the first block of line and the three blocks of lines of the preceding system
respectively by V

−1/2

Kd (r)U−1
11 (r) and r to obtain the following equivalent modified
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system:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

F̄1(r)

F2(r)

F3(r)

1
r F4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Ω̄11(r) Ω̄12(r) Ω̄13(r) Ω̄14(r)

Ω̄21(r) rΩ22(r) rΩ23(r) rΩ24(r)

Ω̄31(r) rΩ32(r) rΩ33(r) rΩ34(r)

Ω̄41(r) Ω42(r) Ω43(r) Ω44(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

z1(r)

y2(r)

y3(r)

y4(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with

F̄1(r) = V
−1/2

Kd (r)U−1
11 (r)F1(r),

Ω̄11(r) = rV
−1/2

Kd (r)U−1
11 (r)Ω11(r)U−1

11

T
(r)VKd

−1/2(r),

Ω̄1i(r) = rV
−1/2

Kd (r)U−1
11 (r)Ω1i(r) i = 2, 3, 4,

Ω̄i1(r) = rΩi1(r)U−1
11

T
(r)VKd

−1/2(r) i = 2, 3,

Ω̄41(r) = Ω41(r)U−1
11

T
(r)VKd

−1/2(r).

We now consider regrouping the blocks 1 and 2 as well as 3 and 4. We wish to
analyze separately the diagonal block subsystems. In order to analyze the systems
separately, we introduce:

N1(r) =

⎛
⎝ F̄1(r)

F2(r)

⎞
⎠ −

⎛
⎝ Ω̄13(r) rΩ23(r)

Ω̄14(r) rΩ24(r)

⎞
⎠
⎛
⎝ y3(r)

y4(r)

⎞
⎠ ,

N2(r) =

⎛
⎝ F3(r)

1
r
F4(r)

⎞
⎠ −

⎛
⎝ Ω̄31(r) rΩ32(r)

Ω̄41(r) Ω42(r)

⎞
⎠
⎛
⎝ z1(r)

y2(r)

⎞
⎠ .
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We can now analyze the two systems separately:

(P )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ω̄1(r)

⎛
⎝ z1(r)

y2(r)

⎞
⎠ = N1(r)

Ω̄2(r)

⎛
⎝ y3(r)

y4(r)

⎞
⎠ = N2(r).

where Ω̄1(r) and Ω̄2(r) are the following matrices:

Ω̄1(r) =

⎛
⎝ Ω̄11(r) Ω̄12(r)

Ω̄21(r) rΩ22(r)

⎞
⎠

and Ω̄2(r) =

⎛
⎝ rΩ33(r) rΩ34(r)

Ω43(r) Ω44(r)

⎞
⎠ .

Consider the following definition which weakens the regularity assumption used
by Fiacco and McCormick (linear independence of the gradients of the active
constraints).

Definition 2.1. Let

E = {i ∈ I∗\K | lim
r−→0

λi(r)∇gi(x(r)) is not bounded}.

x∗ is called a weak regular point when one of the two following conditions is
satisfied:

(1) E = ∅,
(2) if E �= ∅ then there is a partition of Kd, P = {Kd

1 , · · · , Kd
l } and a bijective

function α : E −→ P defined by:

α(i) = Kd
i ⇐⇒

⎧⎨
⎩

∀r̄ > 0, λi(r)∇gi(x(r)) +
∑

j∈Kd
i

λj(r)∇gj(x(r))

is a bounded vector on [0, r̄].

Remark 2.4. We notice that:

(1) If x∗ is a weak regular point, then lim
r−→0

B(r) is a bounded matrix where

B(r) = ∇gI∗\K(x(r))VI∗\K
1/2 + ∇gKd(x(r))A(r)
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with A(r) = (A1(r) | 0kd×(m∗−kd−|E|)) such that

A1(r) =

⎛
⎜⎜⎜⎝

λJ1(r) 0 · · · 0
0 λJ2(r) · · · 0
...

...
. . .

...
0 0 · · · λJl

(r)

⎞
⎟⎟⎟⎠

and J1, J2 · · · , Jl form a partition of Kd;

(2) ∇gE(x∗) = −∇gKd(x∗) lim
r−→0

A1(r)V
−1/2

E (r) where lim
r−→0

A1(r)V
−1/2

E (r) is
a bounded matrix;

(3) ∀i ∈ I∗\K such that i /∈ E, ∇gi(x∗) is a null vector,

(4) if x∗ is regular then it is weak regular.

We first observe that if there exists diverging multipliers, then either E �= ∅ or an
active constraint gradient vanishes.

Lemma 2.5. If ∀i ∈ I∗, ∇gi(x∗) �= 0 and E = ∅ then Kd = ∅.
Next,

Lemma 2.6. If x∗ is a weak regular point and E �= ∅ then ∇gE(x∗) is a full rank
matrix.

Lemma 2.7. If x∗ is a weak regular point then ∀i ∈ E, ∇gi(x∗) and the columns
of the matrix ∇gKc(x∗) are linearly independent.

Consider now the two following lemmas. The first will be useful in the proof of
the second, for which the object is to show that some submatrices of the matrix
Ω(r) are bounded when r is close to 0.

Lemma 2.8. Let M be a n × n matrix. If

M =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1
1 1 1 · · · 1
1 1 1 · · · 1
...

...
...

. . .
...

1 1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠ Then I + M is a nonsingular matrix.

Proof. The lemma is shown easily by using the Gauss-Jordan process. �

Lemma 2.9. If x∗ is a weak regular point then
(i) U13(r)VI∗\K

1/2(r) = −U11(r)A(r)+B̄1(r) where lim
r−→0

B̄1(r) is a bounded
matrix,

(ii) lim
r−→0

U23(r)VI∗\K
1/2(r) = U∗

23 where U∗
23 is a bounded matrix,
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(iii) lim
r−→0

U33(r)VI∗\K
1/2(r) = U∗

33 where U∗
33 is a bounded matrix,

(iv) lim
r−→0

VKd
−1/2(r)A(r) = A∗ where A∗ is a bounded matrix,

(v) I + A∗A∗T is a nonsingular matrix,
(vi) lim

r−→0
VKd

−1/2(r)U11(r)VKd
1/2(r) = Ū11 is a nonsingular matrix,

(vii) lim
r−→0

VKd
−1/2(r)U11(r)A(r) = Ā where Ā is a bounded matrix.

Let us recall that
y1(r) = U−1

11

T
(r)V −1/2

Kd (r)z1(r),
and consider the tow following lemmas, for which the object is to show, under
some hypotheses, that z1(r) et y1(r) are bounded in the neighborhood of r = 0.

Lemma 2.10. If lim
r−→0

VKd(r)1/2y1(r) is a bounded vector then lim
r−→0

z1(r) is a
bounded vector.

Now,

Lemma 2.11. If ∀i ∈ Kd, lim
r−→0

rλ′
i(r)

λi(r) is bounded then lim
r−→0

VKd(r)1/2y1(r) is a
bounded vector.

Define
D∗

K = {d | ∇gK(x∗)T
d = 0},

D̄ = lim
r−→0

{d | ∇gI∗(x(r))T
d = 0},

D̄⊥ = orthogonal complement of D̄
and let us consider the following definition which weakens the usual second order
sufficient condition for our case where Λ∗ = ∅.
Definition 2.2. We shall say that the weak second order sufficient condition
(W.S.O.S.C. for short) holds at x∗ when

(i) H6 is satisfied;
(ii) ∃ r̂ such that ∀d ∈ D̄⊥ ∩ D∗

K , d �= 0 and ∀r ∈]0, r̂],

rdT (∇2L(x(r), λ(r)) +
m∑

i=1

λ2
i (r)∇gi(x(r))∇gi(x(r))T )d > 0.

Consider the following technical hypothesis which will be useful in the following
section:

H7: lim
r−→0

rdT∇2L(x, λ(r))d =
{

is bounded if d ∈ D̄⊥ ∩ D∗
K

0 elsewhere.

Lemma 2.12. If hypotheses H3, H4 and H7 are satisfied at x∗ then we have

lim
r−→0

⎛
⎜⎜⎝

rG11(r) rG12(r) rG13(r) rG14(r)
rG21(r) rG22(r) rG23(r) rG24(r)
rG31(r) rG32(r) rG33(r) rG34(r)
G41(r) G42(r) G43(r) G44(r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 G∗

33 0
G∗

41 G∗
42 G∗

43 G∗
44

⎞
⎟⎟⎠

where G∗
33, G∗

41, G∗
42, G∗

43 et G∗
44 are bounded matrices.
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Lemma 2.13. If x∗ is a weak regular point, satisfying the W.S.O.S.C. and hy-

potheses H3, H4 and H7, then
(

G∗
33 + U∗

33U
∗
33

T 0
G∗

43 G∗
44

)
is a nonsingular matrix.

Lemma 2.14. If x∗ is a weak regular point satisfying the weak second order suf-
ficient condition, hypotheses H3, H4, H7 and furthermore lim

r−→0
V

1/2

Kd (r)y1(r) is a
bounded vector, then

(i) lim
r−→0

Ω̄2(r) = Ω̄2(0) where Ω̄2(0) is a nonsingular matrix,

(ii) lim
r−→0

N2(r) = N2(0) where N2(0) is a bounded vector.

Lemma 2.15. If x∗ is a weak regular point, satisfying the weak second order suf-
ficient condition, hypotheses H3, H4, H7 and furthermore that lim

r−→0
V

1/2

Kd (r)y1(r)

is a bounded vector, then the sequences of vectors y3(r) and y4(r) approach respec-
tively y3(0) and y4(0), which are bounded vectors.

2.3. Differentiability of x(r) in the neighborhood of r = 0

In this section, we show the principal theorem concerning the differentiability
of the trajectories when Λ∗ = ∅. Consider the following definition:

Definition 2.3. We say that x∗ is a linear weak regular point if the two following
conditions are satisfied:

(i) x∗ is a weak regular point,
(ii) for all i ∈ Kd, lim

r−→0

rλ′
i(r)

λi(r) is bounded.

Remark 2.5. If x∗ is a linear weak regular point then according to Lemma 2.11,
lim

r−→0
V

1/2

Kd y1(r) is a bounded vector.

Theorem 2.2. If x∗ is a linear weak regular point, satisfying the weak second
order sufficient condition and hypotheses H1, H2, H3, H4, H6, H5, H7, then the
trajectory x(r) is differentiable at the point r = 0.

Proof. According to Theorem 2.1, the trajectory x(r) is differentiable at points
r > 0. Close to 0 let us denote

y(r) = QT
x(r)x

′(r)

=

⎛
⎜⎜⎝

y1(r)
y2(r)
y3(r)
y4(r)

⎞
⎟⎟⎠ .
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According to Lemmas 2.3 and 2.15, the vector lim
r−→0

⎛
⎜⎜⎝

y1(r)
y2(r)
y3(r)
y4(r)

⎞
⎟⎟⎠ exists and since

Qx(r) is an orthogonal matrix then the vector lim
r−→0

x′(r) exists also, and we have
the result. �

Let us now show that the theorem is a genuine generalization of the usual
results by checking that the theorems of Fiacco and McCormick constitute in fact
a corollary of Theorem 2.2.

Corollary 2.2. If x∗ satisfies the usual hypotheses used by Fiacco and McCormick
then the trajectory x(r) is differentiable.

Proof. Again let us point out the usual hypotheses used by Fiacco and McCormick:
• ∀i ∈ I, gi is a C2 function;
• the objective function is of class C2;
• linear independence: ∇gi(x∗), i ∈ I∗, are linearly independent;
• x∗ is a cluster point of the sequence x(r);
• strict complementarity: gi(x∗) = 0 ⇐⇒ λ∗

i > 0;
• second order sufficient condition: Zt∇2L(x∗, λ∗)Z > 0, ∀Z ∈ Ker

(∇gI∗(x∗)).
The first two hypotheses imply that hypotheses H3, H4 are satisfied. Since
∇gi(x∗), i ∈ I∗, are linearly independent then x∗ is a weak regular point, hy-
potheses H1 and H5 are satisfied and Kd = ∅. Thus x∗ is a linear weak regular
point and hypothesis H7 is satisfied. Strict complementarity implies that hypoth-
esis H2 is satisfied and the second order sufficient condition implies that the weak
second order sufficient condition is satisfied, and we have the result. �

3. Conclusion

This work falls within the field of Interior Point Methods intensively studied in
the context of linear and quadratic programming in the last fifteen years. Our work
relates to the application of these methods in a non-linear programming context
and generalizes results originating in 1968. Motivated by the success of penalty
algorithm methods on non-linear programming problems, in particular to the log
barrier algorithm, Fiacco and McCormick [5,6] showed, under some hypotheses,
the existence of a differentiable trajectory in the optimal solution neighborhood.
When the usual hypotheses are used by Fiacco & McCormick, the set Λ∗ of the
multiplier vectors of Karush-Kuhn-Tucker [8] is nonempty.

In this paper we analysed the behavior of the log barrier trajectory in the
neighborhood of a degenerate solution (i.e. the contraint qualification are not
satisfied), which implies that the set Λ∗ of Karush-Kuhn-Tucker multipliers [8] is
empty. To show the existence of a differentiable trajectory even if the optimal
solution is not regular, we defined new weak hypotheses. The weak second order
sufficient condition (W.S.O.S.C.) is a natural generalization of the usual second
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order sufficient condition . The weak linear regularity definition is a natural gener-
alization of the usual regularity and ensures that some submatrices of the matrix
m∑

i=1

λ2
i (r)Q

T
x(r)∇gi(x(r))Qx(r)∇gi(x(r))T are bounded and lim

r−→0
V

1/2

Kd (r)y1(r) is a

bounded vector. However, H7 is a technical hypothesis, which may not be neces-
sary to the result but nonetheless useful in our proofs. This paper shows us, under
the weakened hypothesis, that a differentiable trajectory exists in the optimal so-
lution neighborhood. This coroborates the robustness of the log barrier algorithm
method and enlarges its field of application.

Our work opens new perspectives toward the development of robust algorithms
to solve degenerate problems. An interesting extension of our work would weaken
the strict complementarity condition. Miflin[9] has shown that in that case (under
constraint qualifications), the trajectories behave as O(

√
r), so that a possible

extension would involve a parametrization in t = r2.
Hopes to address non-regular solutions with equality constraints seem more dif-

ficult since in that case, stationary points for the constraints may not be feasible.
Extension to other penalties, such as the exponential penalty function appears to
fail: the K-K-T multiplier estimates for the exponential penalty function (e

gi(x(r))
r )

will diverge, so gi(x(r))
r → ∞ destroying the hope for a differentiable primal tra-

jectory.

Appendix A1: Proof of lemmas in section 2.2.3

Proof of Lemma 2.5. Suppose that E = ∅ and Kd �= ∅. We have
m∑

i=1

λi(r)∇gi(x(r)) =
∑

i∈Kd

λi(r)∇gi(x(r)) +
∑

i∈Kc

λi(r)∇gi(x(r))

+
∑

i∈I∗\K

λi(r)∇gi(x(r)) +
∑
i∈J∗

λi(r)∇gi(x(r)).

However lim
r−→0

∑
i∈Kd

λi(r)∇gi(x(r)) is a bounded vector, since

(i) lim
r−→0

∑
i∈Kc

λi(r)∇gi(x(r)) is a bounded vector,

(ii) lim
r−→0

∑
i∈J∗

λi(r)∇gi(x(r)) is a bounded vector,

(iii) lim
r−→0

∑
i∈I∗\(K∪E)

λi(r)∇gi(x(r)) is a bounded vector because E = ∅,

(iv) lim
r−→0

m∑
i=1

λi(r)∇gi(x(r)) is a bounded vector by Corollary 2.1.

If Kd �= ∅ there are two possible cases: kd = 1 or kd > 1. If kd = 1 then Kd = {i0},
lim

r−→0
λi0(r)∇gi0(x(r)) is a bounded vector and thus ∇gi0(x∗) is a null vector. If

kd > 1, suppose there exists i0 ∈ Kd such that λi0(r) = max(λi(r), i ∈ Kd), thus
we have

∀i ∈ Kd\{i0}, lim
r−→0

λi(r)
λi0 (r)

= µ∗
i ≥ 0
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which implies that

∇gi0(x
∗) = − lim

r−→0

∑
i∈Kd

λi(r)
λi0(r)

∇gi(x(r))

= −
∑

i∈Kd\{i0}
µ∗

i ∇gi(x∗),

and we have: either
∀i ∈ Kd\{i0} µ∗

i = 0 then ∇gi0(x∗) is a null vector, or
∃i ∈ Kd\{i0} such that µ∗

i > 0 then ∇gi0(x∗) is written as a linear combination
of the columns of ∇gK(x∗). Both contradict the definition of K, and we have the
result. �

Proof of Lemma 2.6. Pick some αi ∈ R such that
∑
i∈E

αi∇gi(x∗) = 0. Since x∗ is

a weak regular point then according to Remark 2.4, there are scalars aj ∈ R such
that

∑
i∈E

αi∇gi(x∗) =
∑
i∈E

αi

∑
j∈Kd

i

aj∇gj(x∗)

=
∑
i∈E

∑
j∈Kd

i

αiaj∇gj(x∗)

=
∑

j∈Kd
1

α1aj∇gj(x∗)+
∑

j∈Kd
2

α2aj∇gj(x∗) +· · ·+
∑

j∈Kd
l

αlaj∇gj(x∗)

= 0,

where ∀j ∈ Kd, aj is nonzero. However {Kd
1 , . . . , Kd

l } forms a partition of Kd and
∇gKd(x∗) is a full rank matrix, which implies that

∀j ∈ Kd
1 , α1aj = 0

∀j ∈ Kd
2 , α2aj = 0

... =
...

∀j ∈ Kd
l , αlaj = 0

so that we have α1 = α2 = · · · = αl = 0. Thus the columns of the matrix ∇gE(x∗)
are linearly independent, and we have the result. �

Proof of Lemma 2.7. Suppose that there is an i ∈ E such that ∇gi(x∗) and the
columns of the matrix ∇gKc(x∗) are linearly dependent, which implies that there
exists αi ∈ R such that αi∇gi(x∗) +

∑
j∈Kc

αj∇gi(x∗) = 0. Since x∗ is a weak
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regular point then

αi∇gi(x∗) +
∑

j∈Kc

αj∇gi(x∗) = αi

∑
j∈Kd

i

aj∇gj(x∗) +
∑

j∈Kc

αj∇gi(x∗)

=
∑

j∈Kd
i

αiaj∇gj(x∗) +
∑

j∈Kc

αj∇gi(x∗)

= 0,

where ∀j ∈ Kd
i , aj is a nonzero scalar. However Kd

i ⊆ K and Kc ⊆ K where

K = {i1, · · · , ik ∈ I∗ | ∇gi1 , · · · ,∇gik
(x∗) are linearly independent},

which implies that

∀j ∈ Kd
i , αiaj = 0

∀j ∈ Kc, αj = 0,

and so αi = 0, and we have the result. �

Proof of Lemma 2.9. Recall that

B(r) = ∇gI∗\K(x(r))VI∗\K
1/2 + ∇gKd(x(r))A

where A = (A1 | 0kd×(m∗−kd−|E|)) such that

A1(r) =

⎛
⎜⎜⎜⎝

λJ1(r) 0 · · · 0
0 λJ2(r) · · · 0
...

...
. . .

...
0 0 · · · λJl

(r)

⎞
⎟⎟⎟⎠

and J1, J2 · · · , Jl form a partition of Kd. Since x∗ is a weak regular point then
lim

r−→0
B(r) is a bounded matrix.

Multiply B(r) by QT
x(r) to obtain

QT
x(r)B(r) = QT

x(r)∇gI∗\K(x(r))VI∗\K
1/2(r) + QT

x(r)∇gKd(x∗)A(r)

=

⎛
⎝ U13(r)VI∗\K

1/2(r)
U23(r)VI∗\K

1/2(r)
U33(r)VI∗\K

1/2(r)

⎞
⎠+

⎛
⎝ U11(r)A(r)

0
0

⎞
⎠

=

⎛
⎝ B̄1(r)

B̄2(r)
B̄3(r)

⎞
⎠ ,
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thus

⎧⎪⎪⎨
⎪⎪⎩

lim
r−→0

(
B̄2(r)
B̄3(r)

)
=
(

U∗
23

U∗
33

)

lim
r−→0

B̄1(r) is a bounded matrix

which shows points i), ii) and iii).
iv) Since ∇gKd(x∗) is of full rank then ∀Ji ⊆ Kd, ∇gJi(x∗) is of full rank. This
enables us to say that the components of each column of the matrix A1(r) diverge
at the same rate when r −→ 0, i.e.

lim
r−→0

VKd
−1/2A1(r)

= lim
r−→0

⎛
⎜⎜⎜⎜⎝

V
−1/2
J1

(r)λJ1 (r) 0 · · · 0
0 V

−1/2
J2

(r)λJ2 (r) · · · 0
...

...
. . .

...
0 0 · · · V

−1/2
Jl

(r)λJl
(r)

⎞
⎟⎟⎟⎟⎠

= lim
r−→0

⎛
⎜⎜⎜⎝

eJ1 0 · · · 0
0 eJ2 · · · 0
...

...
. . .

...
0 0 · · · eJl

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

eJ1 0 · · · 0
0 eJ2 · · · 0
...

...
. . .

...
0 0 · · · eJl

⎞
⎟⎟⎟⎠

= A∗
1

where eJ1 , eJ2, · · · , eJl
are unit vectors. Then we have

lim
r−→0

VKd
−1/2(r)A(r) = lim

r−→0
VKd

−1/2(r)(A1(r) | 0kd×(m∗−kd−|E|))

= ( lim
r−→0

VKd
−1/2(r)A1(r) | 0kd×(m∗−kd−|E|))

= (A∗
1 | 0kd×(m∗−kd−|E|))

= A∗.
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(v)

I + A∗A∗T = I + A1
∗A1

∗T

=

⎛
⎜⎜⎜⎝

IJ1 + eJ1e
T
J1

0 · · · 0
0 IJ2 + eJ2e

T
J2

· · · 0
...

...
. . .

...
0 0 · · · IJl

+ eJl
eT

Jl

⎞
⎟⎟⎟⎠

therefore I+A∗A∗T is a block diagonal matrix such that eJ1e
T
J1

, eJ2e
T
J2

, · · · , eJl
eT

Jl

are matrices with all their components equal to 1, and thus by lemma 2.8, I +
A∗A∗T is a nonsingular matrix, and we have the proof of v).
(vi) Let us define

U11(r) =

⎛
⎜⎜⎜⎝

U1
J1

(r) U1
J2

(r) · · · U1
Jl

(r)
0 U2

J2
(r) · · · U2

Jl
(r)

...
...

. . .
...

0 0 · · · U l
Jl

(r)

⎞
⎟⎟⎟⎠ ,

which enables us to write

V
Kd

−1/2
(r)U11(r)V

Kd
1/2

(r) =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

V
−1/2
J1

(r)U1
J1

(r)VJ1
1/2(r) V

−1/2
J1

(r)U1
J2

(r)VJ2
1/2(r) · · · V

−1/2
J1

(r)U1
Jl

(r)VJl
1/2(r)

0 V
−1/2
J2

(r)U2
J2

(r)VJ2
1/2(r) · · · V

−1/2
J2

(r)U2
Jl

(r)VJl
1/2(r)

.

.

.

.

.

.
.
.
.

.

.

.

0 0 · · · V
−1/2
Jl

(r)Ul
Jl

(r)VJl
1/2(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Since ∀i ∈ {1, 2, .., l}, the components of the vector λji(r) diverge at the same rate
then
lim

r−→0
V

−1/2
J1

(r)U1
J1

(r)VJ1
1/2(r), lim

r−→0
V

−1/2
J2

(r)U2
J2

(r)VJ2
1/2(r), · · · , lim

r−→0
V

−1/2
Jl

(r)

U l
Jl

(r) VJl

1/2(r) are bounded upper triangular and nonsingular matrices. Since
the components of the diagonal matrix VKd

1/2(r) are subscripted in descending
order then

∀i, j ∈ {1, 2, .., l} such that i < j, lim
r−→0

VJi

−1/2(r)U i
Jj (r)VJj

1/2(r) = 0,

which implies that lim
r−→0

VKd
−1/2(r)U11(r)VKd

1/2(r) = Ū11 are bounded upper
triangular and nonsingular matrices.
(vii) Let

U11(r) =

⎛
⎜⎜⎜⎝

U1
J1

(r) U1
J2

(r) · · · U1
Jl

(r)
0 U2

J2
(r) · · · U2

Jl
(r)

...
...

. . .
...

0 0 · · · U l
Jl

(r)

⎞
⎟⎟⎟⎠ ,
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which enables us to write

VKd
−1/2(r)U11(r)A1(r) =⎛

⎜⎜⎜⎜⎝
V

−1/2
J1

(r)U1
J1

(r)λJ1 (r) V
−1/2
J1

(r)U1
J2

(r)λJ2 (r) · · · V
−1/2
J1

(r)U1
Jl

(r)λJl
(r)

0 V
−1/2
J2

(r)U2
J2

(r)λJ2 (r) · · · V
−1/2
J2

(r)U2
Jl

(r)λJl
(r)

...
...

. . .
...

0 0 · · · V
−1/2
Jl

(r)U l
Jl

(r)λJl
(r)

⎞
⎟⎟⎟⎟⎠ .

Since the components of the diagonal matrix VKd
1/2(r) are subscripted in de-

scending order then the columns of the matrix A1 are arranged in descending
order with respect to the rate of divergence, which implies that

lim
r−→0

V
Kd

−1/2
(r)U11(r)A1(r) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

lim
r−→0

V
−1/2
J1

(r)U1
J1

(r)λJ1 (r) 0 · · · 0

0 lim
r−→0

V
−1/2
J2

(r)U2
J2

(r)λJ2 (r) · · · 0

.

.

.

.

.

.
. .

.
.
.
.

0 0 · · · lim
r−→0

V
−1/2
Jl

(r)Ul
Jl

(r)λJl
(r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

from which follows lim
r−→0

VKd
−1/2(r)U11(r)A1(r) = Ā1 is a bounded matrix. Con-

sequently
lim

r−→0
VKd

−1/2(r)U11(r)A(r) = Ā

where Ā = (Ā1 | 0kd×(m∗−kd−|E|)) is a bounded matrix, which concludes the
proof of (vii). �

Proof of Lemma 2.10. Since y1(r) = (U−1
11 )T V

−1/2

Kd z1(r) then

lim
r−→0

z1(r) = lim
r−→0

V
1/2

Kd (r)U11
T (r)y1(r)

= lim
r−→0

V
1/2

Kd (r)U11
T (r)V −1/2

Kd (r)V 1/2

Kd (r)y1(r).

However, according to (vi) of lemma 2.9, lim
r−→0

V
1/2

Kd (r)U11
T (r)V −1/2

Kd (r) is a bounded
upper triangular and nonsingular matrix, and we have the result. �
Proof of Lemma 2.11. Let i ∈ Kd. Since ∀r > 0, λi(r) is a differentiable function
then

λ′
i(r) =

−gi(x(r)) + r∇gi(x(r))T
x′(r)

gi(x(r))2

=
λi(r)

r
+

λi(r)2

r
∇gi(x(r))T

x′(r)

=
λi(r)

r
(1 + λi(r)∇gi(x(r))T

x′(r))
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which yields

rλ′
i(r)

λi(r)
= 1 + λi(r)∇gi(x(r))T

x′(r). (21)

Therefore lim
r−→0

λi(r)∇gi(x(r))T x′(r) is bounded. According to Equation (16) we
have

VKd(r)1/2y1(r) = −VKd(r)1/2(U−1
11 )T (r)V −1/2

Kd(r̂)eKd where r̂ > r

= −VKd(r)1/2(U−1
11 )T VKd(r)−1/2VKd(r)1/2V −1/2

Kd(r̂)eKd .

To show that lim
r−→0

VKd(r)1/2y1(r) is a bounded vector it suffices to show that

lim
r−→0

VKd(r)1/2V −1/2
Kd(r̂) is a bounded matrix and

VKd(r)1/2V −1/2
Kd(r̂) =

⎛
⎜⎜⎜⎜⎜⎝

λi1 (r)

λi1 (r̂) 0 · · · 0

0 λi2 (r)

λi2 (r̂) · · · 0
...

...
. . .

...
0 0 · · · λil

(r)

λil
(r̂)

⎞
⎟⎟⎟⎟⎟⎠ .

According to Remark 2.3 and Equation (21), for i ∈ Kd we have

λi(r)
λi(r̂)

= −λi(r)∇gi(x(r))T
x′(r)

= 1 − rλ′
i(r)

λi(r)

which implies that lim
r−→0

λi(r)
λi(r̂)

is bounded, and we have the result. �

Proof of Lemma 2.12. If hypotheses H3 and H4 are satisfied at x∗ then according
to relations (17) and (13), respectively,

H(r) = ∇2f(x(r)) +
m∑

i=1

λi(r)∇2gi(x(r)) = ∇2L(x(r), λ(r))

and Qx(r) =
(
QKd(r) QKc(r) QI∗\K(r) QJ∗(r)

)
,
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we have

Q
T
x(r)HQx(r) =

⎛
⎜⎜⎝

Q
Kd

T (r)

QKc
T (r)

QI∗\K
T (r)

QJ∗T (r)

⎞
⎟⎟⎠ H

(
QKd (r) QKc (r) QI∗\K(r) QJ∗ (r)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Q
Kd

T (r)H(r)Q
Kd (r) Q

Kd
T (r)H(r)QKc (r) Q

Kd
T (r)H(r)QI∗\K(r) Q

Kd
T (r)H(r)QJ∗ (r)

QKc
T (r)H(r)Q

Kd (r) QKc
T (r)H(r)QKc (r) QKc

T (r)H(r)QI∗\K(r) QKc
T (r)H(r)QJ∗ (r)

QI∗\K
T (r)H(r)Q

Kd (r) QI∗\K
T (r)H(r)QKc (r) QI∗\K

T (r)H(r)QI∗\K(r) QI∗\K
T (r)H(r)QJ∗ (r)

QJ∗ T (r)H(r)Q
Kd (r) QJ∗T (r)H(r)QKc (r) QJ∗T (r)H(r)QI∗\K(r) QJ∗T (r)H(r)QJ∗ (r)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎝

G11(r) G12(r) G13(r) G14(r)
G21(r) G22(r) G23(r) G24(r)
G31(r) G32(r) G33(r) G34(r)
G41(r) G42(r) G43(r) G44(r)

⎞
⎟⎠ .

Since hypothesis H7 is satisfied and the columns of the matrix QI∗\K are the
vectors of D̄⊥ ∩ D∗

K then we have:

lim
r−→0

⎛
⎜⎜⎝

rG11(r) rG12(r) rG13(r) rG14(r)
rG21(r) rG22(r) rG23(r) rG24(r)
rG31(r) rG32(r) rG33(r) rG34(r)
G41(r) G42(r) G43(r) G44(r)

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 G∗

33 0
G∗

41 G∗
42 G∗

43 G∗
44

⎞
⎟⎟⎠ .

�

Proof of Lemma 2.13. Lemmas 2.9 and 2.12 imply that
(

G∗
33 + U∗

33U
∗
33

T 0
G∗

43 G∗
44

)
is a bounded matrix. Condition i) of W.S.O.S.C. implies that G∗

44 is a nonsingular
matrix. Condition ii) of W.S.O.S.C. implies that G∗

33 + U∗
33U

∗
33

T is a nonsingular

matrix , which implies that
(

G∗
33 + U∗

33U
∗
33

T 0
G∗

43 G∗
44

)
is a nonsingular matrix. �

Proof of Lemma 2.14. If x∗ is a weak regular point then, according to Lemma 2.9,
we have

lim
r−→0

U23(r)VI∗\K
1/2(r) = U∗

23,

lim
r−→0

U33(r)VI∗\K
1/2(r) = U∗

33,

lim
r−→0

V
−1/2

Kd (r)A(r) = A∗,
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and
(i)

lim
r−→0

Ω̄2(r) =

lim
r−→0

⎛
⎝ rG33(r) + U33(r)VI∗\K(r)UT

33(r) + S33(r) rG34(r) + S34(r)

G43(r) + 1
r S43(r) G44(r) + 1

r S44(r)

⎞
⎠

=

⎛
⎝ G∗

33 + U∗
33U

∗
33

T 0

G∗
43 G∗

44

⎞
⎠ .

According to Lemma 2.13, Ω̄2(0) is a nonsingular matrix.
(ii) Since we have

(1) lim
r−→0

(rG31(r)V
−1/2

Kd (r) + S31(r)V
−1/2

Kd (r) + U33(r)VI∗\K(r)U13
T (r)

V
−1/2

Kd (r)) is a bounded vector, indeed

lim
r−→0

(rG31(r)V
−1/2

Kd (r)) = 0 by hypothesis H7,

lim
r−→0

(S31(r)V
−1/2

Kd (r)) = 0,

lim
r−→0

(U33(r)VI∗\K(r)U13
T (r)V

−1/2

Kd (r)) = lim
r−→0

(U33(r)VI∗\K
1/2(r)VI∗\K

1/2(r)

× U13
T (r)V

−1/2

Kd (r))

= U∗
33 lim

r−→0
(−AT (r)UT

11(r) + B̄1(r)
T )V

−1/2

Kd (r),

i) and iii) from Lemma 2.9

= −U∗
33 lim

r−→0
AT (r)UT

11(r)V
−1/2

Kd (r)

+ U∗
33 lim

r−→0
B̄1(r)

T V
−1/2

Kd (r)

= −U∗
33 lim

r−→0
AT (r)UT

11(r)V
−1/2

Kd (r)

= −U∗
33Ā

T ,

(2) lim
r−→0

(G41(r)V
−1/2

Kd (r) + 1
r S41(r)V

−1/2

Kd (r)) is a bounded vector, indeed

lim
r−→0

(G41(r)V
−1/2

Kd (r)) = 0 by hypothesis H7,

lim
r−→0

(1
r S41(r)V

−1/2

Kd (r)) = 0.
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Then

lim
r−→0

N2(r) =

⎛
⎝ F3(0)

b4(0)

⎞
⎠ − lim

r−→0

⎛
⎝ Ω̄13(r) rΩ23(r)

Ω̄14(r) rΩ24(r)

⎞
⎠
⎛
⎝ y3(r)

y4(r)

⎞
⎠

=

⎛
⎝ F3(0)

b4(0)

⎞
⎠ −

⎛
⎝ −U∗

33Ā
T G∗

32 + U∗
33U

∗
23

T

0 G∗
42

⎞
⎠
⎛
⎝ z1(0)

y2(0)

⎞
⎠

= N2(0).

According to Lemma 2.10, z1(0) is a bounded vector. Thus N2(0) is a bounded
vector. �

Proof of Lemma 2.15. Vectors y3(r) and y4(r) are solutions of the following sys-
tem:

Ω̄2(r)

⎛
⎝ y3(r)

y4(r)

⎞
⎠ = N2(r).

When r −→ 0, this system approaches

Ω̄2(0)

⎛
⎝ y3(0)

y4(0)

⎞
⎠ = N2(0).

According to lemma 2.14, Ω̄2(0) is a nonsingular matrix and N2(0) is a bounded

vector, then the vector

⎛
⎝ y3(0)

y4(0)

⎞
⎠ exists and is bounded. �

Appendix A2: an illustrative example

In this section, we consider the following example

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

min x1 + x3 + x5 + x6
2

s.t

−x4 ≤ 0
−x2 ≤ 0
−x3 ≤ 0

x4 − x1
5 ≤ 0

x2 − x5
3 ≤ 0

x3 − 1 ≤ 0.

For this problem, x∗ = (0, 0, 0, 0, 0, 0) is the unique isolated solution. The gradients
of the active constraints at x∗ are linearly dependent, whereas ∇gI∗(x(r)) is a full
rank matrix for all r > 0.
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The penalized problems are written:

φ(r, x) = x1 + x3 + x5 + x6
2 − r log(x4) − r log(x2) − r log(x3)

−r log(−x4 + x1
5) − r log(−x2 + x5

3) − log(−x3 + 1)

and their gradients are

∇φ (r, x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
0
1
0
1

2x6

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x4

)
⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x2

)
⎛
⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x3

)
⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
−1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x1
5 − x4

)
⎛
⎜⎜⎜⎜⎜⎜⎝

5x1
4

0
0
−1
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x5
3 − x2

)
⎛
⎜⎜⎜⎜⎜⎜⎝

0
−1
0
0

3x5
2

0

⎞
⎟⎟⎟⎟⎟⎟⎠

−
(

r

x3 − 1

)
⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
1
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 5x1
4r

(x15−x4)

−r
x2

+ r
(x53−x2)

1 + −r
x3

− r
x3−1

−r
x4

+ r
(x15−x4)

1 + 3x5
2r

x53−x2

2x6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The values which cancel ∇φ(r, x) and the associated λi(r) quantities are

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(r) = 10r, x2(r) = 108r3, x3(r) =
1
2

+ r − 1
2
√

1 + 4r2

x4(r) = 50000r5, x5(r) = 6r, x6(r) = 0

λ1 =
1

50000
1
r4

, λ2 =
1

108
1
r2

, λ3 =
r

1
2

+ r − 1
2
√

1 + 4r2

λ4 =
1

50000
1
r4

, λ5 =
1

108
1
r2

, λ6 = − r
1
2
− r +

1
2
√

1 + 4r2

·

The multipliers λ4(r) and λ5(r) diverge when r −→ 0 whereas the trajectories,
x(r) = (x1(r), x2(r), x3(r), x4(r), x5(r)), are differentiable at the point r = 0.
Let us recall that

∇gI(x(r)) =
( ∇gKd(x(r)) ∇gKc(x(r)) ∇gI∗\K(x(r)) ∇gJ∗(x(r))

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −50000r4 0 0
0 1 0 0 −1 0
0 0 −1 0 0 1
−1 0 0 1 0 0
0 0 0 0 −108r2 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where

K = {i1, · · · , ik ∈ I∗ | ∇gi1(x∗), · · · ,∇gik
(x∗) are linearly independent},

Kd = {i ∈ K | lim
r−→0

λi(r) = +∞},
Kc = {i ∈ K | lim

r−→0
λi(r) = λ∗

i > 0},
I∗\K = {i ∈ I∗ | ∇gi(x∗) and the columns of∇gK(x∗) are linearly dependent}.

In this example we have

K = {1, 2, 3},
Kd = {1, 2},
Kc = {3},
I∗\K = {4, 5},
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which implies that the associated canonical subspaces are

D∗
K = {d | ∇gK(x∗)T

d = 0}
= {(d1, 0, 0, 0, d5, d6) | d1, d5, d6 ∈ R},

D̄ = lim
r−→0

{d | ∇gI∗(x(r))T
d = 0}

= {(0, 0, 0, 0, 0, d6) | d6 ∈ R},
D̄⊥ = lim

r−→0
{d | ∇gI∗(x(r))T d = 0}⊥

= {(d1, d2, d3, d4, d5, 0) | d1, d2, d3, d4, d5 ∈ R}.

Therefore

λ1(r)∇g1(x(r)) + λ4∇g4(x(r)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎠

is a bounded vector,

and

λ2(r)∇g2(x(r)) + λ5∇g5(x(r)) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
−1
0

⎞
⎟⎟⎟⎟⎟⎟⎠

is a bounded vector,

which implies that (0, 0, 0, 0, 0) is a weak regular point. Since

λ(r) =

⎛
⎜⎜⎝

λKd(r)
λKc(r)

λI∗\K(r)
λJ∗(r)

⎞
⎟⎟⎠ ,
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then we have

V (r) =

⎛
⎜⎜⎝

VKd(r) 0 0 0
0 VKc(r) 0 0
0 0 VI∗\K(r) 0
0 0 0 VJ∗(r)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2500000000

1
r8 0 0 0 0 0

0 1
11664

1
r4 0 0 0 0

0 0 r2

(− 1
2−r+ 1

2

√
1+4r2)2

0 0 0

0 0 0 1
2500000000

1
r8 0 0

0 0 0 0 1
11664

1
r4 0

0 0 0 0 0 r2

(− 1
2+r− 1

2

√
1+4r2)2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which gives us

• VKd(r) =

⎛
⎜⎝

1

2500000000

1

r8
0

0
1

11664

1

r4

⎞
⎟⎠,

• VI∗\K(r) =

⎛
⎜⎝

1

2500000000

1

r8
0

0
1

11664

1

r4

⎞
⎟⎠,

• VKc(r) =
r2

(−1
2
− r +

1
2
√

1 + 4r2)2
,

• VJ∗(r) =
r2

(−1
2

+ r − 1
2
√

1 + 4r2)2
·

Moreover,

Qx(r)
T∇g(x(r)) =

⎛
⎜⎜⎝

U11(r) U12(r) U13(r) R1(r)
0 U22(r) U23(r) R2(r)
0 0 U33(r) R3(r)
0 0 0 S(r)

⎞
⎟⎟⎠
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=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1
0 0 0 50000 r4 0 0
0 0 0 0 108 r2 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

where

Qx(r) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 −1 0 0
0 −1 0 0 0 0
0 0 −1 0 0 0
−1 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which gives us

• U11(r) =

⎛
⎝ 1 0

0 1

⎞
⎠,

• U12(r) =
(

0
0

)
,

• U13(r) =

⎛
⎝ −1 0

0 −1

⎞
⎠,

• U33(r) =
(

50000 r4 0
0 108 r2

)
,

• U22(r) = 1 and U23(r) = (0, 0).

We notice that

• lim
r−→0

U33(r)V
1/2

I∗\K(r) = lim
r−→0

(
50000 r4 0

0 108 r2

)(
1

50000r4 0
0 1

108 r2

)
=(

1 0
0 1

)
,

• lim
r−→0

U23(r)V
1/2

I∗\K(r) = lim
r−→0

(0, 0)
(

1
50000r4 0

0 1
108 r2

)
= (0, 0),
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• U13(r)V
1/2

I∗\K(r) = −U11(r)A(r) + B1(r) où B1(r) =

⎛
⎝ 0 0

0 0

⎞
⎠

et A(r) =

⎛
⎝ −1 0

0 −1

⎞
⎠,

which illustrates Lemma 2.9. Also

G(x, r) = QT
x(r)(∇2f(x(r)) +

i=6∑
i=1

λi(r)∇2gi(x(r)))Qx(r)

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
−2
5r

0 0

0 0 0 0
−1
3r

0

0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and we have

(i) lim
r−→0

⎛
⎜⎜⎝

rG11(r) rG12(r) rG13(r) rG14(r)
rG21(r) rG22(r) rG23(r) rG24(r)
rG31(r) rG32(r) rG33(r) rG34(r)
G41(r) G42(r) G43(r) G44(r)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0
−2
5

0 0

0 0 0 0
−1
3

0

0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is bounded,
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(ii) G∗
33 + U∗

33U
∗T
33 =

⎛
⎜⎜⎝

3
5

0

0
2
3

⎞
⎟⎟⎠ is nonsingular,

(iii)

⎛
⎝ G∗

33 + U∗
33U

∗T
33 0

G∗
43 G∗

44

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
5

0 0

0
2
3

0

0 0 2

⎞
⎟⎟⎟⎟⎟⎟⎠

is nonsingular.

Then the weak second order sufficient condition and hypothesis H7 are satisfied.
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