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ABOUT THE CHOICE OF THE VARIABLE TO
UNASSIGN IN A DECISION REPAIR ALGORITHM
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Abstract. The decision repair algorithm (Jussien and Lhomme, Arti-
ficial Intelligence 139 (2002) 21–45), which has been designed to solve
constraint satisfaction problems (CSP), can be seen, either (i) as an
extension of the classical depth first tree search algorithm with the in-
troduction of a free choice of the variable to which to backtrack in case
of inconsistency, or (ii) as a local search algorithm in the space of the
partial consistent variable assignments. or (iii) as a hybridisation be-
tween local search and constraint propagation. Experiments reported in
Pralet and Verfailllie (2004) show that some heuristics for the choice of
the variable to which to backtrack behave well on consistent instances
and that other heuristics behave well on inconsistent ones. They show
also that, despite its a priori incompleteness, decision repair, equipped
with some specific heuristics, can solve within a limited time almost all
the consistent and inconsistent randomly generated instances over the
whole constrainedness spectrum. In this paper, we discuss the heuris-
tics that could be used by decision repair to solve consistent instances,
on the one hand, and inconsistent ones, on the other hand. More-
over, we establish that some specific heuristics make decision repair
complete.

Keywords. Constraint satisfaction problem, depth first tree
search, local search, constraint propagation, backtrack, heuristics,
completeness.

1. Introduction

In [8], Jussien and Lhomme proposed an algorithm called decision repair (or
path repair in previous papers) dedicated to the solving of constraint satisfaction
problems (CSP) [4,9]. This algorithm can be assessed along various points of view:

• it can be seen as an extension of the classical depth first tree search al-
gorithm, allowing the variable to which to backtrack to be freely chosen
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among the currently assigned variables in case of inconsistency of the cur-
rent partial assignment;
• it can also be seen as a local search algorithm in the space of the partial

locally consistent variable assignments, with two kinds of move: variable
assignment in case of local consistency and variable unassignment in case
of inconsistency;
• it can finally be seen as a hybrid algorithm which closely combines lo-

cal search and constraint propagation, the same way as usual constraint
solving algorithms closely combine tree search and constraint propagation.

In this algorithm, value removal explanations, which are produced and recorded
by constraint propagation, are sets of variables the assignment of which forbids a
value1. They play three roles:

• they allow an inconsistency explanation to be built when the domain of
a variable becomes empty; this explanation is the union of the removal
explanations of all the values of the variable the domain of which is empty;
it means that the current assignment of all the variables involved in the
explanation is inconsistent with the whole problem, and it can be exploited
by choosing among these involved variables the one to unassign;
• they may allow an empty inconsistency explanation, that is a proof of

inconsistency, to be built in case of inconsistency of the whole problem;
• they allow decremental constraint propagation to be performed efficiently

in case of variable unassignment, without computing everything again from
scratch.

With regard to termination, correctness, and completeness, its properties are the
following:

• decision repair may not terminate, unless an arbitrary stopping criterion
is implemented;
• it is correct: when solving a problem P , if it returns yes and a complete

assignment A, P is consistent and A is solution of P ; if it returns no, P is
inconsistent;
• it is incomplete: when solving a problem P , consistent or not, it may never

terminate; if the stopping criterion is activated, it returns ?, which means
“I don’t know”.

Experiments reported in [10] lead to the following observations:
• decision repair may be far more efficient than usual local search algo-

rithms, which search for a solution in the space of the complete variable
assignments, and use no constraint propagation, only constraint checking;
• it may be more efficient than complete comparable algorithms such as

chronological backtracking (usual depth first tree search), conflict directed
backjumping [12], or dynamic backtracking [5];

1 In the decision repair algorithm, value removal explanations are more generally sets of
decisions (domain restriction, constraint adding, etc.) which forbid a value. In this paper, we
restrict ourselves to decisions that are value assignments.
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• it can solve many inconsistent problems at the frontier or beyond the fron-
tier between consistency and inconsistency; within a limited time, it can
even solve more inconsistent problems than complete comparable algo-
rithms can;
• the heuristics used for the choice of the variable to unassign in case of

inconsistency that are efficient to produce solutions and prove problem
consistency are not the same as the ones that are efficient to prove problem
inconsistency.

These observations led us to consider two questions:
(1) At least concerning the choice of the variable to unassign in case of incon-

sistency, are there heuristics dedicated to consistent problems and other
ones dedicated to inconsistent ones, and which are they?

(2) Knowing that dynamic backtracking is an instance of decision repair where
the variable to unassign is systematically the most recently assigned one
in the current inconsistency explanation, but is complete, do there exist
other or weaker conditions on the way of choosing the variable to unassign
that guarantee completeness?

This paper presents preliminary answers to both questions. It is structured as
follows: in Section 2, we present the decision repair pseudo code and, as exam-
ples, two traces of execution on a consistent problem and an inconsistent one; in
Section 3, we show that there is no reason to use different heuristics for the choice
of the variable to assign and the value to assign to it according to whether the
problem is consistent or not; in Section 4, we show that the situation is different
for the choice of the variable to unassign: various reasons lead to different heuris-
tics according to the supposed nature of the problem; in Section 5, we present
results of experiments carried out on randomly generated, but not completely
homogeneous, consistent or inconsistent problems, with unassignment heuristics
dedicated to consistent problems and dedicated to inconsistent ones; in Section 6,
we present two sufficient conditions for the completeness of the algorithm that
generalise the proof of completeness of dynamic backtracking; finally, in Section 7,
we list unanswered questions that deserve further attention.

2. The decision repair algorithm

2.1. Algorithm pseudo code

The algorithm we consider is derived from the one presented in [8], but can be
seen as a more generic version where more parameters remain to be set. Its pseudo
code is shown in Figure 1.

The starting assignment A may be empty, partial, or complete. Function
Initial F ilter uses constraint propagation to enforce any local consistency prop-
erty on the problem P restricted by A. It returns True if P is locally consistent
and False if not. Function Extend Assignment chooses a variable v which is not
assigned in the current assignment A and extends A by choosing a value a for v.
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Data : a CSP P and a starting assignment A.
n is the number of variables in P .

begin
bool ← Initial F ilter(P, A)
repeat

if bool then
v ← Extend Assignment(P, A)
if v = n + 1 then return yes
else bool ← Incremental F ilter(P, A, v)

else
v ← Repair Assignment(P, A)
if v = 0 then return no
else bool ← Decremental F ilter(P, A, v)

until Stop()
return ?

end
Figure 1. A generic decision repair algorithm.

It returns n + 1 if there is no such variable. It is the case when A is complete.
Conversely, function Repair Assignment chooses a variable v which is assigned
in the current assignment A and repairs A by unassigning v. It returns 0 if there
is no such variable. It is the case when A is empty or when inconsistency expla-
nations are produced and recorded and the current inconsistency explanation is
empty. Functions Incremental F ilter and Decremental F ilter use respectively
incremental and decremental algorithms to enforce local consistency, without com-
puting everything again from scratch. As does Initial F ilter, they return True
if the current subproblem is locally consistent and False if not. Function Stop
implements any stopping criterion.

2.2. Algorithm outputs

The algorithm ends with a proof of consistency of P and an associated solution
(answer yes), with a proof of inconsistency of P (answer no), or with nothing
in case of activation of the stopping criterion (answer ?). See Figure 2 for a
comparison with the outputs of classical tree or local searches. Note the complete
symmetry of the algorithm with regard to extension and repair and to consistency
and inconsistency.

2.3. Algorithm main parameters

The main parameters that remain to be set are the following ones:
• the local consistency property which is enforced at each step of the algo-

rithm and the way of enforcing it incrementally or decrementally: forward
checking, arc consistency, etc.
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Consistent instances Inconsistent instances
Tree search Yes No

Local search Yes or ? ?
Decision repair Yes or ? No or ?

Figure 2. Possible outputs on consistent and inconsistent
problem instances.
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Figure 3. A consistent graph colouring problem Pc and an
inconsistent one Pi.

• the way value removal explanations are handled i.e., produced, recorded,
combined, removed, etc.
• the variables and values that are affected by local consistency enforcing:

all the variables or only the not assigned ones, all the values or only the
currently not removed ones;
• the heuristics that are used in case of local consistency of the current

partial assignment to choose the variable to assign and the value to assign
to it;
• the heuristics that are used in case of inconsistency of the current partial

assignment to choose the variable to unassign;
• the presence or absence of priority for assignment (resp. unassignment) to

the variable that has been unassigned (resp. assigned) just before, when
this assignment (resp. unassignment) immediately follows an unassign-
ment (resp. assignment);
• finally, the stopping criterion which is used when no result (yes or no) has

been produced.

2.4. Two trace examples

To put things in a more concrete form, we show in Figures 4 and 5 possible
traces of such an algorithm on a consistent graph colouring problem Pc and on an
inconsistent one Pi (see Fig. 3).

For these examples, we consider a specific decision repair algorithm which be-
haves as follows. After each assignment of a variable v, forward checking is per-
formed from v to the current domains of the not assigned variables. For each
removed value, the singleton {v} is recorded as a removal explanation. When the
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Figure 4. A possible execution of decision repair on Pc.

domain of a variable v′ is wiped out, a variable v′′ is chosen to be unassigned in
the current inconsistency explanation, that is in the union of the value removal
explanations in the domain of v′. After unassignment of v′′, a value removal
explanation is created for its previous value (the previous inconsistency explana-
tion minus v′′). Irrelevant value removal explanations, those that involve v′′, are
then removed. The associated values are restored. But forward checking must
be performed again from the assigned variables to the current domains of the not
assigned ones. For assignment, the variable of lowest index among the variables of
smallest current domain is chosen. Values are tried in the order {R, G, B} for Pc

and {R, B} for Pi. For unassignment, a variable is randomly chosen in the current
inconsistency explanation.

Because decision repair in not a tree search but a local search in the space of par-
tial assignments, its trace is only a sequence of states, each state being composed
of a partial assignment and of a set of value removal explanations. In each state,
initially forbidden values are pointed out in dark grey, current assignments by a
small black square, and currently removed values by the indices of the variables
that are involved in their removal explanation. Values the removal explanation of
which is empty, those that are inconsistent whatever the assignment of the other
variables is, are pointed out in light grey.

For example, on Pc (see Fig. 4), in state s4, the domain of variable x4 is wiped
out and all the other variables are involved in the inconsistency explanation. We
assume that variable x2 is chosen to be unassigned. This is what is done in state s5.
Value G is removed from the domain of x2 with {x1, x3} as an explanation. The
value removal explanations in which x2 was involved are forgotten and associated
values restored: value G for x3 and x4. But forward checking the current domain
of x2 removes value B with {x3} as an explanation.

On Pi, in state s6 (see Fig. 5), the domain of variable x4 is wiped out with {x2}
as an explanation. Variable x2 is unassigned and its previous value R is removed
with an empty explanation. It is thus sure that value R for x2 does not take part
to any solution and can be removed from its domain. Similarly, when, in state s10,
the domain of variable x3 is also wiped out with {x2} as an explanation, variable
x2 is unassigned and its previous value B is removed with an empty explanation.
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Figure 5. A possible execution of decision repair on Pi.

It is thus sure that value B for x2 does not take part to any solution and can be
removed from its domain. Because the domain of x2 is now empty, inconsistency
of Pi is proven.

3. About the heuristics for the choice of the variable

to assign and the value to assign to it

3.1. Choice of the variable to assign

The heuristics that are used to choose the next variable to assign in case of
local consistency of the current partial assignment have two objectives:

• to reduce the width of the tree to explore2; this result is achieved by
considering first the variables the current domain of which is the smallest;
indeed, if we have a set of variables with various domain sizes, the minimal
enumeration tree in terms of number of internal nodes is obtained by
ordering variables according to an increasing domain size;
• to reduce the depth of the tree to explore; this result is achieved by con-

sidering first the variables that are the most constrained, for example that
are involved in the greatest number of constraints or in the tightest con-
straints, in order to prove subproblem inconsistency as soon as possible
and thus to cut the enumeration tree as high as possible.

Both objectives can be combined in a heuristic such as dom/deg: to choose a
variable the ratio of which between the size of the current domain and the degree
in the constraint graph is the smallest [2].

2 Speaking of a tree is abusive here, because decision repair does not explore a tree, but a
graph nodes of which are partial assignments and edges of which connect two partial assignments
when it is possible to go from one to the other via either an assignment, or an unassignment.
But the graph of decision repair and the tree of a classical backtrack search have the same set of
nodes: the set of possible partial assignments. The only difference is in the set of edges which is
much larger with decision repair because of the larger freedom of unassignment: with backtrack
search, unassignment must be performed in the inverse order of the asignment order.
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Figure 6. Objectives of the variable heuristics on
inconsistent problems.
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Figure 7. Objectives of the variable and value heuristics on
consistent problems.

This kind of heuristic is a sensible choice whatever the nature of the problem
to solve is: consistent or not. In case of inconsistency, it reduces the size of the
tree to explore (see Fig. 6). In case of consistency, it reduces the size of the part
of the tree to explore before finding a solution (see Fig. 7).

3.2. Choice of the value

If we consider now the heuristics that are used to choose the value to assign to
the variable that has been chosen for assignment, they have only one objective:

• to reduce the part of the tree to explore before finding a solution (see
Fig. 7); this result is achieved by considering first the values that can the
most likely extend the current partial assignment into a solution, in order
to prove problem consistency as soon as possible.

In case of inconsistency, such heuristics have no utility, because no solution exists.
It results in no gain, but no cost, unless it needs too much computing. In case of
consistency, it may result in some gain. Thus, it is a sensible choice whatever the
nature of the problem to solve is: consistent or not.
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4. About the heuristics for the choice of the variable

to unassign

The landscape is different if we consider the heuristics to use to choose the
variable to unassign in the current inconsistency explanation: a topic which has
not been really explored until now because usual tree search algorithms do not
offer such a freedom.

If the problem is consistent, the objective is to build a solution as quickly as
possible. In case of inconsistency of the current partial assignment, the objective
is thus to identify and to undo bad choices in order to allow the algorithm to make
better ones.

Conversely, if the problem is inconsistent, the objective is to build a proof
of inconsistency, that is an empty inconsistency explanation, which contains no
variable assignment. This result can be achieved if and only if a variable has an
empty domain and the removal explanations of all its values are themselves empty
(see for an example Fig. 5 in Sect. 2.4). The objective is thus to empty domains
with an as small as possible union of the value removal explanations. Note that
this result is implicitly achieved in usual depth first tree search when all the values
of the first assigned variable have been tried without any success. With decision
repair, we want to achieve the same objective using a less ordered search and
explicit value removal explanations.

If we try to list the heuristics that could be used to build a solution, we get the
following ones:

(1) to choose randomly among the assigned variables, in order to diversify the
search, as usually done in local searches [1];

(2) to choose a variable of maximum current domain size, because it offers
more space for value choice;

(3) to choose a variable of minimum degree in the constraint graph, for similar
reasons;

(4) to choose a variable that is involved in the greatest number of value re-
moval explanations, because its unassignment allows many values to be
restored in the domains of the other variables, unless these values must be
maintained removed because of other assignments;

(5) more generally, to choose a variable such that the subproblem resulting
from its unassignment is the least constrained, using any measure of con-
strainedness;

(6) to choose the least recently assigned one, because first choices are generally
the least informed, and thus the most questionable;

(7) if a note can be associated with any value of any variable, measuring for
example its likelihood of taking part in a solution, to choose a variable the
assignment of which has the worst note;

(8) in the same conditions, to choose a variable the assignment of which is the
most doubtful, for example such that the difference between the note of
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the current assignment and the one of the best assignments in the current
domain (alternative choices) is the smallest.

Note that heuristics 2, 3, 4, and 5 aim at recovering space for future assignments
and that heuristics 6, 7, and 8 aim at undoing bad or doubtful choices.

If we try now to list the heuristics that could be used to build a proof of
inconsistency, we get the following ones:

(1) to choose a variable of minimum current domain size, because we are
with such a variable closer to an inconsistency, the explanation of which
is empty or not;

(2) to choose a variable of maximum degree in the constraint graph, for similar
reasons;

(3) to choose a variable such that the subproblem resulting from its unassign-
ment is the most constrained, using any measure of constrainedness;

(4) to choose the most recently assigned one, because last choices remove gen-
erally fewer values than first ones do and thus undoing them compels the
algorithm to destroy fewer value removal explanations, if we make the
assumption of an algorithm which removes irrelevant value removal expla-
nations, that are inconsistent with the current partial assignment, in order
to save memory space;

(5) to choose a variable that is involved in the smallest number of value re-
moval explanations, in order to destroy the fewest of them (with the same
assumption about the algorithm behaviour), each explanation being even-
tually weighted by the cost of its production (a production via backtrack
is a priori more costly than a direct production via local consistency en-
forcing) divided by the number of involved variables (a small explanation
is more valuable than a large one);

(6) to choose a variable such that, after unassignment, the number of variables
involved in the union of its value removal explanations, which can be seen
as an inconsistency explanation in progress, eventually divided by the
number of removed values, is the smallest, in order to get closer to an
empty inconsistency explanation.

Note that heuristics 1, 2, and 3 aim at producing inconsistency as soon as possi-
ble, whereas heuristics 4 and 5 aim at maintaining as much as possible existing
value removal explanations, and heuristic 6 aims at producing small inconsistency
explanations.

Note also that heuristics 1, 2, 3, 4, and 5 for inconsistent problems are the
exact opposites of heuristics 2, 3, 5, 6, and 4 for consistent problems. If we know
nothing about the nature of the problem to solve (consistent or not), this suggests a
strategy which would consist to run in parallel two searches with two different goals
(to build a solution and to build an inconsistency proof) and thus two different
heuristics for the choice of the variable to unassign. But, if we conjecture that the
problem is consistent (resp. inconsistent), this suggests another strategy which
would consist first to try to build a solution (resp. an inconsistency proof) and
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then to switch the search goal, or to work towards both in parallel, if the previous
one has not been achieved by a given deadline.

5. Experiments

Although we carried out experiments on many problems and instances, with
many algorithmic variants, we report in this paper only the ones that have been
carried out on randomly generated, but not completely homogeneous, binary
CSPs3, with a limited number of algorithmic variants, some of them dedicated
to consistent instances and others dedicated to inconsistent ones.

5.1. Problem instances

We considered binary CSPs, randomly generated with the usual four parame-
ters: number of variables n, domain size d (the same for all the variables), graph
connectivity p1, and constraint tightness p2 (the same for all the constraints), but
we broke their homogeneity by partitioning the set of variables into nc clusters of
the same size and by introducing a graph connectivity p1 inside each cluster (the
same for all the clusters) and a lower one p1c between clusters.

The experimental results that are shown in Figures 8 and 9 have been obtained
with n = 50, d = 15, nc = 5, p1 = 30, p1c = 20, p2 = 100·np

d2 = 100·np
225 , and np

varying between 81 and 93 by step of 1 around the complexity peak, that is p2

varying between 36 and 41.3. 10 instances have been generated for each value of
np. For np ≤ 87 (p2 ≤ 38.7), nearly all the generated instances were consistent
and we only considered them (no inconsistent instances). Inversely, for np ≥ 88
(p2 ≥ 39.1), nearly all the generated instances were inconsistent and we only
considered them (no inconsistent instances).

5.2. Algorithms

The algorithms we compared are backtrack (BT), conflict directed backjumping
(CBJ), dynamic backtracking (DBT), min conflicts (MC), and three variants of
decision repair : DR(rand), DR(mostdoubt), and DR(mindestroy).

Except MC, all these algorithms perform forward checking. Except MC and
BT, all of them compute and record value removal explanations, and maintain
only those that remain relevant. Forward checking is only performed on the unas-
signed variables and on their current domains. Except MC, all of these algorithms
give priority for assignment (resp. unassignment) to the variable that has been

3 The choice of focusing experiments on this kind of problems is that classical random CSPs
are too homegeneous to exhibit the benefits of methods that turn to advantage the explicit or
implicit structure of the instance to solve. For example, all the variables in a classical randomly
generated instance have more or less the same degree. Although less systematic, the experiments
we carried out on Latin square completion problems, another kind of structured problems [7],
produced results that are similar to the ones we show in this section.
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unassigned (resp. assigned) just before (see Sect. 2.3). Except for MC, the as-
signment heuristic consists in choosing an unassigned variable of smallest ratio
between its current domain size and its degree in the constraint graph. Except for
MC and the second variant of DR (DR(mostdoubt)), the value heuristic is random.
The three variants of DR have in common the choice of the variable to unassign
inside the current inconsistency explanation, but differ in the way of making this
choice4:

• DR(rand) makes it randomly with a uniform probability distribution over
the current inconsistency explanation;
• DR(mostdoubt) uses the results of the pre-computing, for each value of

each variable, of the number of values it removes in the domains of the
other variables; values are ordered in each domain according to an increas-
ing value of this number; the first value in each current domain is chosen
for assignment; the doubtful nature of an assignment is measured by the
difference between the number associated with the first value and the one
associated with the second one; a variable the assignment of which is the
most doubtful (such that the difference is the smallest) in the current
inconsistency explanation is chosen for unassignment, with random tie-
breaking; such a heuristic clearly aims at producing solutions by removing
doubtful assignment choices;
• DR(mindestroy) uses weights that are associated with each assigned vari-

able; when assigned, the weight of a variable v is initialised with the num-
ber of values its assignment removes in the domains of the not assigned
variables; when unassigned, its weight is reset to 0 and its previous weight
is equally distributed among the variables in the current inconsistency ex-
planation that are different from v; a variable the weight of which is the
smallest in the current inconsistency explanation is selected, with random
tie-breaking; this heuristic clearly aims at producing inconsistency proofs
by keeping recorded as long as possible value removal explanations which
result either from constraint propagation or from backtrack and may have
been generated thanks to a lot of computation.

5.3. Experimental results

Because all the considered algorithms involve random choices, each of them has
been run 20 times on each instance. Each run has been given a maximum CPU-
time of 1200 seconds. A CPU-time of 1200 seconds is associated with any run
which did not finish by the deadline. Figure 8 reports the median CPU-time as a
function of p2, on consistent and then on inconsistent instances. Figure 9 reports
the percentage of runs which did not finish by the deadline, among all the runs

4 The ways of choosing the variable to unassign inside the current inconsistency explanation
used in these three variants are, among all we have experimented, the ones that exhibit a be-
haviour that is significantly better than the one of classical algorithms at least on a significant
constraint thightness interval: before, at, or after the consistency/inconsistency frontier.
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Figure 8. Median CPU-time on randomly generated consistent
(top) and inconsistent (bottom) problem instances. Note that
scales are different for sake of readability.

on all the instances associated with each value of p2, on consistent and then on
inconsistent instances. These results allow us to make the following observations.

• If MC may be efficient on consistent instances, it becomes quickly inef-
ficient when approaching the consistency/inconsistency frontier; it is, as
other classical local search algorithms, unable to solve inconsistent in-
stances.
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Figure 9. Number of unsolved consistent (top) and inconsistent
(bottom) problem instances within 1200 seconds. Note that scales
are different for sake of readability.

• BT, CBJ, and DBT present the same usual behaviour with a peak of
complexity at the consistency/inconsistency frontier; results of CBJ and
DBT are clearly better than those of BT on consistent and inconsistent
instances; on consistent instances, CBJ performs better than DBT, but
situation is opposite on inconsistent instances.
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• DR(rand) and DR(mostdoubt) produce practically identical results, with
only a small advantage to the second one; their global behaviour is similar
to that of MC; although they are the most efficient on consistent instances
until the consistency/inconsistency frontier, they are, as MC and other
classical local search algorithms, unable to solve inconsistent instances.
• Although it is basically a local search algorithm in the space of partial

assignments, and thus a priori incomplete, DR(mindestroy) presents the
same behaviour as do complete algorithms such as BT, CBJ, and DBT;
moreover, it is the most efficient on inconsistent instances until the con-
sistency/inconsistency frontier.

6. Sufficient conditions of completeness

These experimental results show that the behaviour of some instances of deci-
sion repair, such as DR(mindestroy), is similar to the one of complete algorithms
such as backtrack, conflict directed backjumping, and dynamic backtracking. It ex-
hibits the same easy-hard-easy pattern and is clearly different from the one of
incomplete algorithms such as min conflicts. Hence, a question arises: are these
instances in fact complete?

One can first note that dynamic backtracking, which is an instance of decision
repair where the variable to unassign is systematically the most recently assigned
one in the current inconsistency explanation, has been proven to be complete [5].
Moreover, other instances of decision repair where only partial order conditions
must be met between the variable to unassign and the other variables in the cur-
rent inconsistency explanation (partial order and general partial order backtrack-
ing) have been proven to be complete too [3, 6]. One the other hand, incomplete
dynamic backtracking, which can be seen as a variant of decision repair where the
variable to unassign is chosen either randomly or using any heuristic is clearly
incomplete [11].

This suggests that some freedom in the choice of the variable to unassign is
not incompatible with completeness, but that some restrictions of this freedom
are necessary to guarantee it. In this section, we consider two kinds of restrictions
that are sufficient to guarantee completeness and generalise the result of complete-
ness of dynamic backtracking. Note that these restrictions are sufficient, but not
necessary to guarantee completeness, and that other restrictions could offer the
same guarantee.

First, we assume that a weight w(v, k) can be associated with each variable v at
each step k of the algorithm. A step is associated with each passing through the
main repeat loop of the algorithm with a locally consistent or inconsistent partial
assignment (variable bool set to true or false; see Fig. 1). Then, we assume that
these weights meet the following initialisation and updating rules:

(1) at k = 0, all the weights are initialised to 0;
(2) if a variable v is assigned at step k, its weight at step k+1 is set to α(v, k)

and the weights of all the other variables are not modified;
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(3) if a variable v is unassigned at step k, its weight at step k + 1 is set to
0, the weight of each assigned variable v′, involved or not in the current
inconsistency explanation, is updated by adding β(v′, k) to it, but the
weights of the not assigned variables are not modified.

Note that, at each step k, the weights of the not assigned variables are null. The
quantity α(v, k) represents the importance or the confidence that can be associated
with the assignment of a variable v at step k. The quantity β(v′, k) represents the
change in the importance or the confidence associated with the assignment of a
variable v′, resulting from the unassignment of another variable v at step k, in
other words the influence of v’s unassignment on v′’s weight.

We assume that the decision repair algorithm chooses systematically the vari-
able to unassign among the ones of smallest weight in the current inconsistency
explanation, that is among the ones the assignment of which is the least important
or reliable. We assume also that, if there are more than one variable of small-
est weight in the current inconsistency explanation, the one to unassign is freely
chosen, for example randomly with a uniform distribution. In such conditions,
Theorems 6.1 and 6.2 can be proven.

Theorem 6.1. If (1) ∀k, ∀v, [α(v, k) ≥ 0] ∧ [β(v, k) ≥ 0] ∧ [w(v, k) ≤ wMax] and
(2) ∀k, ∀v, ∀v′, [v �= v′]∧[v, v′assigned at step k]⇒ [|w(v, k)−w(v′, k)| ≥ dMin >
0], then decision repair is complete.

In other words, if α and β are positive or null, if weights have an upper bound
wMax, and if the distance between the weights of two assigned variables has a
lower bound dMin > 0, then decision repair is complete.

Using a more symbolic approach, Theorem 6.1 could be reformulated as follows:
if each variable is valued using a finite and totally ordered valuation set E, if
the valuation of each not assigned variable is the minimum element of E, if the
valuation of a variable cannot decrease unless it is unassigned, and if two assigned
variables cannot be equally valued, then decision repair is complete.

One can observe that dynamic backtracking meets these conditions by simulat-
ing it using the following values for α and β: if v is assigned at step k, α(v, k) is
equal to the number of not assigned variables at step k; if v is unassigned at step
k, β(v, k) is equal to 1 for all the assigned variables the weight of which is smaller
than v’s weight and equal to 0 for all the other assigned variables. It is easy to
show that the weight of each assigned variable is an integer between 1 and the
number n of variables, that two assigned variables cannot have the same weight,
and that the variable to unassign is systematically the most recently assigned in
the current inconsistency explanation. But dynamic backtracking can be gener-
alised without forsaking completeness by using any other criterion (different from
the number of not assigned variables) to set α(v, k) when assigning v at step k.

It also possible to use any criterion as a first criterion and the assignment order
as a second criterion by using the following values for α and β: if v is assigned
at step k, if the valuation of v (using the first criterion) is equal to any number
e between 1 and eMax, and if m is the number of already assigned variables the
valuation of which (using the same first criterion) was equal to e, then α(v, k)
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is equal to e − m
n ; if v is unassigned at step k, β(v′, k) is equal to 1

n for all
the assigned variables v′ the valuation of which is equal to v’s valuation and the
weight of which is smaller than v’s weight, and equal to 0 for all the other assigned
variables. Conditions of Theorem 6.1 are still met, with wMax = eMax and
dMin = 1

n . Completeness is thus guaranteed.

Theorem 6.2. If (1) ∀k, ∀v, [0 ≤ α(v, k) ≤ αMax] ∧ [0 ≤ β(v, k) ≤ f(w(v, k))],
f being a continuous, positive, and strictly increasing function, and
(2) ∀k, ∀v, [[v unassigned at step k] ∧ [|IE(k)| > 1]]⇒ [β(v′, k) ≥ βMin > 0] for
at least one variable v′ of minimum weight in IE(k)−{v}, then decision repair is
complete.

In other words, if α and β are positive or null, if α has an upper bound αMax, if
β(v, k) has an upper bound of the form f(w(v, k)), f being a continuous, positive,
and strictly increasing function, and if, when a variable v is unassigned at step
k and is not alone in the current inconsistency explanation IE(k), the weight of
one of the variables in IE(k) − {v} of minimum weight, is increased by at least
βMin > 0, then decision repair is complete.

In Theorem 6.2, the condition of Theorem 6.1 of bounded weights is replaced by
conditions of bounded α and β: a unique bound for α and a bound which depends
on the current weight of the concerned variable for β. Moreover, the condition of
Theorem 6.1 of a minimum distance between the weights of two assigned variables
is replaced by the condition of a minimum increase in the weight of at least one
variable of minimum weight in IE(k)−{v}, when v is unassigned at step k and is
not alone in IE(k). Note that v has been already chosen to be unassigned among
the variables of minimum weight in IE(k). Its weight at step k+1 is then set to 0.
Moreover, if |IE(k)| > 1], the weight of at least one variable of minimum weight
in IE(k) − {v} is increased by at least βMin > 0. Note also that two assigned
variables may have now the same weight.

Let us consider for example the following way of setting α and β: if v is assigned
at step k, α(v, k) is equal to the number of values the removal of which results from
v’s assignment; if v is unassigned at step k, if IE(k) is the current inconsistency
explanation, then β(v′, k) is equal to w(v,k)

|IE(k)−1| for all the variables v′ in IE(k)
that are different from v, and equal to 0 for all the other assigned variables. In
case of assignment, the more removed values, the higher weight. In case of unas-
signment, the weight of the unassigned variable is equally distributed among the
other variables involved in the current inconsistency explanation. It is lost if the
unassigned variable is alone in the current inconsistency explanation. Finally, the
variable to unassign is roughly speaking chosen among the variables in the current
inconsistency explanation that remove either directly (via constraint propagation)
or indirectly (via backtrack) the smallest number of values in the domains of other
variables. This is the heuristic we use in the algorithm DR(mindestroy) the exper-
imental results of which are shown in Section 5. This name is justified by the fact
that this heuristic tries to maintain as much as possible the removals and removal
explanations that have been built so far, in order to build a problem inconsistency
proof. It is easy to show that conditions of Theorem 6.2 are met by this heuristic,
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with αMax = (n − 1) · d (maximum number of values removals resulting from
one assignment, if n is the number of variables and d the maximum domain size),
f the identity function (because, in the best case, there is only one variable in
the current inconsistency explanation other than the unassigned variable v and
because v’s weight is the smallest one in the current inconsistency explanation),
and βMin = 1

n−1 (because, in the worst case, a weight of 1 is equally distributed
among all the other variables). Completeness is thus guaranteed.

To prove both theorems, it must be first noted that there are only two termina-
tion cases for the decision repair algorithm: either a complete consistent assign-
ment which is a proof of consistency, or an empty inconsistency explanation which
is a proof of inconsistency. So, to prove algorithm completeness, it suffices to prove
that it terminates. Termination proofs can be found in a longer version of this pa-
per available at http://www.laas.fr/~ cpralet/RAIRO-complete-paper.pdf.
Roughly speaking, the proof of Theorem 6.1 uses the fact that weights are bounded.
The proof of Theorem 6.2 is more complex because weights are no more assumed
to be bounded. The sketch of the proof is the following one: let us assume that the
algorithm does not terminate; according to a first lemma (Lem. 1), ∃k0 ≥ 0 such
that no definitive value removal occurs after step k0; according to a second lemma
(Lem. 7), ∀A, ∃k1 > k0 such that the weight of at least one variable is strictly
greater than A at step k1; then, according to a third lemma (Lem. 9), we can infer
that ∀i, 1 ≤ i,≤ n, ∀A, ∃k1 > k0 such that the weights of at least i variables are
strictly greater than A at step k1; this applies for i = n; thus, ∀A, ∃k1 > k0 such
that the weights of all the variables are strictly greater than A at step k1; but,
αMax is an upper bound on the minimum weight over all the variables because,
in case of a partial assignment, the weight of at least one variable is null and be-
cause, in case of a complete assignment, the weight of the last assigned variable is
smaller than or equal to αMax; setting A > αMax results in a contradiction; as
a consequence, the algorithm terminates.

It must be however stressed that, although completeness is guaranteed, the
worst-case solving time of decision repair, equipped with such heuristics, is not
the same as the one of dynamic backtracking. It is in fact higher. If a search
state is characterised by a partial assignment and a set of value removals from
the domains of the not assigned variables, because of its termination property,
no search state is visited twice by dynamic backtracking. The same property
holds with decision repair, when heuristics satisfy conditions of Theorems 6.1
or 6.2, but with a search state now characterised by a partial assignment, a set
of weights associated with the assigned variables, and a set of value removals
from the domains of the not assigned variables. This implies that the worst-case
solving time is roughly speaking multiplied by the maximum number of weight
combinations. This number may be huge and depends on the values of wMax
and dMin in Theorem 6.1, and on the value of αMax and on the function f in
Theorem 6.2.

In fact, we hope that in spite of its higher worst-case solving time, decision
repair will be able to exploit its larger freedom in the choice of the variable to
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unassign and to exhibit globally lower mean value and variance of the solving
time. Experimental results of Section 5 show that this may be the case.

7. Looking further

Beyond these first results, many questions remain unanswered and need further
theoretical and experimental studies. Among them:

• Can we define other or weaker sufficient conditions of completeness for
decision repair algorithms? Can we better define necessary conditions of
completeness?
• What can be the actual benefit of a strategy which would consist to run

in parallel two searches: one aiming at building a solution, another one
aiming at building an inconsistency proof? Could both searches benefit
to each other, for example by exchanging locally consistent partial assign-
ments or value removal explanations?
• What is the influence of the level of local consistency, checked on each

partial assignment, on the efficiency of this kind of local search (forward
checking, arc consistency. . . ), and, beyond that, the precise influence of
all the parameters listed in Section 2.3?
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