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1. Introduction

In this paper, we present a new and interesting application of the Operational
Research. This application concerns computer-aided design of complex mechani-
cal power transmission systems. We show that the choice of transmission ratios
and basic design parameters of transmission elements can be formulated as an
optimization problem and we develop dedicated optimization methods based on
a multi-level decomposition procedure [14, 16] and advanced operational research
techniques.

Transmission systems are crucial components of many machines and mecha-
nisms. Ken Hurst [10] highlights that whether you’re designing power plants,
cars, or washing machines, the power transmission system is an integral compo-
nent responsible for product success or failure.

The components that compose a power transmission system include that which
transfer power directly (coupling and shaft), speed/torque multiplication compo-
nents (gears, belt drives, etc.), and related mechanisms (clutches, brakes, etc.) [4].

Transmission design is a very complex problem. In literature, the main publi-
cations concern the design of specific elements such as spring, gears, and shafts,
see for example [13, 17, 19, 23]. Some methods were suggested for structural and
parametric synthesis for some kinds of transmission [9, 13].

For the design of complex power transmission systems, the functional decom-
position approach is often used [5]. Here, a complex transmission system is de-
composed to a set of basic elements, and each basic element is then separately
optimized. To take into account external conditions for components, complemen-
tary constraints are added [1].

Expert systems are widely used in order to consider engineering experience and
to integrate the partial optimization models in the design process [2, 20–22].

Another method deals with hierarchical decomposition [11, 18]. The optimiza-
tion model is decomposed and solved as a set of smaller, coordinated sub-problems.
Such a process is often followed intuitively, during the development of this model,
by adding together selected objectives of each sub-system to obtain an overall
system objective.

In this paper, we focus on the preliminary design stage of transmission systems
with a complex structure. These systems consist of a lot of shafts and gears
(between 20 and 60), and the number of kinematic chains (speeds) can be greater
than 60. Decisions at this stage are pivotal since the main design parameters of
transmission system are predetermined. These decisions can be completed during
next stages of design.

The remainder of the paper is organized as follows. Section 2 gives a math-
ematical programming formulation of the problem considered. In Section 3, the
multi-level decomposition approach and the proposed optimization methods are
presented. Section 4 shows the results of optimization for some real life transmis-
sion systems. Section 5 gives some conclusion remarks.
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Figure 1. An example of power transmission system.

2. Optimization problem

2.1. Problem statement

Power transmission systems include chains of various gears which transmit
power and motion from the engine to the output shaft of the transmission. An
example of a power transmission system is given in Figure 1.

The system includes six shafts {s,a − d,t} and seven gears {1-7}. Input shaft
s is connected to the engine. The number of different speeds of the output shaft
t is equal to four. Each speed corresponds to a kinematic chain (a sequence of
gears and shafts from the engine to the output shaft). To select a speed of the
output shaft t we need to choose between gear 2 and gear 3 for shaft a as well
as between gear 5 and gear 6, for shaft d. The speed depends on transmission
ratios of selected gears (kinematic chain). So, changing transmission ratio of a
gear modifies the speeds for all kinematic chains involved.

Possible transmission ratios for a gear are defined by the range of their available
values and also by feasible speeds of the corresponding shafts. When designing a
power transmission system, the nominal speeds of the output shaft as well as the
nominal speed of the engine are given. It is necessary to choose a transmission
ratio for each gear in such a way that all the desired nominal speeds of output
shaft are provided as closely as possible. Actually, these speeds cannot be obtained
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precisely due to intersections of the kinematic chains (when we change a gear ratio
for a chain, the speeds of other chains which use the same gear are also modified).

Other important considerations for transmission systems are their mass and
lifetime. The mass of transmission elements (gear, shaft) is defined by its design
parameters (diameters, widths, modules and tooth number for gear, diameters of
shafts). As for the transmission lifetime, it depends on the design parameters and
load conditions.

The objective is to choose design parameters providing:
(i) minimal deviation of the output nominal speeds from the desired values,

then:
(ii) the maximum lifetime,

and finally:
(iii) the minimum mass of the transmission system.

We consider the problem of determining the following design parameters:
– gear transmission ratios;
– basic design parameters of transmission elements (for gears: types, diam-

eters, widths; for shafts: diameters, etc.).
The input data is:

– the desired nominal speeds of the output shaft;
– load conditions and total working times of the output shaft for each kine-

matic chain;
– ranges of possible values for transmission ratios of gears;
– ranges of possible values for absolute speeds of shafts;
– total transmission life (taking into account contact and bending fatigue of

gears and static rolling strength of shafts);
– characteristics of materials used.

In this paper, we suppose that the structural scheme of the transmission (or some
variants of this scheme) has been selected at previous design stages and that the
load conditions of actuator are known. We assume that the total transmission life
is principally determined by the lifetime of “bottleneck” element.

2.2. Mathematical model

We use a finite acyclic directed multigraph G = (V , E) for representing the
structural scheme of the transmission. This digraph has one initial node s and one
terminal node t. These nodes correspond to the input shaft of the transmission
(for example, the engine shaft) and the output shaft, respectively. The nodes
v ∈ V ′ = V \{s, t} represent intermediate shafts of the transmission, arcs from E
correspond to the gears of the transmission. Each kinematic chain from the input
shaft s to the shaft v ∈ V \{s} defines in one-to-one manner a path in G from node
s to node v.

For the example of transmission given in Figure 1, the digraph G is shown in
Figure 2.
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Figure 2. Digraph of the structural scheme of transmission.

Let us denote:
– a given nominal speed of the engine (input shaft s) by n0;
– an unknown transmission ratio of the gear e ∈ E and its range by x(e),

and [x(e),x̄(e)] ∈ R;
– a given range of absolute speeds of the shaft v ∈ V by [n(v), n̄(v)];
– a collection of unknown design parameters of the gear e ∈ E and a set of

its feasible values by u(e) and U(e);
– a collection of unknown design parameters of the shaft v ∈ V and a set of

its feasible values by w(v) and W (v);
– input and output shafts of the gear e ∈ E by v1(e) and v2(e);
– the set of paths in G from node s to node v by P (v) = {pk(v)| k = 1, 2,

. . . , r(v) };
– the desired speed of the output shaft for the kinematic chain pk(t) by Ck,
k = 1, 2,. . . , r(t).

The speed of shaft v ∈ V for the kinematic chain pk(v) ∈ P (v) and fixed x(e),
e ∈ pk(v), is defined as follows:

nk(v, x) =
n0∏

e∈pk(v)

x(e)
·

Here and later in the paper:

x = (x(e)|e ∈ E);

X = {x|x(e) ∈ [x(e), x̄(e)]};
N(v, x) = (n1(v, x), . . ., nr(v)(v, x));

C = (C1, . . ., Cr(t));

u = (u(e)|e ∈ E);

w = (w(v)|v ∈ V ).

For the given engine power, the load conditions of the output shaft of the trans-
mission system and each value from C, we assume that load conditions of the
shaft v ∈ V and of the gear e ∈ E can be defined by collections N(v, x) and
(x(e), N(v1(e), x)), respectively. Based on well-known methods for calculating
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transmission elements (see for example [13,17,19]), we can calculate the values of
the following functions:

(i) functions Tv(N(v, x), w(v)) and Te( x(e), N(v1(e), u(e)) ) which determine
the longevity of the shaft v ∈ V and the longevity of the gear e ∈ E for
fixed values of unknown parameters x, w and u;

(ii) functions Mv(w(v)) and Me(u(e)) which determine the mass of the shaft
v ∈ V and the mass of the gear e ∈ E for fixed values of unknown param-
eters w and u.

For the method developed in this paper, we consider the functions (i), (ii) as a
sort of black box. To simplify the presentation, in the remaining text (when it
is possible) we will use for these functions the notation Tv, Te, Mv and Me, i.e.
without parameters.

A transmission ratio is the ratio of the tooth numbers of 2 corresponding toothed
wheels. In real life problems, teeth numbers are usually varied from 12 to 100. So,
for any desired transmission ratio, we can find the corresponding number of teeth
for each wheel with a sufficient, for this design stage, precision. Thus, we can
relax the constraint on the discreetness of possible gear transmission ratio values
caused by the integrality of teeth numbers. Moreover, we relax the interdependence
between the longevities of the transmission elements; this will be taken into account
in following design stages.

From practical point of view, and taking into account the design specificity,
the main criterion is the deviation of the output nominal speeds from the desired
values. The second criterion in the order of importance is the lifetime, and the
last criterion is the mass of the transmission system.

Therefore, the considered design problem is reduced to the following multi-
criteria optimization problem with lexicographical order of criteria:

Min g1(x) =
r(t)∑
k=1

αk(ln (Ck) − ln (nk(t, x)))2, (1)

Max g2(x, u, w) = min(min {Tv|v ∈ V },min {Te|e ∈ E}), (2)

Min g3(u,w) =
∑
e∈E

Me +
∑
v∈V

Mv, (3)

subject to:

x ∈ X, (4)

nk(v, x) ∈ [n(v), n̄(v)], v ∈ V, k = 1, 2, . . ., r(v), (5)

w(v) ∈ W (v), v ∈ V, (6)

u(e) ∈ U(e), e ∈ E. (7)

Here the coefficients αk(t), k = 1, 2, ..., r(t) characterize the relative importance of
desired values Ck of speeds. The first criterion (1) is to minimize the deviation of
the obtained speeds from the desired speeds. The second (2) is to maximize the
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transmission life, and the third (3) is to minimize the total mass of the transmis-
sion.

3. Optimization approach

3.1. Decomposition scheme

The problem (1–7) is a optimization problem where the functions Tv, Te,Mv and
Me are defined algorithmically. To solve this problem, we propose the following
multilevel decomposition:

1. At the first stage, we minimize the function g1(x) over a set of all feasible
x satisfying kinematic constraints (4), (5). As a result, a vector C∗ = (C∗

k =
nk(t,x∗)|k = 1, 2, . . . , r(t)) (set of output shaft speeds) which is the nearest vector
to the vector C is determined (Problem A). This Problem A can be solved several
times with different coefficients αk(t). These coefficients are chosen each time by
the designer after informal analysis of the obtained solution. Finally, the accepted
solution (vector C∗) is used at the second stage as the set of nominal speeds of
the output shaft to be implemented by the transmission system.

2. At the second stage, we use an epsilon-constraint approach. The designer
specifies a set ∆ = {τ1, τ2, . . .} of acceptable values of the total transmission life
and for each value τ∈ ∆ optimal (according to the total mass of the transmission)
values of unknown parameters are defined by minimizing the function g3(u, w)
subject to g2(x,u,w) � τ . Simultaneously we assure that the set of the obtained
speeds is exactly equal to the set C∗ obtained during the first stage (Problem B).
The most suitable combination of τ and g∗3(τ) is selected, where g∗3(τ) is the
optimal value of function g3(u,w) for fixed τ .

3.2. Problem A

For solving problem A, we transform it into logarithmic coordinates by change
of variables z(e) = lnx(e):

Min g1(x) = ĝ1(z) =
r(t)∑
k=1

αk

⎡
⎣ln (Ck) − ln n0 +

∑
e∈pk(t)

z(e)

⎤
⎦

2

, (8)

z(e) ∈ [lnx(e), ln x̄(e)], e ∈ E, (9)∑
e∈pk(v)

z(e) � lnn0 − ln n̄(v), v ∈ V, k = 1, . . ., r(v), (10)

∑
e∈pk(v)

z(e) � lnn0 − lnn(v), v ∈ V, k = 1, . . ., r(v). (11)
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It is easy to see that the constraints (9)–(11) are not compatible if

µ̄(v) = min

⎧⎨
⎩

∑
e∈pk(v)

ln x(e) | k = 1, ..., r(v)

⎫⎬
⎭ < ln n0 − ln n(v)

or

µ(v) = max

⎧⎨
⎩

∑
e∈pk(v)

ln x(e) | k = 1, ..., r(v)

⎫⎬
⎭ > ln n0 − ln n(v).

The values µ(v) and µ̄(v) can be found by using shortest (or critical) path algo-
rithm for acyclic digraph G with arc lengths ln x̄(e) and ln x(e), respectively.

The problem (8)–(11) is a quadratic programming problem with linear con-
straints. The number of each of constraints (10)–(11) in real life problems can be
sufficiently large and in general is equal to the number of all paths in digraph G
from the vertex s to all other vertices. However, as a rule, the number of active
constraints is no more than |V ’|. For example, for the digraph of a tractor trans-
mission system with 17 shafts and 27 gears the number of variables is equal to 27
and the number of constraints (10)–(11) can be more than 800.

For solving the problem A, we use an overall scheme of constraint relaxation [15].
Initially, this problem is solved without constraints (10)–(11), and then we add
step by step the constraints that are not valid for the solution obtained for the
previous set of constraints. For fixed set of constraints, a current sub-problem is
solved by well-known methods of quadratic programming. At each step for each
vertex v, we add only those invalid constraints (10)–(11), which have the greatest
discrepancies. These paths (which correspond to such constraints) can be also
found by a shortest path algorithm.

3.3. Problem B

The problem B is to minimize the function g3(u, w) for fixed τ ∈ ∆ and C∗
k ,

k = 1, ..., r(t), under constraints (4)–(7) and the additional constraints:

g2(x, u, w) � τ,

N(t, x) = C∗.

For solving the problem B, we construct on the base of the mentioned above
functions Tv, Te, Mv and Me the procedures for determining

M∗
v = M∗

v (N(v, x)) = min {Mv|Tv � τ, w(v) ∈ W (v)}

and

M∗
e = M∗

e (x(e), N(v1(e), x)) = min {Me|Te � τ, u(e) ∈ U(e)}.
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Then the problem B can be stated as follows:

Min g(x) =
∑
e∈E

M∗
e +

∑
v∈V

M∗
v

x ∈ X,

nk(v, x) ∈ [n(v), n̄(v)], v ∈ V, k = 1, 2, . . ., r(v),

nk(t, x) = C∗
k , k = 1, 2, . . ., r(t).

For solving the problem B, we propose a method based on a system of invariants.
Since the speeds of the output shaft are fixed, then the speeds of the same inter-
mediate shaft are interconnected. The following theorem establishes this property.

Theorem. For any x ∈ X, v ∈ V and e ∈ E values nk(v,x) = n1(v,x)•λk(v),
k = 1, . . . , r(v), x(e) = n1(v1(e),x)/n1(v2(e),x)/γ(e), and nk(v,x×γ) = n1(v,x),
where λk(v) and γ(e) are constants.

Here x × γ is component-wise multiplication of vectors x and γ. The proof of
this theorem can be found in [8].

Values λk(v), γ(e) for all v ∈ V and e ∈ E can be determined before solving
the problem B. Without loss of generality, we can assume that paths in the sets
P (v) for all v ∈ V are enumerated in a such a way that for any v ∈ V and
k′, k′′ ∈{1, . . . , r(v)} sub-paths from v to t in paths pm(v,k′)(t) and pm(v,k′′)(t)
coincide. Herem(v,k) is the minimal number from {1, ..., r(t)} such that path pk(v)
is a sub-path of pm(v,k)(t). Then, λk(v) = C∗

m(v,k)/C
∗
m(v.1) and γ(e) = λl(e)(v2(e)),

where l(e) is the index of the path (p1(v1(e)), e) in the set P (v2(e)).
Let us introduce new variables y(v) = n1(v,x) for all v ∈ V . Then, the prob-

lem B can be reformulated as follows:

Min
∑
e∈E

f∗
e (y) +

∑
v∈V

h∗v(y) (12)

y(v1(e))/y(v2(e))/γ(e) ∈ [x(e), x̄(e)], e ∈ E, (13)

y(v) ∈ [y(v), ȳ(v)], v ∈ V, (14)

y(s) = n0, (15)

y(t) = C∗
1 (16)

where

f∗
e (y) = M∗

e (y(v1(e))/y(v2(e))/γ(e), y(v1(e)), y(v1(e))λ2(v1(e)), . . .,

y(v1(e))λr′(v1(e))),

r′ = r(v1(e)),

h∗v(y) = M∗
v (y(v), y(v)λ2(v), . . ., y(v)λr(v)(v)),

y(v) = max[n(v), eµ(v)]/min {λk(v)|k = 1, . . ., r(v)},
ȳ(v) = min[n̄(v), eµ(v)]/max{λk(v)|k = 1, . . ., r(v)}.
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Let us denote Vc = { v0 = s, v1, v2, . . . , vm, vm+1 = t}, where nodes vi, i = 1, 2,
. . . ,m, are cutpoints of the digraph G. It is assumed that nodes vi, i = 1,2, . . . ,m,
are ordered in the increasing order of node ranks in the digraph G. Recall that
a node v is a cutpoint of the digraph G if and only if there exist nodes v′ and
v′′ such that the node v lies on each path from v′ to v′′. It should be noted that
the nodes s and t can be chosen as v′ and v′′ since each node in the digraph G is
connected with s and t by a path.

If a digraph G has at least one cutpoint, the graph G is called series decompos-
able. In such a case, let G(vi,vi+1) = (V (vi, vi+1), E(vi, vi+1)), i = 0, . . . , m, be
a graph generated by all the paths from vi to vi+1. We can construct a digraph
G(Vc) = (Vc, E(Vc) ) by replacing each subgraph G(vi,vi+1), i = 0, . . . , m, with
an arc εi = (vi,vi+1).

We assign to the arc εi the range

[x(εi), x̄(εi)] =

⎡
⎣max

⎧⎨
⎩

∏
e∈p(vi,vi+1)

x(e)γ(e)|p(vi, vi+1) ∈ P (vi, vi+1)

⎫⎬
⎭ ,

min

⎧⎨
⎩

∏
e∈p(vi,vi+1)

x̄(e)γ(e)|p(vi, vi+1) ∈ P (vi, vi+1)

⎫⎬
⎭

⎤
⎦

and γ(εi) = 1, where P (vi,vi+1) is the set of all paths in G from vi to vi+1. As a
result, the graph G(Vc) is a path and the problem (12)–(16) can be transformed
into the following:

Min
m∑

i=0

Fi(y(vi), y(vi+1)) +
m+1∑
i=0

h∗v(y) (17)

y(vi)/y(vi+1)/γ(εi) ∈ [x(εi), x̄(εi)], i = 0, . . .,m, (18)

y(v) ∈ [y(v), ȳ(v)], v ∈ Vc, (19)

y(v0) = n0, (20)

y(vm+1) = C∗
1 , (21)

where

Fi(y′, y′′) = min

{ ∑
e∈E(vi,vi+1)

f∗
e (y)

+
∑

v∈V (vi,vi+1)\{vi,vi+1}
h∗v(y)|y(v) ∈ [y(v), ȳ(v)], v ∈ Vc\{vi, vi+1},

y(vi) = y′, y(vi+1) = y′′
}
.
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Figure 3. Digraph H of possible shaft speeds.

For solving the problem (17)–(21), we transform the digraph G(Vc) into another
digraph H of possible shaft speeds, where each vertex of G(Vc) is replaced by a
set of vertices of digraph H (see Fig. 3).

Each vertex of digraph H corresponds to the speed of the shaft respectively to
the replaced vertex of the digraph G. All the vertices of the digraph H , obtained
from adjacent vertices of the digraph G, are connected by an arc. In order to
obtain vertices of the digraph H , the corresponding speed ranges are discretized.
Therefore, the size of the digraph H depends on the discretization factor.

Thus, the problem (17)–(21) is reduced to a shortest path problem in the di-
graph H . We solve this problem using a dynamic programming method.

The problem of calculating Fi(y′,y′′) for fixed y′ and y′′ is of the same nature
as the problem (12)–(16) but its dimension is smaller. Under made transforma-
tions, there is no a cutpoint in the digraph G(vi,vi+1). However, the digraph
G(vi,vi+1) can be parallel decomposable, i.e. the set of all paths P (vi,vi+1)
from vi to vi+1 can be divided into minimal (in the sense of inclusion) subsets
Pj(vi,vi+1), j = 1,2,. . . , r(vi,vi+1) > 1 such that paths from different subsets do
not have a common intermediate node. The problem with parallel decomposable
digraph is decomposed into r(vi,vi+1) independent sub-problems with digraphs
Gj(vi,vi+1) = (Vj(vi,vi+1), Ej(vi,vi+1)) (generated by Pj(vi,vi+1)) of a smaller
dimension. In this case, Fi(y′,y′′) is equal to

r(vi,vi+1)∑
j=1

[
min

{ ∑
e∈Ej(vi,vi+1)

f∗
e (y) +

∑
v∈Vj(vi,vi+1)\{vi,vi+1}

h∗v(y)|

y(v) ∈ [y(v), ȳ(v)], v ∈ Vj(vi, vi+1)\{vi, vi+1}
}
, y(vi) = y′, y(vi+1) = y′′

]
.

Such decomposition cases are illustrated in Figure 4.
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Figure 4. Decomposition of digraph G.

Table 1. Ranges of transmission ratios of gears and nominal
speeds of intermediate shafts.

Gears 1 2 3 4 5 6 7 Shafts a b c d
x(e) 2.5 1.5 2.5 2.5 2.5 2.5 3.0 n(v) 10 10 10 10
x̄(e) 3.5 2.5 3.5 3.5 3.5 3.5 4.5 n̄(v) 3000 3000 3000 3000

4. Industrial examples

First, we give the calculation results for the transmission system considered in
Section 2 (see Fig. 1). The corresponding digraph G was presented in Figure 2.

For this example, the following input data is used:
– the power of the engine is 70 kW and the nominal speed of the input shaft

of the transmission is 3000 rpm;
– all gears are spurs;
– the length of the shaft c is 150 mm and the length of others is 450 mm;
– the ranges of transmission ratios of gears and the ranges of nominal speeds

of all intermediate shafts are given in Table 1;
– composition of kinematic chains, their desired nominal speeds and the

loading conditions of the output shaft of the transmission are given in
Table 2.

For strength calculation of gears and shafts the following characteristics of mate-
rials are used:

– the hardness of gear teeth is 59 HRC;
– the contact fatigue limit is 420 MPA;
– the bending fatigue limit is 1130 MPA;
– the yield point of shafts is 580 MPA.
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Table 2. Nominal speeds and loading conditions of the trans-
mission system.

Chain Kinematic Nominal Loads, Shares
number chains speeds, rpm Nm of time, %

1 1 2 4 5 7 20 30000 23
2 1 2 6 7 50 10000 22
3 1 3 4 5 7 12 45000 25
4 1 3 6 7 35 18000 30

Table 3. The solutions of problem A for different importance
coefficients αk.

Kinematic Nominal Solution 1 Solution 2 Solution 3
Chain chains speeds, rpm

number αk C∗
k αk C∗

k αk C∗
k

1 1 2 4 5 7 20 1 19.24 1 19.02 1 18.64
2 1 2 6 7 50 1 51.96 1 52.54 10 50.35
3 1 3 4 5 7 12 1 12.47 1 12.61 1 12.87
4 1 3 6 7 35 1 33.67 10 34.82 10 34.75

Results of solving the problem A for three different collections of importance co-
efficients αk are presented in Table 3. By changing coefficients αk, we can control
the closeness of some components of vector C* to the desired values thanks to
others.

The solution of the problem B is illustrated only for the first obtained vector
C∗ = {19.24, 51.96, 12.47, 33.67}. For this vector C* invariants λk(v) and γ(e) are
the following: λ2(b) = 0.648, λ2(c) = 0.648, λ2(d) = 2.701, λ3(d) = 0.648, λ4(d) =
1.75, γ(3) = 0.648, γ(6) = 2.701. Other invariants are equal to 1. Results of solving
the problem B for three values of the total transmission life {3000, 5000, 7500}
are given in Table 4. In this table d1(e) and d2(e) are diameters of drive and
driven wheels of gear e, ψ(e) is the width of gear ring. In each cell of the table
three values of design parameters corresponding to different values of the total
transmission life are separated by slash (/). The total mass of gears and shafts for
τ = 3000 is equal to 424 kg, for τ = 5000 is 440 kg and for τ = 7500 is 455 kg.

The problem B is usually the most time-consuming in the suggested decompo-
sition approach. In Table 5 we give the time of solving this problem for industrial
examples (with different discretization factor) on PC Pentium IV 2.6 GHz and
RAM 512 Mb. The ranges of possible shaft speeds were discretized using geomet-
ric progression with the factor q > 1.

The experiments show that usually the discretization factor can be taken as
1.01–1.005. As a rule, subsequent its decreasing does not result in essential im-
provement of the obtained solution.
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Table 4. The design parameters of gears and shafts for ∆ = {3000, 5000, 7500}.

Gear parameters Shaft

Gears x(e) d1(e) d2(e) ψ(e) Shafts diameter

1 3.5/3.5/3.5 68.1/68.1/68.1 238/238/238 27.2/27.2/27.2 s 20
2 2.35/2.23/2.24 90.1/96.5/100 212/215/225 36.0/38.6/40.2 a 30
3 3.48/3.29/3.30 90.8/97.1/97.3 316/319/322 36.3/38.8/38.9 b 43
4 2.89/2.99/2.97 118/116/121 343/349/361 47.4/46.6/48.5 c 59
5 2.60/2.65/2.65 166/165/165 433/439/439 66.6/66.2/66.2 d 82
6 2.71/2.86/2.85 125/122/125 339/352/359 50.0/49.1/50.3 t 117
7 3/3/3 219/223/226 658/670/679 87.7/89.4/90.6

Table 5. Results of solving problem B for industrial examples.

Problem size

Number of Discretization Time Quality of solution

Number of Number of kinemtic factor of solution (s) (mass, kg)

gears shafts chains

17 12 24 1.01/1.005/1.001 0.28/0.83/18.33 50.484/50.456/50.451

19 14 24 1.01/1.005/1.001 0.84/3.66/206.3 197.34/197.19/197.18

14 9 24 1.01/1.005/1.001 0.44/1.59/100.2 59.40/59.39/59.37

16 12 16 1.01/1.005/1.001 0.25/0.70/21.34 315.6/315.5/315.3

14 9 24 1.01/1.005/1.001 0.39/1.58/99.4 54.536/54.537/54.531

19 14 24 1.01/1.005/1.001 0.84/3.67/204.3 192.67/192.55/192.53

16 12 16 1.01/1.005/1.001 0.22/0.70/21.27 304.43/304.07/303.86

28 18 60 1.01/1.005/1.001 0.48/2.0/125.3 210.89/210.87/210.84

27 17 60 1.01/1.005/1.001 0.44/1.94/233.6 232.03/231.91/231.75

26 15 72 1.01/1.005/1.001 0.02/0.02/0.05 255.04/255.02/255.0

19 14 20 1.01/1.005/1.001 0.08/0.28/11.45 217.78/217.36/216.89

18 14 16 1.01/1.005/1.001 0.09/0.28/8.01 133.38/132.63/132.33

23 16 36 1.01/1.005/1.0 0.44.2.47/363.9 178.84/178.46/178.45

25 17 72 1.01/1.005/1.001 0.05/0.16/2.81 234.29/233.97/233.39

5. Summary and conclusions

A novel application of operational research techniques is provided. It concerns
a vital industrial problem of the optimal design of power transmission systems.
A multilevel decomposition approach is used. The models and methods for main
sub-problems are developed based on advanced techniques of graph optimization,
quadratic and dynamic programming.

The proposed approach permits a good quality approximate solution of the
design problem. The developed methods were used for creating a computer aided
decision support system of transmission design [3, 6, 7]. This system is oriented
to active participation of an experienced designer in decisions. It was tested at
Minsk tractor plant for solving real life design problems. The use of this system
has confirmed that, during 2–3 sessions on a conventional PC, a designer can
analyze and optimize the main design decisions. Such detailed analysis cannot be
performed by conventional methods.



OPTIMIZATION OF POWER TRANSMISSION SYSTEMS 227

The system improves the design decisions by decreasing total metal consump-
tion of the transmission as much as 7–10% and considerable simplifies the work of
the designer.
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