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Abstract. We present here a pricing model which is an extension of
the cooperative game concept and which includes a notion of elastic
demand. We present some existence results as well as an algorithm,
and we conclude by discussing a specific problem related to network
pricing.
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1. Introduction

Pricing problems (see [2–4, 8–10, 17, 26, 32]) are becoming an important topic
in operations research, since deregulation processes turn pricing into a crucial
issue for transport and telecommunication companies. Until recently, the gap
between theoretical models derived from game theory (cooperative games [4, 8,
10, 26, 31], non-cooperative games [27, 29]), and practical applications, was really
huge, essentially due to the difficulties raised by cost and demand measurement.
But now, more and more powerful integrated management software turn the idea
of applying game theory to practical pricing into a more realistic prospect.

Theoretical pricing models may roughly be classified according to the purpose
of the pricing decision process:

• some models consider pricing as a cost imputation process or a conges-
tion regulation tool (see [17]), and take competition into account only in
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an implicit way (oligopoly models, cooperative models, Aumann-Shapley
pricing). In the specific case of networking (with applications to the mon-
itoring of telecommunication or transportation systems), this cost impu-
tation process may be driven by:

– economic considerations: an operator is trying to stabilize its market
share. Then, related models most often derive from the cooperative
game framework, and are static aggregated models, which involve
neither time nor uncertainty (see [18, 19, 28]);

– technical considerations: pricing becomes a tool for minimizing con-
gestion and increasing reliability. Related models often see users as
players who simultaneously take routing decisions while trying to min-
imize some generalized cost. They usually are stochastic or dynamic
models, which lead to the use of optimal control or multilevel pro-
gramming techniques: see [1, 6, 7, 11, 15, 17, 21, 24];

• other models see pricing as the main parameter of any equilibrium be-
tween demand and production (Ramsay-Boiteux models, Nash equilibria,
value theory, non-cooperative game models, see [20, 29]). Those models
are driven by the search for economic competitiveness. Some of them
handle the existence or various competitors (see [14, 20] in the general
case, and [2, 3, 9, 27] in the specific case of networking). Others express
competition in an implicit way, through the expression of user’s prefer-
ence functions, and consider pricing as a way of adjusting production with
demand (see [25]).

The reader which is interested in getting a general overview on the relation
between game theory and network pricing may read the books and the surveys of
Altman et al. [2], Cao et al. [8], Courcoubetis and Weber [9], Curien [10]. Still, one
must be conscious that, in spite of the above mentioned technological advances,
most models which aim at helping operators in taking strategic economic decisions,
remain rather prospective.

We first propose here a general framework which aims at unifying both previ-
ously described points of view on pricing. Pricing is understood here according to
the classical economic point of view, which means as a tool dedicated to market
share segmentation. We mix the cooperative game framework, which focuses on
market share stability, with the production/demand equilibrium based models, by
introducing the price elasticity notion into the cooperative game framework. Next
we turn to the specific case of network pricing, and we study the way it may be
cast into our general framework. While pricing remains here related to economic
considerations, we also take into account the fact that user’s demand in relation to
a transportation or a telecommunication network is elastic to various QoS (qual-
ity of service) indicators, (mean delays, expected transportation times, ...), and
propose models which may yield several equilibria with distinct related activity
levels.
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2. A mixed model for pricing with price elastic demands

Notation. Let X be a set. We denote by P(x) the set of all the subsets of X .
We denote by 1 the X indexed vector whose all coordinates are equal to 1. If z is a
X indexed vector and if A is a subset of X , then we denote by zA the projection
of z on A, that means the X indexed vector which is null for any index x in X −A
and which coincides with z for any x in A. We denote by zA the restriction of z
on A, which is the A indexed vector which coincides with z on A. We denote by
R the set of the real numbers.

2.1. Recall: Cooperative games

A cooperative game J = (X, V ) is defined by a set X and by a cost function V
from P (X) to R such that:

• V (∅) = 0;
• V is increasing: if A ⊂ B then V (A) ≤ V (B).

For such a game J , the set P (X) is called the coalition set.
J is said to be sub-additive if, for any A, B ∈ P (X), we have V (A ∪ B) ≤

V (A) + V (B).
The core of J is the set CO(J) of all the price vectors p = (px, x ∈ X) such

that:
• ∑

x∈X px = V (X);
• For any A ∈ P (X),

∑
x∈A px ≤ V (A).

This set may be empty. In the case of a pricing problem, the core concept reflects
a notion of stability.

Example: the set X is a customer set. Let us suppose that a telecommu-
nication operator O1 is settling an infrastructure I, which is likely to be used by a
customer set X . Then a coalition A may be viewed as a market share, and the cost
value V (A) is the cost of an infrastructure IA, endowed with the same technical
characteristics as I, which would be exclusively dedicated to the members of A
by a competitor O2 of O1. The eventual non-vacuity of the core will allow O1 to
protect itself from losing such a market share.

Remark 1. The core concept does not take into account competitors in an
explicit way. In order to clearly make appear the various actors of a given market,
one needs to introduce non-cooperative game models [27].

2.2. Recall: RAMSAY-BOITEUX model for pricing

This model takes into account the fact that demands are price elastic. It consid-
ers an operator which is able to put on the market a set I of goods and services. The
production cost of a production vector d = (di, i ∈ I) is a quantity C(d) and the
demand induced by a price vector p = (pi, i ∈ I) is a function D(p) = (Di(p), i ∈ I)
of p. Then the RAMSAY-BOITEUX pricing process computes the prices as an
inverse function of the Di functions.
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2.3. A mixed model: cooperative games with price elastic demands

The price dependency of the demands, which is present in the RAMSAY-
BOITEUX model as well as in the non-cooperative game models, needs to be
taken into account as soon as strategic decision related to market segmentation is
at stake. Practically, trouble comes from the fact that modelling price elasticity
is very difficult. Still, more and more powerful computing tools tend to make it
easier. In order to better explain our approach, let us come back to our previous
example.

Example: X is a customer set. Let us consider the operator O1 of our
previous example, and let us suppose that X is a set of origin/destination pairs
asking for connections. Then any connection involving such a pair x will be affected
with some price px. This price will induce a demand level dx, which will be a
fraction of all the potential connections related to x. This demand will depend on
the whole vector p = (py, y ∈ X), and satisfying the demand vector d = (dy, y ∈ X)
will in turn induce a cost C(d) for O1. Then O1 will have to fix p in such a way
that financial equilibrium is ensured and that no operator O2, working with a
similar technology, may propose, while limiting itself to some well-choosen subset
A of the customer set X , a cheaper service.

This leads us to introduce a general model of Cooperative Game with Elastic
Demands, which tries to unify both previous models. An instance of such a coop-
erative game with elastic demands will be defined by a 3-tuple G = (X, C, D) in
such a way that X is a finite set (customers or services) and that:

• First Continuous Monotonicity Assumption: C is a continuous increasing
cost function such that for any production vector d = (dx, x ∈ X) ≥ 0,
the induced cost C(d) satisfies: C(0) = 0; (E1)

• Second Continuous Monotonicity Assumption: the demand function which,
to any vector price p, makes correspond a demand vector D(p) = (D(p)x,
x ∈ X) ≥ 0, is such that for any x ∈ X , the component function Dx is con-
tinuous and decreasing. (E2)

Then we shall say that a pair p = (px, x ∈ X) ≥ 0, d = (dx, x ∈ X) ≥ 0, is in the
Core of G iff:

• d = D(p); (Price versus Demand Adequation Constraint);
• p.d = C(d); (Financial Global Equilibrium Constraint); (E3)
• there does not exist (Stability Constraint) a subset A of X, a price vector

p′ and a demand vector d′ such that: (E4)
– p′X−A = pX−A; p′A < pA;
– d′X−A = 0; d′A ≥ dA;
– C(d′) = p′A.d′A;
– D(p′)A = d′A.

Remark 2. The dx quantities must be interpreted here as fractional market
shares. Due to this, the above model is a non discrete one, and null prices are
eventually allowed. Also, in the case of fixed (non elastic) demands, the above
model contains the usual cooperative game model.
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Remark 3. In practical applications, properly modelling the functions C and D
will be a very hard challenge.

3. An existence result related to the mixed model

What we are going to state here is a result which will provide us with a necessary
and sufficient condition for the non-vacuity of the core of a regular game. So we
consider some cooperative game with elastic demands G = (X, C, D).

The demand function D is said to be strongly regular if it is strictly positive
and if the scalar product p · D(p) is a strictly increasing function of p. The game
G is said to be strongly regular if the function D is strongly regular.

We say that this demand function D is simple if for every x ∈ X, Dx(p) only
depends on px.

We say that the game G = (X, C, D) is simply regular if the demand function D
is simple and if there exists a X-indexed positive price vector α = (αx, x ∈ X) > 0
such that:

• the function which, to any price vector p, makes correspond the product
p ·D(p), is a strictly increasing function of p, on the domain π(α) defined
by:
π(α) = {p = (px, x ∈ X) such that for any x ∈ X, 0 ≤ px ≤ αx}.

• for any x ∈ X, α{x} · D(α{x}) ≥ C(D(α){x}).
We notice that if the demand function D is both strongly regular and simple, then
the game is simply regular.

An example: Let us suppose that, for any x, the function which, to a price
vector p, makes correspond the demand Dx(p) is piecewise linear and may be
writen:

Dx(p) = Dx · (2Ax − px) if px ≤ 2.Ax, and Dx(p) = 0 else, where Ax is a
constant coefficient.

Let us also suppose that C(d) is given by the formula: C(d) = (
∑

x∈X dx)1/2.
Then we see that the induced game is simply regular if for any x in X , (Dx)1/2 ·

(Ax)3/2 ≤ 1.
In order to enable us to state our main result, we are first going to prove the

two following lemmas:

Lemma 3.1. Let C be a cost function which satisfies the First Continuous Mono-
tonicity Assumption (E1) and let D be a demand function which satisfies the Sec-
ond Continuous Monotonicity Assumption (E2). Then any element which is in
the core of the game G = (X , C, D) is also a solution of the following program:

Core(G): {Compute p = (px, x ∈ X) ≥ 0, d = (dx, x ∈ X) ≥ 0, such that:
• for any subset A of X,

∑
x∈A px.dx ≤ C(dA);

• p.d = C(d);
• d = D(p)}.

Proof. Let us check that if a pair (p, d) is in the core of the game G = (X , C, D),
then it satisfies the constraints of the program Core(G). We only have to prove
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that if A is some subset of X , then:
∑

x∈A px.dx ≤ C(dA). Let us suppose that
the converse is true and let us consider A ⊂ X such that:

∑
x∈A px.dx > C(dA).

Since C(dA) ≥ 0 and since the function C is monotonic, we may suppose, without
any loss of generality, that px > 0 for any x in X . So we may consider, for any
number τ ≥ 0, the price vector pτ defined by pτ

X−A = pX−A and pτ
A = τ.pA. Then

there exists τ∗ in the [0, 1] interval such that pτ∗
A . D(pτ∗

)A = C(D(pτ∗
)A). It be-

comes sufficient to set: p = pτ∗
, dX−A = 0 and dA = D(pτ∗

)A, in order to get the
(E4) relationships, and to deduce that the pair (p, d) cannot be in the core of G. �

Lemma 3.2. Let D some strongly regular demand function. Then the core of the
cooperative game with elastic demands G = (X, C, D) is exactly the solution set
related to the constraints of Core(G).

Proof. Lemma 3.1 tells us that any element of the core of G is also a solution of the
program Core(G). Conversely, let (p, d) a solution of Core(G). Let us suppose that
there exists A ⊂ X and a price vector p such that: pX−A = pX−A, pA < pA and
C(D(p)A) = pA · D(p)A. We have (since D is decreasing), D(p)A ≥ D(p)A,
and also (since C is increasing) C(D(p)A) ≥ C(D(p)A). We also have (since
(p, d) ∈ Core(G)):

∑
x∈A px · dx ≤ C(D(p)A). Then the strict monotonic-

ity of the function which, to any price vector q, makes correspond the scalar
product q · D(q), combined with the monotonicity of D, implies the inequality
pA · D(p)A < pA · D(p)A , which induces a contradiction. �

We are now able to state the main result of this section. Its intuitive meaning
is that if the cost function C induces some kind of scale effects, i.e, if its related
marginal costs decrease in an adequate way, then the cooperative game with elastic
demands G = (X, C, D) has a non-empty core, whatever be the demand function
D, provided that this function makes the game G to be strongly or simply regular.
Formally, we get a general Existence theorem 3.3.

Theorem 3.3. Given a finite, non empty set X and a cost function C which
satisfies the First Continuous Monotonicity Assumption (E1). We suppose that
there exists some number λ ≥ 0 such that for any vector d ≥ 0, C(d) ≤ λ · N(d),
where N denotes the euclidian norm. Then the two statements (1) and (2) below
are equivalent:

(1) for any demand function D which satisfies the Second Continuous Mono-
tonicity Assumption (E2), and which is such that the game G = (X, C, D)
is strongly or simply regular, the core of the game G = (X, C, D) is not
empty;

(2) for any vector µ = (µA, A ∈ P (X)) ≥ 0, which is balanced, i.e., such that,
for any x ∈ X, we have

∑
A :x∈A µA = 1, and for any vector d = (dx, x ∈

X) ≥ 0, we have: C(d) ≤ ∑
A ∈P (X) µAcdotC(dA). (E5)

Remark 4. The hypothesis involving the quotient C(d)
N(d) comes from the usual

degressivity of the marginal production costs. But it implies that no fixed initial-
ization costs are taken into account.
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Proof. Let us first associate with G and with any fixed demand vector d,
a cooperative game J(G, d) = (X, VG,d), by setting: for any subset A of X ,
VG,d(A) = C(dA). Let us also recall the Bondareva-Shapley Theorem (see [5]):
the core of a cooperative game (X,V) is non-empty if and only if for any balanced
vector µ = (µA, A ∈ P (X)) ≥ 0, we have: V (X) ≤ ∑

A ∈P (X) µA · V (A).
Then, let us prove the implication (1) ⇒ (2).
In order to do it, let us suppose that (2) is false. Then there exists some demand

vector d = (dx, x ∈ X) ≥ 0 and some balanced vector µ = (µA, A ∈ P (X)) ≥ 0,
such that (E5) is not satisfied. Let Dx, x ∈ X be the constant demand functions
with value equal to dx. They are both simple and strongly regular (since d is
strictly positive) and they satisfy (E2). If a pair (p∗, d∗) is in the core of the
cooperative game with elastic demands G, then 3.1 tells us that the price vector
q∗ which is defined, for any x in X , by: q∗x = p∗x.dx, must be in the core of the
cooperative game J(G, d). But the Bondareva-Shapley Theorem tells us that this
core must be empty if (E5) is not satisfied, which means that the pair (p∗, d∗)
cannot exist.

Let us now prove the converse implication (2) ⇒ (1).
We proceed in two steps.
First step: we consider only the case when the game G = (X, C, D) is strongly

regular. Let us first recall that a convex, compact, and upper semi-continuous
point-to-set mapping from Rn to Rm is a function Γ which to any x in Rn makes
correspond some convex and compact subset Γ(x) ⊂ Rm in such a way that, for
any open subset U ⊂ Rm, Γ+(U) = x ∈ Rn \ Γ(x) ⊂ U is an open subset of Rn.
Kakutani Theorem, [30], says that if Λ is some convex compact subset of Rn, and
if Γ is some convex, compact, and upper semi-continuous point-to-set mapping
from Λ into itself, then there exists x (a fixed point) in Λ such that x ∈ Γ(x).

For any unit price vector p ≥ 0 (Bondareva Theorem [5]), the core of the
cooperative game J(G, D(p)) is non-empty as soon as side (2) of Theorem 3.3 is
true. In such a case, this core subset is a compact and convex subset of RCard(X).
We may define a convex, compact and upper semi-continuous point-to-set mapping
K by setting, for any price vector p = (px, x ∈ X) ≥ 0 : K(p) = core of the
cooperative game J(G, D(p)). Through composition, and taking into account
the fact that the function D is strictly positive (since G is strongly regular), we
see that the point-to-set mapping K∗ which is defined, for any unit price vector
p = (px, x ∈ X) ≥ 0, by: K∗(p) = {u = (ux, x ∈ X) \ ux may be writen
ux = qx

dx
with dx = D(p)x and qx ∈ K(p)}, is also convex, compact and upper semi-

continuous from RCard(X) into itself. Moreover, we also supposed the existence
of a number λ ≥ 0 such that for any demand vector d ≥ 0, C(d) ≤ λ · N(d), N
being the euclidian norm. It comes that, if p is some unit price vector, if q is in
K(p) and if x is in X , then the inequality qx ≤ C(d{x}) = C(D(p){x}) also yields
qx

dx
≤ λ. This means that if u is in K∗(p), then ux ≤ λ. We deduce that if Λ is

the set {p = (px, x ∈ X) ≥ 0 \ Supx∈Xpx ≤ λ}, then K∗ is a convex, compact
and upper semi-continuous point-to-set mapping from Λ into itself. It follows that
there exists p∗ ∈ Λ which is a fixed point for K∗. So we set d∗ = D(p∗), and we
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check that the vector q∗ which is defined, for any x ∈ X , by: q∗x = p∗x · d∗x, is in
the core of the cooperative game J(G, d∗), and that we have 1 · q∗ = C(d∗) and:
∀A ⊂ X,

∑
x∈A p∗x · d∗x ≤ C(d∗A). Thus p∗ is a solution of the constraint set

Core(G). We conclude by using the fact that the game G(X, C, D) is strongly
regular and by applying Lemma 3.2.

Second step: we consider now the case when the game G = (X, C, D) is simply
regular. So, let us introduce a X indexed positive price vector α = (αx, x ∈ X) > 0
such that:

• p · D(p) is p strictly increasing, on the domain Π(α) = {p = (px, x ∈
X)∀A \ x ∈ X, 0 ≤ px ≤ αx};

• for any x ∈ X, α{x} · D(α{x}) ≥ C(D(α{x})).

We may find, through the use of simple topology tricks, a demand function D∗

such that:

• D∗ is both simple and strongly regular;
• D∗ coincides with D on the domain Π(α).

Because of the first step, there exists some price vector β which is in the core of the
game G∗ = (X, C, D∗). This vector β is a solution of the constraint set Core(G*).
Let us set δ = D∗(β), and let us suppose that, for some x ∈ X , we have βx > αx.
Since, for any subset A of X , we have:

∑
x∈A βx · δx ≤ C(δA) , it also comes

that if A = {x}, then: α{x} · D(α{x}) = α{x} · D∗(α{x}) < β{x} · D∗(β{x}) =
βx · δx ≤ C(δ{x}) ≤ C(D(α{x}) ≤ α{x} · D(α{x}), which also means a contradic-
tion. Therefore, for any x ∈ X , we have βx ≤ αx. But then, we only have to apply
the definitions to check that β also belongs to the core of the game G = (X, C, D).
We conclude. �

Remark 5 (about continuity and upper semi-continuity). As a matter of fact,
assuming that both the cost function C and the demand function D are upper
semi-continuous, is sufficient in order to get that the point-to-set mapping K∗ is
upper semi-continuous, and thus to state Theorem 3.3. Still, one should be aware
that, even when the function C and D are continuous, the above point-to-set
mapping K may not be continuous. Thus upper semi-continuity is necessary in
order to get a correct proof of Theorem 3.3.

4. The case of a network design game

We are now going to adapt the above model to the case of a specific network
design problem, according to which demands depends not only on prices but
also on the quality of service (QoS) of the routing process. So we consider here a
strongly connected communication or transportation network H = (Z, E), where
Z is a set of nodes and E is a set of arcs, as well as a specific arc set U ⊂ E, which
is likely to support a specific high QoS (speed) transportation mobile infrastructure
(for instance a shuttle fleet) F . We suppose that any arc e in E is endowed with
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a financial cost ce and with a routing or quality (QoS) cost te, in such a way that
this cost te is significatively smaller if e ∈ U than if e /∈ U .

The customer set X is defined here by a family of origin/destination pairs of
vertices (ox, sx), x ∈ X . The demand dx of any user group x in X in relation to the
infrastructure F may involve the transportation of passengers, goods, luggages...
It is supposed to depend on both the unit price px which is charged to the user
group x for the access to F , and on the routing QoS (Quality of Service) of the
induced connection.

QoS and Financial Reference Values: for every x ∈ X , we denote by Topx

the length of a t shortest path Γx from ox to dx, (computed for the QoS costs
te, e ∈ E), and we denote by Qrefx the length of a c shortest circuit (computed for
the financial costs ce, e ∈ E), which contains the shortest path Γx. We respectively
call Topx and Qrefx the QoS and Financial Reference Values associated with the
customer x ∈ X .

Infrastructure operator and customer decisions: let us suppose that coefficients
te, e ∈ E, are time coefficients. Then, taking an infrastructure decision consists,
for a given operator who manages a shuttle fleet, in determining routes and trafic
volumes. This decision might be summarized as some infrastructure flow F , with
support on the arc set U . Designing and pricing F will induce, for any x ∈ X ,
some running time (QoS level) Tx, and, consequently, some demand level dx as
well as some routing decision which might be summarized by some flow f(x). So,
infrastructure and pricing decisions should be simultaneously taken, while
meeting the induced demands and ensuring a financial equilibrium. But, if we
suppose that demand levels dx and QoS levels Tx, x ∈ X , are already known, the
operator only must run its fleet under the smallest possible costs, while ensuring,
for any user x ∈ X , to go from origin ox to destination sx in no more than
Tx time units. In such a case, this operator should solve the following program
NETWORK(d, T ):

Linear program NETWORK(d, T ): {Find a flow F ≥ 0 and a multiflow
f = f(x), x ∈ X , both defined on H , such that :

• the flow F represents the mobile infrastructure decision of the operator
(the mean trafic of the shuttles), and only involves arcs of U : for any
e /∈ U, Fe = 0;

• every flow f(x) represents the routing of the demand (passengers, goods,
luggages...) dx from ox to sx , and is submitted to the following QoS
constraint: dx · Tx ≥ t · f(x);

• F and f are tied by a capacity constraint on the arcs of U : for any
e ∈ U, Fe ≥ ∑

x ∈ Xf(x)e ; (Comment: this constraint is an inequality,
since the “shuttle” of F may not be fully loaded). and which minimize the
quantity c · F }.

We denote by W (d, T ) the optimal value of this program and we call it the cost
induced by the pair (d, T ).

The Network Design Multicriterion Game MG-NET.
Since infrastructure and price decisions should be simultaneously taken, we are
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led to define the Network Design Multicriterion Game MG-NET = (H, X, D =
(Dx, x ∈ X)), by considering that the access demands dx, x ∈ X , depend on both
the unit access prices px, x ∈ X , and on the routing QoS costs Tx = (t.f(x))

dx
, x ∈ X ,

in such a way that, for any x ∈ X, dx may be written dx = Dx(px, Tx), where Dx

is a continuous and decreasing positive or null function from 
2 to 
.
Our model of Core of a Cooperative Game with Elastic Demands may be ex-

tended by telling that a 3-uple p = (px, x ∈ X) ≥ 0, T = (Tx, x ∈ X) ≥ 0, d =
(dx, x ∈ X) ≥ 0, is in the Core of the Network Design Multicriterion Game MG-
NET defined by the program NETWORK(d, T ) and by the demand functions
(Dx, x ∈ X), iff:

• d = D(p, T );
• there exists an optimal solution (F, f) of the NETWORK(d,T) program

which is such that : c · F = p · d;
• there does not exist A ⊂ X and any 3-uple (p, T, d) (price, routing cost,

demand) such that:
– (p, T )A < (p, T )A; dA ≥ dA;
– pX−A = dX−A = 0 ; TX−A = 0;
– dA = D(p, T )A;
– W (d, T ) = optimal value of the program NETWORK(d, T ) = d · p.

One interprets this model by refering to our shuttle operator: if he prices the access
to his fleet according to an element of the core of the game MG-NET, then no
other operator operating under similar costs and technologies, can identify some
market share inside the customer set X and make him a better offer.
Remark 6. Defining a game while using a cost function associated with some
linear program, is characteristic of cooperative game modelling [18,19,31]. Innova-
tion comes here from the fact that we take into account price/QoS elastic demands
and (economical costs)/(QoS level) tradeoff configurations.

Generalized Costs and the Regularity property.
For any value k ≥ 0, we set: Qk,x(px, Tx) = (px + k.(Tx − Topx)) · Dx(px, Tx) =
generalized cost induced by the generalized cost parameter k and by the routing
of the demand Dx(px, Tx) under price/QoS pair (px, Tx). Doing this leads us to
define, for any demand vector d and any value k, the following program NET(d, k):

NET(d, k): {Find a flow F ≥ 0 and a multiflow f = f(x), x ∈ X , both defined
on H , such that:

• every flow f(x) represents the routing of the demand dx from ox to sx;
• for any e in U , Fe ≥ ∑

x∈X f(x)e;
• for any e /∈ U, Fe = 0;

and which minimizes the quantity c · F + k · t · (∑x∈X f(x))}.
We set V (d, k) = optimal value of the program NET(d, k). For any coalition
A ⊂ X , we set V (d, k)A = optimal value of the program NET (d, k)A which is
the restriction of NET(d, k) to the variables and constraints which are related to
A. Doing this allows us to define a cooperative game COOPGAME-NET(d, k) =
(X, V (d, k)).
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Remark 7. The above generalized cost parameter k is here a value-per-time
scaling coefficient which mixes financial costs and QoS costs into a unique global
generalized cost.

We say that our game MG-NET is strongly regular if any function Dx is strictly
positive and if for any value k ≥ 0, the generalized cost (px + k · (Tx − Topx)) ·
Dx(px, Tx) is a strictly increasing function of the pair (px, Tx).

We say that this game is regular if there exists a value k > 0, a X-indexed
positive price vector α = (αx, x ∈ X) > 0, and a X-indexed positive routing cost
vector δ = (δx, x ∈ X) > 0, such that:

• for any x ∈ X , the generalized cost (px + k · (Tx − Topx)) ·Dx(px, Tx) is a
strictly increasing function of the pair (px, Tx), on the domain Π(αx, δx)
which is defined by 0 ≤ px ≤ αx and 0 ≤ Tx − Topx ≤ δx;

• for any x ∈ X , both inequalities Qrefx ≤ αx and Qrefx ≤ k · δx, which
involve the financial reference Qrefx value associated with x, are true.
(E6)

Of course, if our game is strongly regular, it is also regular.
A Theoretical Result.

We are now going to prove that if the above game MG-NET = (H, X, D) is regular,
then its core is non empty.

Lemma 4.1. For any strictly positive value of k, the function V which, with
any demand vector d, associates the value V (d, k), is continuous and increasing.
Besides, there exists λ ≥ 0 such that for any demand vector d ≥ 0, we have
V (d, k) ≤ λ · N(d), where N is the euclidian norm.

Proof. The fact that V is continuous and increasing is obvious. In order to get
the part of the lemma which is related to the coefficient λ, we consider the polye-
dron Π∗ defined by the dual program of NET(d, k) and we denote by S the vertex
set of Π∗. Let us denote by d∗ the bound vector of the program NET(d, k). A
part of this vector is indexed on the arc set E and is null. Another part is indexed
on the vertex pairs (y, x), that means on the constraints which express that the
flow f(x) satisfies the Kirshoff Law in every vertex y of the network H . Since
the program NET(d, k) is bounded, any value V (d, k) may be written (duality)
V (d, k) = Sups∈S{s · d∗}. We notice that this bound vector d∗ is the image of d
through some linear function and we conclude. �

In order to keep on toward our main result, let us consider now a pair (F, f)
which is an optimal value of the program NET(d, k), and let us suppose that
the part of the bound vector d∗ of NET(d, k) which expresses that the flow f(x)
satisfies the Kirshoff Law in every vertex y of the network H , is indexed as follows:
d∗ = (d∗y,x, y, x ∈ Z). We also may suppose that d∗ is such that, for any x ∈ Z:
d∗ox,x = dx , d∗sx,x = −dx, and d∗y,x = 0 if y is different from sx and ox. Then we
suppose that d is strictly positive and we set, for any x ∈ X : Tx = (t.f(x))

dx
= QoS

of f for user x. We say that T = (Tx, x ∈ X) is the QoS Vector associated with f .
Doing it allows to get:
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Lemma 4.2. Let u = (uz, z ∈ Z), v = (vz,x, z ∈ Z, x ∈ X), w = (we, e ∈ A) ≥ 0
be some optimal solution of the dual program NET∗ of the program NET(d, k). We
suppose d > 0. Then for any x ∈ X, we have k · Tx ≤ dx · (vox,xvsx,x).

Proof. The vector v may be choosen in such a way that for any x, vsx,x = 0. Let us
consider xo ∈ X , and let us consider some positive number δ < dxo. We know that
voxo, xo · δ ≥ V (d, k)− V (d, k), where d is obtained from d by substracting d from
dxo (subdifferentiality of the dual solution of the linear program NET(d, k)). We
get a feasible solution f of NET(d, k) by removing some amount d from the flow
vector f(xo), in such a way that the product k · t · (∑x∈X f(x)k · t · (∑x∈X f(x))
is equal to k · δ ·Txo. We deduce that V (d, k) ≤ V (d, k)k · δ ·Txo and the result. �

Lemma 4.3. Given some optimal solution (F, f) of the linear program NET(d, k),
where d is supposed to be strictly positive, and T = (Tx = t·f(x)

dx
, x ∈ X) the related

QoS Vector. Then there exists some price vector p ≥ 0, such that the vector
q = ((px + k ·dx ·Tx), x ∈ X) is in the core of the cooperative game COOPGAME-
NET(d, k).

Proof. Let us consider, as in Lemma 4.2, u = (uz, z ∈ Z), v = (vz,x, z ∈
Z, x ∈ X), w = (we, e ∈ A) ≥ 0, which define some optimal solution of the dual
program NET∗ of the program NET(d, k). Then we may set, for any x in X ,
px = vx · 1∗xk ·Tx where 1∗x is the Z indexed vector which is equal to 1 in ox, to 1
in sx and 0 elsewhere. Lemma 4.2 tells us that p = (px, x ∈ X) is ≥ 0. If A ⊂ X
represents some coalition, then we see that the restrictions of u, v and w to the
constraints of the program NET(d, k) which only involve the elements of A, define
a feasible solution of the dual program of the restriction program NET(d, k)A. We
deduce the following relations (E7):

–
∑

x∈A(px+k.dx.Tx) ≤ optimal Value V (d, k)A of the program NET (d, k)A;
–

∑
x∈X(px + k.dx.Tx) = optimal Value V(d, k) of the program NET(d, k).

But (E7) means that p+k.d.T is in the core of the cooperative game COOPGAME-
NET(d, k). �

Stating our main existence result comes now as follows:

Theorem 4.4. If the above network game MG-NET = (H, X, D) is regular, then
its core is non empty.

Proof. For any strictly positive demand vector d and any value k ≥ 0 of the
generalized cost parameter, let us denote by Core(d, k) the set of the pairs (p, T ),
p ≥ 0, T ≥ Top, which are such that there exists some vector q in the core of the
cooperative game COOPGAME-NET(d, k) and some optimal solution (F, f) of
the linear program NET(d, k) which may be written: q = ((px + k.dx.Tx), x ∈ X),
where T = (Tx = t · f(x)/dx, x ∈ X) is the QoS vector related to f . Then, the
end of the proof of Theorem 4.4 comes as a mere copy of the proof of theorem 3.3.

We first consider (step 1) the case when our game is strongly regular. Then,
while k remains fixed, we consider the domain Λ defined by: Λ = {p ≥ 0, T ≥
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Top, such that Supx∈X(px + k.dx.Tx) ≤ Λ}, and the point-to-set mapping G
which to any pair (p, T ) ∈ Λ makes correspond Γ(p, T ) = Core(D(p, T ), k). We
check that any pair (p, T ) which is a fixed point for this point-to-set mapping,
is also in the core of the network design multicriterion game MG-NET defined
by the program NETWORK(d,T) and by the demand functions (Dx, x ∈ X).
We conclude through application to G of the Tychonof-Kakutani Fixed Point
Theorem.

Next (Step 2), we consider the general case, when the game MG-NET is regular,
and we pick up a value of the generalized cost parameter k, a X-indexed positive
price vector α = (αx, x ∈ X) > 0, and a X-indexed positive routing cost vector
δ = (δx, x ∈ X) > 0, such that:

• for any x ∈ X , the generalized cost (px + k.(Tx − Topx)).Dx(px, Tx) is a
strictly increasing function of the pair (px, Tx), on the domain Π(αx, δx)
which is defined by 0 ≤ px ≤ αx and 0 ≤ Tx − Topx ≤ δx;

• for any x ∈ X , both inequalities Qrefx ≤ αx and Qrefx ≤ k.dx, which
involve the financial reference Qrefx value associated with x, are true.
(E6bis)

A consequence of the regularity relations (E6) and (E6bis) is that (E8):

• for any x ∈ X , and for any value u in [0, δx]:
(αx + k.u).Dx(αx, u + Topx) ≥ V ((0, .., Dx(αx, u + Topx), 0, .., 0), k) −
k.T opx.Dx(αx, u + Topx);

• for any x ∈ X , and for any value v in [0, αx]:
(v + k.δx).Dx(v, δx + Topx) ≥ V ((0, .., Dx(v, δx + Topx)), 0, .., 0), k) −
k.T opx.Dx(δx, u + Topx);

Then we build demand functions D∗
x, x ∈ X , which are such that:

- the induced game is strongly regular;
- for any x ∈ X , the function Dx coincides with D∗

x on the domain
Π(αx, δx).

Step 1 allows us to assert the existence of a pair (β, ∆) which is in the core of
the game MG − NET ∗ = (H, X, D∗). We conclude by using (E8) and the same
trick as at the end of the proof of theorem 3.3, in order to check that every pair
(bx, Dx) must be in the domain Π(αx, δx), and by deducing that (β, ∆) must also
be in the core of the game MG-NET. �

Corollary 4.5. A computing scheme CORE-NETWORK
In case the game MG-NET is regular, an element of its core may be obtained by

picking up a convenient value of the generalized cost parameter k, and by solving
the following constraint system CORE-NETWORK(k) :

{Find p, T , d ≥ 0, a primal (optimal) solution (F, f) and a related dual solution
u = (uz , z ∈ Z), v = (vz,x, z ∈ Z, x ∈ X), w = (we, e ∈ A) ≥ 0, of the NET(d, k)
program, such that:

• d = D(p, T );
• for any x in X, dx.Tx = t.f(x); (E9)
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• for any x in X, px = vx · 1∗xk · Tx, where 1∗x
z = 1 if z = ox, 1 if z = sx

and 0 else}. (E10)

Proof. Lemma 4.2 allows us to reinforce the point-to-set mapping G of the proof
of Theorem 4.4, by setting:

• Core∗(d, k) = {(p, T ) ≥ 0 which are such that there exists a primal solution
(F, f) and a dual solution u = (uz, z ∈ Z), v = (vz,x, z ∈ Z, x ∈ X),
w = (we, e ∈ A) ≥ 0 of NET(d, k) such that:

– T = (Tx = t.f(x)
dx

, x ∈ X) ;
– for any x in X , px = vx · 1∗xk · Tx with 1∗x

z = 1 if z = ox, 1 if z = sx

and 0 else;
• Γ∗(d, k) = Core∗(D(p, T ), k). We then apply to Γ∗ the same fixed point

argument as in the proof of Theorem 4.4. If the 5-uple (p, T, d, F, f) is a
solution of CORE-NETWORK(k), then the pair (p, T ) is in the core of
MG-NET.

We conclude. �

We may derive an algorithm CORE-NETWORK from the above proof, which
aims at computing an element of the core of the game MG-NET in case such an
element exists. This algorithm works in a heuristic way, according to an iterative
fixed point process. At any iteration of its internal loop (Stop1 loop), it starts
from some current pair (p, T ), next computes the induced demand d and solves
the linear program NET(d, k), and finally modify (p, T ) in order to reduce the
gap between (p, T ) and the price/QoS pair which results from the application of
the formulae (E9), (E10) to the primal solution (F, f) and to the dual solution
(u, v, w) of NET(d, k).

CORE-NETWORK Algorithm;
Provide the generalized cost parameter k with some value; Not Stop;
While Not Stop do
(*main loop: we try several values of k until success or stop*)

Initialize p > 0 and T ≥ Top; Not Stop1;
While Not Stop1 do
(*Internal loop: the heuristic fixed point scheme which aims
at solving the CORE-NETWORK(k) constraint system*)
compute d = D(p, T );
Compute a primal solution (F, f) and a related dual solution
u = (uz, z ∈ Z), v = (vz,x, z ∈ Z, x ∈ X), w = (we, e ∈ A) ≥ 0,
of the NET(d, k) program;
For any x in X , compute T ′

x in such a way that dx.T ′
x = t.f(x);

For any x in X , set p′x = vx · 1∗xk · T ′
x, where 1∗x is the

Z indexed vector which is equal to 1 in ox, to 1 in sx and 0 elsewhere;
If the relative error between (p, T ) and (p′, T ′) is small enough then
Stop1;
Stop;
Else
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Replace (p, T ) by (p + p′, T + T ′)/2; Adjust Stop1;
If Stop1 then modify the value of k and adjust Stop.

Remark 8. The generalized cost parameter k is a key player inside the above
scheme. Choosing its value will impact both the convergence of the CORE-
NETWORK process and the quality of the resulting decision (F, f).

5. Conclusion

We proposed here a model which could help us in understanding pricing mech-
anisms and in dealing with related decision problems. This model involves the
cooperative game framework and tries to take into account the way users are
likely to react to tariff policies. It could eventually help in conveniently pricing
and designing public transportation systems in order to promote public trans-
portation modes. Still, one must keep in mind that pricing remains a very hard
issue, mainly due to essential difficulties related to cost and demand measurement.
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