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Abstract. In this paper, which is an extension of [4], we first show
the existence of solutions to a class of Min Sup problems with linked
constraints, which satisfy a certain property. Then, we apply our result
to a class of weak nonlinear bilevel problems. Furthermore, for such a
class of bilevel problems, we give a relationship with appropriate d.c.
problems concerning the existence of solutions.
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1. Introduction

In this paper, we are firstly concerned by the following Min Sup problem with
linked constraints (linked variables)

(S) Min
x∈X

sup
y∈M(x)

F (x, y)

where
F : X × Y → IR and M : X −→−→ Y
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are respectively a real valued function and a multifunction, X is a compact subset
of IRp and Y is a compact convex subset of IRq. For x ∈ X , set

w(x) = Sup
y∈M(x)

F (x, y) and v = Inf
x∈X

w(x).

Definition 1.1. A point x in X is said to be a min sup solution of (S) if w(x) = v.

In the sequel, for simplicity, we will use the term of solution instead of min sup
solution.

This paper is an extension of a recent work appeared in [4], which deals with
Min Sup and weak bilevel problems. First of all, let us give some comments about
some works dealing with Min Sup problems. Mention that the most studies re-
lating to Min Sup problems have been devoted to the separate constraints case
and finite Min Sup problems. Falk in [11], considered a linear max-min problem
with linked constraints, for which under a basic assumption (the feasible region
is bounded) he presented an algorithm. This algorithm is based on the branch
and bound philosophy and gives the solution in a finite number of steps. Further-
more, he showed that there exists a solution which is a vertex point of a linear
polyhedron. However, no computational experience has been given for large prob-
lems. Lignola and Morgan in [12], considered a more general formulation where
the constraint M(x) is replaced by a parameterized constraint M(t, x) (t is the
parameter). In particular, they have given sufficient conditions using the notion
of Γ-limits [8], ensuring the existence of solutions to a class of problems having
the form of (S). Shimizu and Aiyoshi in [20], have given necessary conditions and
computational methods for solutions under linked constraints via the case with
separate constraints. The passage from the separate constraint case to the linked
constraint case is deduced by the use of duality theory of convex programming. In
this paper, we first consider a Min Sup problem (S) with linked constraints. Under
some sufficient conditions and a basic assumption (P), we show that the problem
(S) admits solutions. As an application, we obtain the result given in [2] for a
class of weak nonlinear bilevel problems. Indeed, this class corresponds to the case
where M(x) is a set of solutions to another optimization problem parameterized
by x. This illustrates of course the applicability of the first general study given for
Min Sup problems. Note that such a class of nonlinear bilevel problems presents
a major difficulty in finding sufficient conditions that ensure the existence of solu-
tions (comments and an exhaustive list are given in [9]). Sufficient condition for
the existence of solutions to weak bilevel problems are given in [1–3,16]. Finally,
we give some cases where the property (P) introduced for Min Sup problems is sat-
isfied. As a consequence, the existence of solutions to the previous class of weak
nonlinear bilevel problems can be deduced from the existence of solutions of appro-
priate d.c. problems. This, probably gives other possibilities in the invetigation
of the existence of solutions for weak nonlinear bilevel optimization.

The remainder of the paper is organized as follows. In Section 2, we recall some
definitions and give preliminary results. Then, we establish our main result on
the existence of solutions to the Min Sup problem (S). In Section 3, we apply
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our result to a class of weak nonlinear bilevel problems. In Section 4, we first
present some cases where property (P) is satisfied. As a consequence, we give a
relationship between weak bilevel and d.c. problems. Finally, in Section 5, we give
some concluding remarks and comments.

2. Preliminaries and main results

In this section, we give sufficient conditions that ensure the existence of solutions
to the problem (S). Let

Mn : X −→−→ Y, n ∈ IN
be a sequence of multifunctions from X to Y . In the sequel, the sets X and Y are
respectively endowed with the induced topologies of IRp and IRq.

Definition 2.1. Let (An)n∈IN be sequence of subsets of Y . Then, the sets
Lim sup
n→+∞

An and Lim inf
n→+∞ An are respectively defined as

Lim sup
n→+∞

An =
{
y ∈ Y/ y = lim

k→+∞
ynk

, ynk
∈ Ank

, (nk)

is an infinite subsequence of integers}

Lim inf
n→+∞ An =

{
y ∈ Y/ ∃yn ∈ An, ∀n ∈ IN, and y = lim

k→+∞
yn

}
.

In order to establish our results, we will need the following assumptions.
(2.1) For any (n, x) ∈ IN×X , and any sequence (xk) converging to x in X , we have

Mn(x) ⊂ Lim inf
k→+∞

Mn(xk),

that is the multifunction Mn(.) is lower semicontinuous.
(2.2) The function F is continuous on X × Y .
(2.3) For any x ∈ X , and any sequence (xn) converging to x in X , we have

Lim sup
n→+∞

Mn(xn) ⊂ M(x).

(2.4) For any x ∈ X , the function F (x, .) is concave on Y .
(2.5) For any (n, x) ∈ IN × X , M(x) ⊂ Mn(x).
(2.6) For any n ∈ IN, the multifunction Mn is closed valued.

For n ∈ IN, let us consider the following problem,

(Sn) Min
x∈X

sup
y∈Mn(x)

F (x, y),

and define on X , the function wn by

wn(x) = Sup
y∈Mn(x)

F (x, y).

We begin by the following result on the existence of solutions to the problem (Sn).
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Theorem 2.1. Let assumptions (2.1) and (2.2) be satisfied. Then, for any
n ∈ IN, the problem (Sn) has at least one solution.
Proof. See for example [5,13]. �
Definition 2.2. Let assumptions (2.1) and (2.2) hold. For n ∈ IN, let x̄n be a

solution to the problem (Sn). Let A denote the set of accumulation points of the
sequence (x̄n) (which is not necessarily reduced to a singleton). Let x̄ ∈ A and
(x̄nk

), k ∈ IN, be a subsequence converging to x̄, as k → +∞. Define the sequence

x̂n = x̄nk
for nk ≤ n < nk+1.

Then, we have x̂n → x̄, as n → +∞.
Now, let us define on Y the following functions

φx̄(y) = −F (x̄, y) + χM(x̄)(y) and φn(y) = −F (x̂n, y) + χMn(x̂n)(y),

where for a subset Z of Y , χZ denotes the indicator function of Z, that is
{

χZ(y) = 0 if y ∈ Z
χZ(y) = +∞ if y �∈ Z.

Let (hn)n∈IN be a sequence of functions from Y into IR = IR ∪ {−∞, +∞}. We
recall the following definition (see [6,10]).

Definition 2.3. We say that the sequence (hn)n∈IN variationally converges to
h0, if

(i) for any y in Y , and any sequence (yn)n∈IN converging to y in Y , we have

lim inf
n→+∞ hn(yn) ≥ h0(y);

(ii) for any y in Y , there exists a sequence (yn)n∈IN in Y , such that

lim sup
n→+∞

hn(yn) ≤ h0(y).

In the remainder of this section, and as quoted above in Definition 2.2, x̄ ∈ A is an
accumulation point of the fixed sequence (x̄n), and (x̂n) is the extended sequence
of (x̄n) which converges to x̄.

Proposition 2.1. Let assumptions (2.1)–(2.3) hold. Then, for any y ∈ Y and
(yn)n∈IN be a sequence converging to y in Y , we have

lim inf
n→+∞ φn(yn) ≥ φx̄(y).

Proof. Let y ∈ Y and (yn)n∈IN a sequence converging to y in Y . We need to
consider the following two cases.
(1) If y ∈ M(x̄), then φx̄(y) = −F (x̄, y), and

lim inf
n→+∞ φn(yn) ≥ lim

n→+∞{−F (x̂n, yn)} = −F (x̄, y) = φx̄(y).
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(2) If y �∈ M(x̄), then φx̄(y) = +∞. Furthermore, we have yn �∈ Mn(x̂n), for large
n ∈ IN. Otherwise, there exists an infinite subset N1 of IN, such that yn ∈ Mn(x̂n),
for all n ∈ N1. Then, by using assumption (2.3), we get

y ∈ Lim sup
n→+∞

Mn(x̂n) ⊂ M(x̄),

and the contradiction. Hence, yn �∈ Mn(x̂n), for large n ∈ IN. It follows that
φn(yn) = +∞, for large n ∈ IN, and the result is obvious. �

For x ∈ X , set Fx(.) = F (x, .), and consider the following property which is our
basic assumption in the remainder of this section

(P) Ix =
{
y ∈ Y/ F

′
x(y; z − y) ≤ 0, ∀z ∈ Y

} ∩M(x) �= ∅, ∀x ∈ X

where F
′
x(y; d) denotes the directional derivative of the function Fx(.) at y in the

direction d ∈ IRq \ {0}, that is

F
′
x(y; d) = lim

t↘0+

Fx(y + td) − Fx(y)
t

·

Remark 2.1. The property (P) means that for any x ∈ X , the solution set of
the problem

S(x) Max
y∈Y

F (x, y)

and the constraint set M(x) have a nonempty intersection.

Proposition 2.2. Let assumptions (2.1)–(2.5) hold. If moreover, the property
(P) is satisfied, then for any y ∈ Y , there exists a sequence (yn)n∈IN in Y , such
that

lim sup
n→+∞

φn(yn) ≤ φx̄(y).

Proof. Let y ∈ Y . Then, as above, we distinguish the following two cases.
(1) If y ∈ M(x̄), then according to property (P), for n ∈ IN, there exists

yn ∈ Ix̂n . So, yn ∈ M(x̂n), and since F
′
x̂n

(yn, z − yn) ≤ 0, for all z ∈ Y , it follows
that yn is a solution to the problem

Max
y∈Y

Fx̂n(y).

Furthermore, by using assumption (2.5), we have yn ∈ Mn(x̂n), for all n ∈ IN.
Then,

lim sup
n→+∞

φn(yn) = lim sup
n→+∞

{−F (x̂n, yn)} = lim
n→+∞
n∈N2

{−F (x̂n, yn)},

where N2 is an infinite subset of IN. Let N3 ⊂ N2, such that yn → ŷ, as n → +∞,
n ∈ N3. Assumption (2.3) implies that ŷ ∈ M(x̄). Let us show that ŷ is a solution
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of the problem Maxy∈M(x̄) Fx̄(y). First, let us show that ŷ is a solution of the
problem Maxy∈Y Fx̄(y). Suppose that there exists y0 ∈ Y , such that

F (x̄, ŷ) < F (x̄, y0).

Hence
F (x̂n, yn) < F (x̂n, y0),

for large n ∈ N3. This, contradicts the the optimality of yn to the problem

Max
y∈Y

Fx̂n(y), n ∈ N3.

Therefore, ŷ is a solution of the problem Maxy∈Y Fx̄(y), and since ŷ ∈ M(x̄), it
follows that ŷ is a solution of the problem Maxy∈M(x̄) Fx̄(y). Finally, we get

lim
n→+∞
n∈N2

{−F (x̂n, yn)} = lim
n→+∞
n∈N3

{−F (x̂n, yn)} = −F (x̄, ŷ) ≤ −F (x̄, y) = φx̄(y).

That is
lim sup
n→+∞

φn(yn) ≤ φx̄(y).

(2) If y �∈ M(x̄), then φx̄(y) = +∞, and the result is obvious. �
The following convergence result is an immediate consequence of Propositions 2.1

and 2.2.
Corollary 2.1. Let assumptions (2.1)–(2.5) hold. If moreover, the property (P)
is satisfied, then the sequence (φn)n∈IN, variationally converges to φx̄. �
For n ∈ IN, and x ∈ X , consider the problems

Qn(x) Max
y∈Mn(x)

Fx(y) and Q(x) Max
y∈M(x)

Fx(y)

and denote by ArgmaxQn(x) and ArgmaxQ(x), the sets of solutions to the prob-
lems Qn(x) and Q(x) respectively. Then, we have the following important conver-
gence result.
Corollary 2.2. Let assumptions (2.1)–(2.5) hold. If the property (P) is satisfied,
then

Lim sup
n→+∞

ArgmaxQn(x̂n) ⊂ ArgmaxQ(x̄).

Proof. Since the sequence (φn)n∈IN variationally converges to φx̄, then (see [6,10])

Lim sup
n→+∞

ArgmaxQn(x̂n) ⊂ ArgmaxQ(x̄). �

Set
{
x̄nk

, k ∈ IN
}

=
{
x̂n, n ∈ N ∗

0

}
, where N ∗

0 be an infinite subset of IN, such that
x̂n = x̄n, for all n ∈ N ∗

0 .
Now, we are in a position to give our main result in this section concerning the

existence of solution to the problem (S).
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Theorem 2.2. Let assumptions (2.1)–(2.6) hold. If the property (P) is satisfied,
then the problem (S) has at least one solution.

Proof. We will show that the accumulation point x̄ (which has been chosen arbi-
trary) is a solution to (S). Suppose that there exists x0 ∈ X , such that

w(x0) < w(x̄),

(recall that for x ∈ X , w(x) = Sup
y∈M(x)

F (x, y)). Then,

F (x0, y) < w(x̄), ∀y ∈ M(x0).

For n ∈ N ∗
0 (N ∗

0 is the set introduced above), let ȳn be a solution to the problem

Max
y∈Mn(x̄n)

F (x̄n, y),

(such a point exists by using assumption (2.6), the compactness of Y and the
continuity of the function F (x̄n, .)). That is wn(x̄n) = F (x̄n, ȳn), and ȳn ∈
ArgmaxQn(x̄n). Since Y is compact, there exists an infinite subset N ∗

1 of N ∗
0 ,

such that ȳn → ȳ, n ∈ N ∗
1 . Hence, by Corollary 2.2, we have ȳ ∈ ArgmaxQ(x̄).

That is w(x̄) = F (x̄, ȳ). For n ∈ N ∗
1 , let y0

n be a solution to the problem

Max
y∈Mn(x0)

F (x0, y).

That is wn(x0) = F (x0, y
0
n). By the same arguments as in the above, there exists

an infinite subset N ∗
2 of N ∗

1 , such that y0
n → y0, n ∈ N ∗

2 , and y0 ∈ M(x0) (by
assumption (2.3)). Then,

F (x0, y0) < w(x̄) = F (x̄, ȳ).

Hence
F (x0, y

0
n) < F (x̄n, ȳn), for large n, n ∈ N ∗

2 .

It follows that
wn(x0) < wn(x̄n), for large n, n ∈ N ∗

2 .

This contradicts the optimality of x̄n to the problem (S
n
), for large n, n ∈ N ∗

2 ,
and the proof is complete. �

Let us consider the following simple example where assumptions (2.1)–(2.6) and
the property (P) are satisfied.

Example 2.1. Let X = [1, 2] ⊂ IR, Y = [1, 3] ⊂ IR, and F (x, y) = −(x − 1)y2.
Let M and Mn, n ∈ IN, be the multifunctions defined by

M(x) = [1, x] and Mn(x) =
[
1, x + 1/(n + 1)

]
.
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We easily verify that assumptions (2.1)-(2.6) are satisfied. Let us verify the prop-
erty (P). We have

F
′
x(y; z − y) =

∂F

∂y
(x, y) × (z − y) = −2(x − 1)(z − y)y

{
y ∈ Y/ F

′
x(y; z − y) ≤ 0, ∀z ∈ Y

}
=

{
[1, 3] if x = 1
{1} if x ∈ ]1, 2].

Then, we have Ix =
{

[1, 3] ∩M(1) = {1} if x = 1
{1} ∩M(x) = {1} if x ∈]1, 2].

Thus, property (P) is satisfied.
In the following example, we will see a problem which admits solutions and

belongs to the class of Min Sup problems satisfying assumptions (2.1) to (2.6), but
that does not satisfy the property (P). Therefore, property (P) is not a necessary
condition for the existence of solutions.

Example 2.2. Let X = Y = [1, 2] ⊂ IR, F (x, y) = x(3− y2)+x, and for x ∈ X ,
let M(x) denote the set of solutions to the parameterized problem

P(x) Min
y∈Y

(1 − x)y.

For εn ↘ 0+, let Mn(x) denote the set of εn-approximate solutions to the problem
P(x). Then, it is easy to verify that assumptions (2.2), (2.4), (2.5) and (2.6)
are satisfied. Furthermore, using the results given in [15], we get the following
properties:
(i) for any (n, x) ∈ IN × X , and any sequence (xk) converging to x in X , we have

Mn(x) ⊂ Lim inf
k→+∞

Mn(xk);

(ii) for any x ∈ X , and any sequence (xn) converging to x in X , we have

Lim sup
n→+∞

Mn(xn) ⊂ M(x)

that is assumptions (2.1) and (2.3) are satisfied. On the other hand, we have

M(x) =
{

[1, 2] if x = 1
{2} if x ∈ ]1, 2] and w(x) = sup

y∈M(x)

F (x, y) =
{

3 if x = 1
0 if x ∈]1, 2].

Then, v = infx∈X w(x) = 0, and hence any x ∈ ]1, 2] is a solution of (S). There-
fore, the problem (S) satisfies assumptions (2.1) to (2.6), and admits solutions.
However, we have

{
y ∈ Y/ F

′
x(y; z − y) ≤ 0, ∀z ∈ Y

}
= {1}, for all x ∈ [1, 2].

Then, we have Ix = ∅, for x ∈ ]1, 2]. That is property (P) is not satisfied.
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Remark 2.2. Remark that even though assumptions (2.1), (2.3) and (2.5) are
satisfied in Example 2.2., the multifunction M(.) is not lower semicontinuous at
x = 1. Such a property is known as a very restrective assumption and is rarely
satisfied by the solution set.

Example 2.3. It is important to note that a large class of problems, the so-called
linear max-min problems (or min-max) with a bounded feasible region, always
satisfy assumptions (2.1) to (2.6). In fact, let the following max-min problem
(see [11])

(S) Max
x∈(IR+)p

min
y∈(IR+)q

Ax+By≤b

[〈c, x〉 + 〈d, y〉]

where c ∈ IRp, d ∈ IRq, b ∈ IRr, A ∈ IRr×p, and B ∈ IRr×q. Set

X =
{
x ∈ (IR+)p/ ∃ y ≥ 0, Ax + By ≤ b

}
and

Y =
{
y ∈ (IR+)q/ ∃x ≥ 0, Ax + By ≤ b

}
which are the projections of the feasible regionR =

{
(x, y) ∈ (IR+)p×(IR+)q/ Ax+

By ≤ b
}

onto IRp and IRq respectively. Falk in [11], assumes that R is a compact
set. Hence, both X and Y are compact (as projections of compact sets) and also
convex. On the other hand, the problem (S) can be written as (see Th. 2.1 [11])

(S) Max
x∈X

min
y∈M(x)

[〈c, x〉 + 〈d, y〉]

where

M(x) =
{
y ∈ (IR+)q/ By ≤ b − Ax

}
which is a subset of Y. Define g(x, y) = Ax + By − b, gi(x, y) = Aix + Biy − bi,
where Ai, Bi denote the ith rows of A, B respectively, and bi the ith component
of b. For i ∈ {1, ..., r} and n ∈ IN, set

Mi(x) =
{
y ∈ (IR+)q/ gi(x, y) ≤ 0

}
, Mi,n(x) =

{
y ∈ (IR+)q/ gi(x, y) ≤ 1

n + 1

}
.

Then, we have M(x) =
⋂

i=1,...,r Mi(x). Set Mn(x) =
⋂

i=1,...,r Mi,n(x). It
is easy to see that assumptions (2.2), (2.4), (2.5) and (2.6) are satisfied. For
the verification of assumption (2.1), see for example, Corollary 3.2.3.2 [7]. Let
us verify assumption (2.3). Let x ∈ X , and xn → x in X , as n → +∞. Let y ∈
Lim supn→+∞ Mn(xn). There exists yn → y in Y, as n → +∞, and yn ∈ Mn(xn),
∀n ∈ N , where N is an infinite subset of IN. That is gi(xn, yn) ≤ 1

n+1 , for all i.
Then, for all i, by the continuity of gi, we obtain gi(x, y) ≤ 0. That is y ∈ M(x).
Furthermore, Falk showed that the problem (S) admits solutions in the sense of
Definition 1.1. However, there is no conditions which guarantee property (P).
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3. Application to weak nonlinear bilevel problems

In this section, in order to illustrate the applicability of the previous study
given in Section 2, we consider a class of weak nonlinear bilevel problems for
which sufficient conditions ensuring the existence of solutions have been given
in [2]. Indeed, this result will be deduced by application of our Theorem 2.2 given
in Section 2 for Min Sup problems, in the case where M(x) is a set of solutions to
another optimization problem parameterized by x.

Let us consider a static uncooperative two-player game in which one player has
the leadership (called the leader) and the second one reacts optimally (called the
follower). The leader with an objective function F̃ and a set of strategies X̃ ⊂ IRp,
knows the objective function f̃ and the set of strategies Ỹ ⊂ IRq, of the follower,
but he can not influence his choice. In the pessimistic case, the leader has to
consider the following optimization problem

(S̃) Min
x∈X̃

sup
y∈M̃(x)

F̃ (x, y)

where M̃(x) is the set of solutions to the lower level problem

P̃ (x) Min
y∈Ỹ

f̃(x, y)

and

F̃ , f̃ : X̃ × Ỹ → IR.

As mentioned in the introduction, weak nonlinear bilevel problems present a major
difficulty in finding mild sufficient conditions that ensure the existence of solutions.
In general, such problems present difficulties in their survey in both numerical and
theoretical framework, and therefore they are less considered in the literature.

In the sequel, we assume that X̃ and Ỹ are a compact and a compact convex
subsets of IRp and IRq respectively, and are respectively equipped with the induced
topologies of IRp and IRq.

For ε > 0, we consider the following regularized problem of (S̃) (see [15])

(S̃ε) Min
x∈X̃

sup
y∈M̃ε(x)

F̃ (x, y)

where M̃ε(x) is the set of ε-approximate solutions of P̃ (x). The following assump-
tions will be used ([2])
(3.1) For any (x, y) ∈ X̃ × Ỹ , and any sequence (xn) converging to x in X̃, there
exists a sequence (yn) converging to y in Ỹ , such that

lim sup
n→+∞

f̃(xn, yn) ≤ f̃(x, y).
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(3.2) For any x ∈ X̃, the function f̃(x, .) is convex on Ỹ .

(3.3) The function f̃ is lower semi-continuous on X̃ × Ỹ .
(3.4) The function F̃ is continuous on X̃ × Ỹ .

For εn ↘ 0+, set M̃εn(x) = M̃n(x) and denote (S̃εn) by (S̃n).

Proposition 3.1. Let assumptions (3.1)–(3.3) hold. Then,
(1) for any (n, x) ∈ IN × X̃, and any sequence (xk) converging to x in X̃, we

have

M̃n(x) ⊂ Lim inf
k→+∞

M̃n(xk)

(2) for any x ∈ X̃, and any sequence (xn) converging to x in X̃, we have

(i) Lim supn→+∞ M̃n(xn) ⊂ M̃(x),

(ii) Lim supn→+∞ M̃ε(xn) ⊂ M̃ε(x), ∀ε ≥ 0.

Proof. For 1) and i) of 2) see [15]. The proof of (ii) is easily deduced from the
proof of (i). �
Theorem 3.1. Let assumptions (3.1)–(3.4) hold. Then, for any n ∈ IN, the
problem (S̃n) has at least one solution.

Proof. Apply Theorem 2.1 or see [15]. �
For x ∈ X̃, set F̃x(.) = F̃ (x, .) and f̃x(.) = f̃(x, .). Then, we have the following

result on the existence of solutions to the problem (S̃).

Theorem 3.2. Let assumptions (3.1)–(3.4) hold. If moreover, the following
assumptions are satisfied,
(3.5) For any x ∈ X̃, the function F̃ (x, .) is concave on Ỹ ,
(3.6) For any x ∈ X̃, Ĩx =

{
y ∈ Ỹ / F̃

′
x(y; z − y) ≤ 0, ∀z ∈ Ỹ

}∩ {
y ∈ Ỹ / f̃

′
x(y; z −

y) ≥ 0, ∀z ∈ Ỹ
} �= ∅,

then the problem (S̃) has at least one solution.

Proof. Apply Theorem 2.2 by remarking that assumption (3.6) corresponds to the
property (P). �

Let the following example where all assumptions (3.1) to (3.6) are satisfied.

Example 3.1 [16]. Let X̃ = Ỹ = [0, 1], F̃ (x, y) = 1
2 (1 − x) + xy, f̃(x, y) =

(x− 1)y. We see that all assumptions (3.1) to (3.5) are satisfied. Furthermore, we
have

M̃(x) =
{

[0, 1] if x = 1
{1} if x ∈ [0, 1[

and {
y ∈ Ỹ / F̃

′
x(y; z − y) ≤ 0, ∀z ∈ Ỹ

}
= {1}, ∀x ∈ [0, 1]

Hence for any x ∈ X̃, Ĩx �= ∅. Thus, assumption (3.6) is satisfied.
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Remark 3.1. Set hx = −F̃x. Then, assumption (3.6) means that the convex
problems

Min
y∈Ỹ

f̃x(y) and Min
y∈Ỹ

hx(y)

have a common solution ỹ, which in terms of subdifferential and normal cone, can
be written as

∀x ∈ X̃, 0 ∈ (∂hx(ỹ) + NỸ (ỹ) ∩ ∂f̃x(ỹ) + NỸ (ỹ))

where ∂hx(ỹ) and NỸ (ỹ) denote respectively the subdifferential of hx at ỹ and the
normal cone to Ỹ at ỹ, that is

∂hx(ỹ) =
{
y∗ ∈ IRq/ hx(y) ≥ hx(ỹ) + 〈y∗, y − ỹ〉, ∀ y ∈ IRq

}
and

NỸ (ỹ) =
{
y∗ ∈ IRq/ 〈y∗, z − ỹ〉 ≤ 0, ∀z ∈ Ỹ

}
.

Remark 3.2.
(1) Note that the weak linear bilevel problem considered in [3] which admits solu-
tions under sufficient conditions satisfies assumptions (3.1) to (3.5).
(2) A simple case where assumptions (3.1) to (3.5) and the basic assumption (3.6)
are satisfied (easy to verify) is that when the objective functions F̃ and f̃ are in
the form

F̃ (x, y) = h(x) − k(y) f̃(x, y) = g(x) + k(y)
where k : IRq → IR, is a convex function, and h, g : IRp → IR, are continuous
functions.
(3) It is well known that weak bilevel problems admit solutions under the lower
semi-continuity of the follower’s optimal solution set. In fact, it is not difficult to
see that the marginal function w̃(x) = Supy∈M̃(x) F̃ (x, y), is lower semi-continuous
on X̃ , when F̃ and M̃(.) are lower semi-continuous on X̃ × Ỹ and X̃ respectively,
and hence when X̃ is compact, we get the existence of solutions. However, such
property is strong and difficult to obtain under mild assumptions. So, by the
use of the results given in Section 2, the property (P) gives another alternative
for the existence of solutions, and obviously any relation between (P) and lower
semi-continuity of M̃(.), if it exists, must use some properties verified by F̃ , f̃
and the follower’s constraint set simultaneously. But in general, there is no trivial
implications between them (except perhaps under additional assumptions), as we
can see in the following two examples.

Example 3.2. Let X̃ = [2, 3], Ỹ = [−5, 5], and f̃ : X̃ × Ỹ → IR, defined by

f(x, y) =
{

0 if y2 − x2 ≤ 0
y2 − x2 if y2 − x2 > 0.

Then, M̃(x) = [−x, x] =
{
y ∈ [−5, 5]/ − x ≤ y ≤ x

}
, and hence M̃(.) is lower

semi-continuous on X̃. Let F̃ : X̃× Ỹ → IR, defined by F̃ (x, y) = (x−3)2y. Then,



EXISTENCE OF SOLUTIONS TO WEAK BILEVEL PROBLEMS 99

F
′
x(y; z − y) = (x − 3)2(z − y), and

{
y ∈ Ỹ / F̃

′
x(y; z − y) ≤ 0, ∀z ∈ Ỹ

}
=

{
[−5, 5] if x = 3
{5} if x ∈ [2, 3[.

It Follows that for any x ∈ [2, 3[, Ĩx = {5} ∩ [−x, x] = ∅. That is property (P) is
not satisfied.

Example 3.3. Let X̃ = Ỹ = [1, 2]. Let M̃(x) denote the solution set of the lower
level problem P(x) considered in Example 2.2. We have

M̃(x) =
{

[1, 2] if x = 1
{2} if x ∈]1, 2].

We easily verify that M̃(.) is not lower semi-continuous at x = 1. Let F̃ : X̃ ×
Ỹ → IR, be the leader’s objective function defined by F̃ (x, y) = (x − 1)y. Then,
F

′
x(y; z − y) = (x − 1)(z − y), and

{
y ∈ Ỹ / F̃

′
x(y; z − y) ≤ 0, ∀z ∈ Ỹ

}
=

{
[1, 2] if x = 1
{2} ifx ∈]1, 2].

Then

Ĩx =
{

[1, 2] if x = 1
{2} if x ∈]1, 2]

Hence property (P) is satisfied.
Now, let us go back to Section 2. When M(x) represents a set of solutions

to another optimization problem parameterized by x, as a consequence of the
satisfaction of the property (P), we obtain a relationship between weak bilevel
and d.c. problems, as we will see in the following section.

4. Existence of solutions to weak bilevel problems VIA

d.c. problems

In this section, we will present some cases where the property (P) is satis-
fied. This allows us to deduce the existence of solutions to weak nonlinear bilevel
problems from the existence of solutions to appropriate d.c. problems.

4.1. Sufficient conditions for satisfying (P)

With the notations and the data of Section 2, let f : X×Y → IR, be a function,
and for x ∈ X , let M(x) denote the set of solutions to the following parameterized
problem

P(x) Min
y∈Y

f(x, y).

For x ∈ X , set f(x, .) = fx(.), F (x, .) = Fx(.) and F̂ = −F . In the remainder
of this section, we assume that for any x ∈ X , fx(.) and Fx(.) are respectively a
convex function and a concave function on the compact convex set Y .
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Then, we have the following proposition concerning the satisfaction of the prop-
erty (P).

Proposition 4.1. Assume that the following assumption is satisfied
(4.1) for any x ∈ X, there exists ȳ ∈ Y , such that

0 ∈ ∂fx(ȳ) ∩ ∂F̂x(ȳ).
Then, the property (P) is satisfied.
Proof. The proof is obvious, so it is omitted. �
Remark 4.1. If for any x ∈ X , the functions fx(.) and Fx(.) are differentiable
on IRq, then assumption (4.1) becomes:
(4.1)∗ for any x ∈ X , there exists ȳ ∈ Y , such that ∇fx(ȳ) = ∇F̂x(ȳ) = 0
that is ȳ = (ȳ1, ..., ȳq) is a solution of a system of 2q equations.

4.2. Existence of solutions to (S̃) VIA d.c. problems

For x ∈ X , consider the following parameterized d.c. problem

DCP(x) : Min
y∈IRq

(F̂x − fx)(y).

Proposition 4.2. Assume that the following assumption is satisfied
(4.2) for any x ∈ X, there exists ȳ ∈ Y such that
(i) ȳ is a local solution to DCP(x)
(ii) 0 ∈ ∂fx(ȳ).

Then, the property (P) is satisfied.
Proof. Let x ∈ X . Since ȳ is a local solution of the d.c. problem DCP(x), it
follows that ∂fx(ȳ) ⊂ ∂F̂x(ȳ) (see [17]). Hence, by ii) we have 0 ∈ ∂fx(ȳ)∩∂F̂x(ȳ),
and the result follows from Proposition 4.1. �

Then, we have the following results which relate weak bilevel and d.c. problems
concerning the existence of solutions.

Let (S̃) be the weak nonlinear bilevel problem considered in Section 3 with the
corresponding objective functions f̃ and F̃ (recall that X̃ and Ỹ are respectively
a compact and a convex compact sets).

Corollary 4.1. Let assumptions (3.1)–(3.5) hold. If moreover, assumption (4.2)
is satisfied by the functions F̃ and f̃ , then the problem (S̃) has at least one solution.

Proof. Proposition 4.2 implies that the property (P) is satisfied. Then, the exis-
tence of solutions is deduced by application of Theorem 3.2. �

Corollary 4.2. Let assumptions (3.1)–(3.5) hold. If moreover, the following
assumption is satisfied:
(4.3) For any x ∈ X̃, there exists ȳ ∈ Ỹ , verifying
(i) there exists a neighbourhood Ux(ȳ) of ȳ in IRq, such that

∂f̃x(y) ∩ ∂(−F̃x)(ȳ) �= ∅ ∀ y ∈ Ux(ȳ)
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(ii) 0 ∈ ∂f̃x(ȳ)
then the problem (S̃) has at least one solution.

Proof. In fact, from Corollary 1, [18], ȳ is a local solution of (−F̃x) − f̃x on IRq,
and hence ∂f̃x(ȳ) ⊂ ∂(−F̃x)(ȳ). Since 0 ∈ ∂f̃x(ȳ) it follows that 0 ∈ ∂f̃x(ȳ) ∩
∂(−F̃x)(ȳ), which completes the proof. �

5. Concluding remarks and comments

In this paper, we have shown that a class of Min Sup problems with linked
constraints which satisfy the property (P) admit solutions. The obtained result
can be applied to the class of weak nonlinear bilevel problems considered in Sec-
tion 3 (i.e. the class of problems which satisfy assumptions (3.1)–(3.6)). Hence,
the property (P) gives another alternative for the existence of solutions to weak
nonlinear bilevel problems. Furthermore, for such a class, this property (which
in this case corresponds to assumption (3.6)) allows us to deduce the existence of
solutions from the existence of solutions of appropriate d.c. problems. Therefore,
such a property creates the first link in the literature between the classes of weak
nonliear bilevel and d.c. problems. However, it is worthwhile to give some compar-
ison about Section 3 with other works and also some comments. In [16], Lucchetti
et al. have given some examples for which the considered weak bilevel problems do
not have solutions. In the given Examples 2.1, 4.2 and 4.3, the considered prob-
lems do not belong to our class of problems considered in Section 3, because the
leader’s objective function which they denoted by f do not satisfy the condition:
for any x ∈ X , the function f(x, .) is concave. However, in Example 4.1, which
is the Example 3.1 considered in this paper, as we have seen all assumptions are
satisfied.

In [14], Loridan and Morgan have given some results for approximate solu-
tions of a weak bilevel problem (S) via a theoretical approximation scheme. The
approximate problems (Sn) correspond to the case where the leader’s objective
function f1, and the follower’s objective function f2 are respectively replaced by
f1,n and f2,n. The main result that they obtain concerns only the ε-approximate
solutions of (S). More precisely, for ε > 0, let M1(ε) and M1,n(ε) denote the sets of
ε-approximate solutions of (S) and (Sn) respectively. Under sufficient conditions,
the authors showed that any accumulation point of a sequence of ε-approximate
solutions of (Sn) is an ε-approximate solution of (S), that is

Lim sup
n→+∞

M1,n(ε) ⊂ M1(ε).

An interesting question is: what can be said when ε → 0+?
The theoretical approximation scheme that we have presented in Section 3,

differs from the one given in [14], in the fact that it is generated when we substitute
the set of solutions M(x) (for an announced strategy x by the leader) by the set of
εn-approximate solutions of the follower (εn ↘ 0+). Furthermore, the main result
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that we have given under sufficient conditions concerns directly the existence of
solutions to the problem (S).

Acknowledgements. The authtors would like to thank an anonymous referee for his precise
remarks and valuable suggestions.
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