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Abstract. In this paper we consider the operational planning prob-
lem of physical distribution via a fleet of hired vehicles, for which the
travelling cost is solely a function of the sequence of locations visited
within all open delivery routes, while vehicle fixed cost is inexistent.
The problem is a special class of vehicle routing and is encountered in
the literature as the Open Vehicle Routing Problem (OVRP), since ve-
hicles are not required to return to the depot. The goal is to distribute
in an optimal way finished goods from a central facility to geographi-
cally dispersed customers, which pose daily demand for items produced
in the facility and act as sales points for consumers. To solve the prob-
lem, we employ an annealing-based method that utilizes a backtracking
policy of the threshold value when no acceptances of feasible solutions
occur during the search process. Computational results on a set of
benchmark problems show that the proposed method consistently out-
performs previous algorithms for solving the OVRP. The approach can
serve as the means for effective fleet planning in real-life problems.

Keywords. Distribution, vehicle routing, logistics.

1. Introduction

Product proliferation, short product life, customer responsiveness and a con-
stant thrive for expanded market share define a very competitive business environ-
ment that places heavy constraints and requirements on today’s enterprises, which
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are also responsible, in the majority of the cases, for the delivery of products or
services to the final customers. Distribution is a critical problem within operations
management and its applications are interrelated to transportation, stock control
and warehousing. Planning delivery operations involves decision-making issues
that relate to the sequence of tasks that must be performed in order to minimize
operational costs and achieve desired service levels.

In this paper we address the planning problem of the physical distribution of
goods to customers’ locations, after all production, packaging and other value-
added activities have been completed. The problem is of particular importance
since the relevant operational costs (i.e., labour, fuel and other associated costs)
constitute a large proportion of the overall field expenses of a company [13]. The
problem becomes much more relevant, from a practical perspective, when the
vehicle fleet is hired, i.e., vehicles do not constitute company assets. In such cases
effective planning is a critical success factor for the operational effectiveness and
the resulting service level, since non-company resources are responsible for the
physical interface with the final customer.

The real-life situation we address in this paper can be accurately described as
follows. Consider a central warehouse where items that have to be delivered to a
set of customers are consolidated. Customers are geographically dispersed within a
distance radius that allows for demand to be satisfied through daily deliveries. We
assume that customer demand is known when a delivery schedule is determined,
as is the distance or the travel time between the warehouse and each customer’s
location, as well as between each pair of customers’ locations.

The daily delivery process is performed according to the following steps: prod-
ucts are loaded on appropriate hired vehicles at the warehouse and, subsequently,
they are transported via a road network to the customers’ locations. At each
location, quantities that equal customer demand are unloaded from the vehicle,
paperwork (shipping documents, various bills and invoices) is filled and exchanged,
and then vehicles travel to subsequent customers’ locations where the process is
repeated. Since vehicles are hired and not owned, after all deliveries have been
performed (end of a shift), the vehicles do not return to the warehouse.

The problem is a special class of the well-known Vehicle Routing Problem (VRP)
[7, 18] called Open VRP (OVRP) [15]. The depot of the OVRP is the shipping
area of the warehouse, where vehicles are loaded up to (or sometimes below, ac-
cording to customer requests) their capacity and they perform open tours during
which they visit several customers and deliver products that equal each customer’s
demand. The depot represents the originating (but not terminating) node of all
tours. The goal is to determine the number of vehicles that are required to ser-
vice all customers with the minimum operating cost, i.e., in the minimum time or
following the paths of minimum distance.

From a graph theory point of view, the difference between the OVRP and the
classical VRP is that a solution of the OVRP consists of a set of Hamiltonian
paths, instead of Hamiltonian cycles. In addition, since the OVRP sub-problem of
finding the best Hamiltonian path for each set of customers assigned to a vehicle
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is NP-hard [16], and it can be converted into an equivalent Hamiltonian cycle, the
overall OVRP is also NP-hard [2].

Due to the computational complexity of the OVRP, heuristic and metaheuristic
methods have been employed to solve practical, real-life instances of the prob-
lem. Heuristics are solution derivation methods that perform relatively limited
exploration of the search space, aiming at producing a relatively good solution
as quickly as possibly. Metaheuristics constitute the most promising and effec-
tive type of solution methods for all variants of the VRP [6, 17]. Metaheuristics
are general-purpose mechanisms for solving hard optimization problems, which
perform a thorough exploration of the solution space and guide intelligently the
search process by using diversification and intensification strategies, and allowing
deteriorating or even infeasible intermediate solutions to be considered during the
search process. Below, we provide a brief survey of the relatively limited heuristic
and metaheuristic methods proposed to-date to solve the OVRP.

Bodin et al. [1] were the first to address real life applications modelled as
OVRPs. The authors considered an express airmail distribution problem including
many practical side constraints such as delivery or pickup time windows, caps on
the total route length, and capacities. Two routing problems were separately
solved: One for deliveries and another for pickups, both using the Clarke and
Wright algorithm [5] with appropriate modifications to account for the openness
of the routes (no return to the depot) and for all side constraints.

Almost two decades later, Sariklis and Powell [15] re-examined this practical
variant of the VRP and named it Open VRP. They presented a two-phase heuris-
tic technique based on minimum spanning tree (MST) derivations, and following
the “cluster first – route second” approach. The clustering procedure provided an
initial assignment of customers to clusters, which was further improved by reas-
signing customers among them. In the routing phase, the concept of a chain was
introduced, as an ordered sequence of customers which starts at the depot, visits
several customers once and terminates at a final customer (no the depot). Each of
the formed clusters was revisited during the routing phase to determine the least
cost chain via the solution of an associated MST problem.

Finally, Brandao [2] proposed a tabu search metaheuristic for solving the OVRP,
in which several features from previous tabu search implementations for the clas-
sical VRP were used [10, 11]. The neighbourhood structure of this algorithm was
defined using insertion and swap moves between different routes, while interme-
diate infeasible solutions (in terms of capacity or maximum route length) were
considered. In order to manage infeasibilities, the authors introduced the concept
of penalizing the objective function using two penalty terms for measuring over-
capacity and over-duration respectively. In order to prevent cycling, a vertex that
was moved from one route to another at iteration t was prohibited from being
reinserted in the first route until iteration t + β (prohibition of reverse moves),
where β was a fixed integer or a randomly drawn one from a specific interval.

In this paper a simple and effective variant of the threshold accepting algorithm,
called Backtracking Adaptive Threshold Accepting (BATA), for solving the OVRP
is presented. The basic innovation of the BATA method is the employment of a
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backtracking policy for the threshold value when no acceptances of feasible solu-
tions are encountered during the search process. According to the proposed policy,
the threshold is not only reduced in a monotonic fashion during the optimisation
procedure, but it may incorporate an occasional increase in its value, called back-
tracking. Adopting this non-monotonic schedule results in an oscillating strategy
that achieves a dynamic balance between diversification (when the threshold value
is high enough) and intensification (when the threshold value is low) of the search
process. Our major contribution is to show that BATA, this lean and parsimo-
nious method can outperform more complicated strategies, such as tabu search,
for the solution of the OVRP.

The remainder of the paper is organized as follows: Section 2 presents BATA,
the proposed annealing-based method. In Section 3, the computational results
of BATA on well-known benchmark problems extracted from the literature [4]
are provided and compared with previously published work. Finally, Section 4
summarises our conclusions and offers pointers to further research.

2. The proposed threshold accepting approach

In the early 70s, the most popular heuristics developed for solving NP-hard
problems, such as the VRP, were based on local search improvement techniques.
Local search is an iterative procedure that, starting from an initial feasible solu-
tion, progressively improves it by applying a series of local modifications called
moves. As the local search evolves, the set of moves that can be applied to a
current solution s, define a set of neighbouring solutions, N(s), which is a sub-
set of the search space (i.e., all possible solutions than can be visited during the
search) consisting of solutions generated by applying a single transformation to s.
According to local search rationale, at each iteration, the search proceeds to an
improving neighbouring feasible solution until it arrives at a local optimum of
unknown quality.

Heuristic methods were the heart of traditional optimisation approaches un-
til the development of the Simulated Annealing (SA) metaheuristic [14] in 1983.
SA is inspired by the physical annealing process emanating in statistical mechan-
ics. The approach uses local search while offering the possibility of accepting,
in a controlled manner, worse solutions. This feature allows SA to escape from
low quality local optima. More precisely, at each iteration of SA, a neighbour
s′ ∈ N(s) of the current solution s is generated stochastically and a decision is
made whether s′ will replace s. If s′ is better than s, i.e., ∆ = c(s′) − c(s) ≤ 0
(for a minimization problem), the search moves from s to s′; otherwise, the search
proceeds to s′ with a probability e(−∆)/t. This probability depends on: a) the
degree of the degradation ∆ (the smaller the ∆, the greater the accepting proba-
bility), and b) a control parameter t called temperature (higher temperatures lead
to higher accepting probabilities and vice versa). The temperature is controlled by
a cooling schedule specifying how this parameter would be progressively reduced.
Typically, SA stops when a fixed number of non-improving iterations is realized
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within a temperature, or when a pre-specified number of iterations is reached. SA
is proven to converge to an optimal solution in infinite computational time.

Threshold accepting (TA) [9] is a modification of SA, which eliminates the
stochastic element in accepting worse solutions by introducing a deterministic
threshold, denoted Th > 0, and accepts a worse solution if c(s′) − c(s) ≤ Th (the
inequality represents the move acceptance criterion). During the optimisation pro-
cess the threshold level is gradually reduced, just like the temperature parameter
in SA. As long as the value of Th is high, the local search performed is not goal
oriented, thus achieving high diversification and low intensification of the process.
However, as the algorithm evolves and Th is reduced, the balance between diversi-
fication and intensification changes until the typical threshold accepting algorithm
behaves nearly like a local descend search method.

The key advantages of TA are its simple structure, general applicability and
computational effectiveness on different combinatorial optimization problems [3].
According to Golden et al. [12], these characteristics should belong to any VRP-
heuristic in the future. Following this rationale, the TA-based approach for solving
the OVRP, named Backtracking Adaptive Threshold Accepting (BATA) method
includes the following steps:

Step 1 (Initialisation). Produce an initial feasible solution by dispatching one
vehicle to each customer. Select an initial threshold value Tho.

Step 2 (Local search). Begin with the initial solution s of Step 1 and perform
a blend of moves by exchanging edges (2-opt move) [8] or nodes (1-1 and 1-0
Exchange moves) [19] to reach a solution s′ ∈ N(s) (i.e., in the neighbourhood of
the current one). Moves are specified as follows:

• 2-Opt move. Suppose a single route consists of the following ordered set
of nodes (depot, 1, 2, 3, . . . , k), where k is the last customer to be serviced.
Let {(i, i+1), (j, j+1)} be a set of two edges belonging to this route that
form a criss-cross. The 2-Opt move eliminates the criss-cross and reverses
a section of the route by deleting the edges (i, i+1), (j, j+1) and replacing
them with (i, j), (i+1, j+1) to reconstruct the route. In case of multiple
routes, edges (i, i+1), and (j, j+1) belong to different routes and the
2-Opt move is applied exactly as in the case of a single route.

• 1-1 Exchange move, which swaps two nodes from the same route. If the
initial route consists of the nodes (depot, . . . , i-1, i, i+1, . . . , j-1, j, j-1,
. . . , k), the improved one is constructed as (depot, . . . , i-1, j, i+1, . . . ,
j-1, i, j+1, . . . , k). The same procedure is applied in the case of multiple
routes, but swapping of nodes takes place between different routes.

• 1-0 Exchange move, which transfers a node from its position in one route
to another position in either the same or a different route. Consequently,
while the initial route is (depot, . . . , i, i+1, . . . , j-1, j, j+1, . . . , k), the
improved one is (depot, . . . , i, j, i+1, . . . , j-1, j+1, . . . , k).
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Figure 1. The local search moves performed within BATA.
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The customers involved in the implementation of the above moves and the type
of moves are selected stochastically. The local search moves described above are
demonstrated in Figure 1.

Step 3 (New acceptances based on the move acceptance criterion).

Step 3(a). Generate a neighbour solution s′ from the current solution s
by applying one of the local search moves shown in Figure 1.
Step 3(b). Decide on the acceptance of the proposed solution s′ based
on the move acceptance criterion expressed as c(s′)− c(s) ≤ Th, where Th

is the current threshold value (equal to Th0 at the first iteration).
• If c(s′)− c(s) ≤ Th, the proposed solution s′ is accepted; thus s = s′.

Then the threshold value is lowered as follows: ThNEW = Tr*Th, Th =
ThNEW , where Tr is a parameter denoting the threshold reduction
rate. If c(s) < c(sbest), then sbest = s.

• If c(s′) − c(s) > Th, then the proposed solution s′ is not accepted
while the threshold value Th is raised (or backtracked) as follows:
ThNEW = Th/Tr (Th/Tr − Th)*(1-Tb), Th = ThNEW , where Tb is the
percentage of threshold backtracking. The increased threshold value
(after backtracking) must always be smaller than the one before the
backtrack step. In this way, BATA attempts to find the smallest pos-
sible value for the threshold so as to achieve accepted feasible moves
without causing excessive computational effort to the optimisation
procedure.

– Go to Step 3(a) using the updated threshold value and repeat Step 3(a)
and Step 3(b).

Step 4 (stopping criterion). The BATA optimization process is stopped when
although the value of the threshold Th has been backtracked, no feasible move
(which gives the proposed neighbour solution s′) can satisfy the move acceptance
criterion c(s′) − c(s) ≤ Th for a number of consecutive iterations. Finally, report
the best solution found.

The following example illustrates the BATA mechanism for the OVRP: Let
Tr = 0.9999, Tb = 0.98 and Tho = 48 and suppose there are feasible moves
satisfying the move acceptance criteria in Step 3. Hence, the value of the threshold
is lowered and it is set to:

ThNEW = T ∗
hoTr = 48∗0.9999 = 47.9952, and Th = ThNEW .
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Figure 2. The Backtracking Adaptive Threshold Accepting method.

Figure 3. BATA Flowchart.

If no feasible move satisfies the move acceptance criterion for Th = 47.9952,
then Th must be backtracked to a value “close” to its previous one and specifically
to the value of:

ThNEW = Th/Tr(Th/Tr − Th)∗(1 − Tb) = 47.9952/0.9999

− (47.9952/0.9999− 47.9952)∗(1 − 0.98) = 47.9999.

Obviously, the increased value of the threshold is always smaller than the one
before the backtracking step, since:

Tho = 48 > 47.9999 > ThNEW = 47.9995.

The main steps of BATA are summarized in Figure 2.
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To graphically illustrate the mechanics of the BATA method, we provide in
Figure 3 a flowchart that shows all the steps and decisions involved within the
proposed algorithm as well as their natural flow and interrelationships.

3. Analysis of the BATA parameters

The majority of metaheuristics for the vehicle routing problem include several
parameters that need to be set before the algorithm is executed. This is indeed the
case with BATA, which employs four such parameters, namely: Initial Threshold
Value (Tho), Maximum number of feasible moves satisfying the move acceptance
criterion within the Inner Loop (Maxup), Percentage of threshold backtracking
based on the previous iteration (Tb), and Rate of threshold reduction (Tr). A
common and well accepted way to approach the interrelationships between the
parameters of a metaheuristic, and their effect to the evolution process and the
resulting solution quality, is the empirical analysis of “hard” problem instances.
Thus, we concentrated on the analysis of the BATA parameters based upon the
large scale instance of Christofides et al. [4] (Problem 5, including 200 customers).

The process we employed for the analysis is as follows: first we defined a set
of initial parameter values ad hoc. Then we used a sequential approach to fine
tune one parameter on a reasonable value range, and repeated the process for the
remaining ones keeping the previously reached best values for parameters already
examined. For the problem instance under considerations, the initial values were
chosen as follows: Maxup = 25, Tb = 0.98 and Tr = 0.99999. Based on these
values, we examined the effect of varying the values of Tho in the range [36 . . . 45].
The results are shown in Figure 4a. Subsequently, as shown in Figure 4b, we kept
the value of Tho that provided the minimum cost (Tho = 42), and varied value of
Maxup in the range of [20, . . . ,30].

The parameter-tuning procedure was carried on in the same manner trying
to reach the best values of Tb, and Tr in the ranges Tb ∈ [0.90, . . . , 0.99] and
Tr ∈[0.9999, . . . , 0.99999], respectively. The results are shown in Figures 4c
and 4d. A key observation from the curves that relate parameters value and
solution quality is that no specific trend can be established. This is usually the
case with metaheuristics employing a stochastic evolution process.

4. Computational results

The proposed algorithm, BATA, for the OVRP was coded in MS Visual C++ 6.0
and run on a Pentium II/400-128MB RAM. The computational experiments were
performed as follows:
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Figure 4. Sensitivity analysis of BATA parameters for
Christofides et al. [4] problem 5.
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Table 1. Standard parameter setting of BATA on Christofides
et al. [4] data sets.

BATA Parameter Description Value

Maxup
Maximum number of feasible moves satisfying the

30
move acceptance criterion within the Inner Loop

Tho Initial threshold value 42
Tr Threshold reduction rate 0.99999

Tb
Percentage of threshold backtracking based on the

0.99
previous iteration

4.1. Benchmark problems

BATA was tested on the well-known benchmark problems of Christofides
et al. [4]. These problems include between 50 and 199 nodes (customers) as well as
the depot, and have capacity restrictions but no route length constraints or node
service times. Problems 1–5 contain customers randomly located over a square,
while problems 11–12 have clustered customers. Euclidean distances are used in
all problems, and all computations were performed with full double precision.

4.2. Parameter setting

The parameter setting of BATA resulting from the analysis of Section 3 was
deemed as the “standard” parameter value set and was applied to solve all the
benchmark problems of Christofides et al. [4]. The “standard” parameter values
are shown in Table 1. Note that these values represent the best combination of
parameters for problem 5.

4.3. Results and comparison with previous methods

Table 2 compares the results obtained by BATA, using the standard parameter
setting of Table 1, to those derived using the OVRP solution approach of Sariklis
and Powell heuristic [15], and the tabu search metaheuristic of Brandao [2]. Close
examination of the results shows that BATA improves upon five out of seven so-
lutions generated by other two approaches and provides higher quality solutions
for problems 1, 2, 5, 11 and 12. Thus, for the data tested, the proposed algo-
rithm consistently outperforms the Sariklis and Powell heuristic [15], improving
the mean of the solutions on the examined benchmark problems by 39.15%, as well
as the Brandao tabu search method [2] by 0.92%, even though tabu search is gen-
erally considered more effective than annealing-based metaheuristics for solving
all variants of the method [7].
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Table 2. Comparison between literature methods and the BATA.

Problem Number of customers Sariklis & Powell [15] Brandao [2] BATA
1 50 488.2 416.06 412.96
2 75 795.3 567.14 564.06
3 100 815.0 640.42 642.42
4 150 1034.1 734.72 736.89
5 199 1349.7 914.51 879.37
11 120 828.3 683.02 679.60
12 100 882.3 534.40 534.24

Mean 884.7 641.47 635.65
Percentage Above BATA Mean +39.15% +0.92%
Italics indicate the problems where BATA outperforms other approaches
for OVRP.

Table 3. CPU time (seconds) for BATA and the other literature methods.

Computational
Platform

Pentium
133 MHz

Pentium III
500 MHz

Pentium II
400 MHz

Problem
Number of
customers

Sariklis &
Powell heuristic

Brandao
metaheuristic

BATA
metaheuristic

1 50 0.22 17.3 38.62
2 75 0.16 40.2 68.89
3 100 0.94 27.3 56.54
4 150 0.88 40.7 81.69
5 199 2.20 47.6 98.13
11 120 1.54 21.3 37.67
12 100 0.76 65.1 84.54

Table 3 reports the computational times of BATA and of the other two methods
developed for the OVRP on various platforms [2, 15]. Regarding the BATA CPU
times, despite being quite satisfactory, a fair comparison in terms of computational
efficiency is rather difficult and probably not useful, due to the several factors that
affect the computational speed, such as the method design, the data structures,
coding skills, compiler and hardware.

Finally, Table 4 presents all the routes of the best BATA solutions for the
problems of Christofides et al. [4] that we examined.



A THRESHOLD ACCEPTING APPROACH TO THE OPEN VRP 357

Table 4. Routes of best BATA solutions on Christofides et al. [4]
problem instances.

Problem 1 - 50 customers 

Route 

Index 

Sequence of Nodes 

1 0 11 38 9 50 16 2 29 21 34 30 0  

2 0 6 14 13 41 19 42 40 0    

3 0 46 12 5 49 10 39 0      

4 0 47 18 4 17 37 44 15 45 33 0   

5 0 27 48 8 26  23 24 43 0    

6 0 32 1  31 28 3 20 35 36 0   

Total Distance = 412.96 

 

 
Problem 2 - 75 customers 

Route 

Index 

Sequence of Nodes 

1 0 12 40 9 39 72 31 0      

2 0 45 29 5 37 20 70 60 71 36 69 0  

3 0 17 3 44 32 50 18 25 55 0    

4 0 4 30 48 47 21 61 0      

5 0 67 46 8 19 54 0       

6 0 75 68 2 74 28 62 22 0     

7 0 34 52 27 13 57 15 0      

8 0 7 35 53 11 14 59 0      

9 0 33 73 1 43 41 42 64 0     

10 0 6 51 16 63 23 56 49 24 0    

11 0 26 58 10 38 65 66 0      

Total Distance = 564.06 

 

 
Problem 3 - 100 customers 

Route 

Index 

Sequence of Nodes 

1 0 15 43 42 87 2 57 41 22 75 74 72 73 21 40 58 53 0 

2 0 62 10 70 30 20 51 9 81 33 50 1 69 27 0    

3 0 67 39 23 56 4 25 55 54 24 29 77 76 28 0    

4 0 64 49 36 47 46 8 45 17 84 5 60 83 18 89 0   

5 0 38 14 44 91 100 98 37 92 97 95 94 13 0     

6 0 86 16 61 85 93 59 99 96 6 0        

7 0 32 90 63 11 19 48 82 7 88 31 52 0      

8 0 65 66 71 35 34 78 79 3 68 80 12 26 0     

Total Distance = 642.42 

 

 
Problem 4 – 150 customers 

Route 

Index 

Sequence of Nodes 

    1 0 67  23  56  39 139    4 110 149   26 105   53     0             

    2 0   38 140  44 119 14 142 42 144 87 137 13 112     0          

    3 0   64   49 143   36   47 124   48   82     7 106   52 146     0          

    4 0 123   19 107 11   62 148  88  31 127  27     0                 

    5 0   51 103     9 120   81   33 102   50 111   28     0                 

    6 0   46     8 114 125   45   84     5 118   60   83  18   89     0               

    7 0   43   15   57     2 115 145   41   22 133   75 74   72   73   21 40   58 0      

    8 0   25   55 130   54 134   24   29 121   68 150   80 109   12 138   0             

    9 0   17 113   61   85   93   59 104   99   96     6 147     0                

   10 0   10 108 126  63   90   32 131 128   20   30 122   70 101     1 69 132 0      

   11 0   66   71   65 136   35 135   34   78 129   79     3   77 116   76   0             

Total Distance = 736.89 

25 

22

7
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Table 4. Continued.

Problem 5 - 200 customers 

Route 

Index 

Sequence of Nodes 

1 0 100   98   37 151   92   97 117   95   94 183 112 156     0         

2 0   23 186   56 197   72 198 180 105   53     0             

3 0  11 175 107   19 123 182     7 194 106 153   52 146     0         

4 0 159  62 148  88   31 190 127 167  27     0             

5 0 170   25   55 165 130   54 177 150   80   68 116 184  28     0        

6 0   46 174   45 125     8 114 199   83   60 118 166   89     0       

7 0   43   15 145   41   22 133   75   74 171   73   21   40 58 152 0   

8 0 164   34   78 169 121   29   24 163 134 109   12 154 138     0        

9 0   17 113   86 141   16   61 173   84     5 147     0        

10 0 192 119   44 191   91 193   85   93   59 104   99  96     6     0        

11 0  67   39 187 139 155     4 110 179 195 149   26     0           

12 0   38 140   14 142   42 172   87 144   57 178 115     2 137   13 0   

13 0 131   32 181   63 126   90 108   10 189   70 101 162   69 132 0   

14 0   66 188  20 128 160   30 122     1 176 111     0            

15 0     9 120   81 185   79 129     3 158   77 196   76     0           

16 0   64   49 143   36   47 168 124   48   82   18     0            

Total Distance = 879.37 

Problem 11 – 120 customers 

Route 

Index 

Sequence of Nodes 

1 0 8 12 13 14 15 11 10 9 7 6 5 4 3 1 2 88 0     

2 0 108 118 18 114 90 91 89 92 87 86 111 82 0         

3 0 103 104 99 100 116 98 110 115 97 94 93 96 101 102 0       

4 0 51 50 49 47 46 44 41 37 38 39 42 48 45 43 40 95 0     

5 0 56 55 58 60 63 66 64 62 61 65 59 57 54 53 52 105 0     

6 0 83 113 117 84 85 112 81 119 0             

7 0 120 0                    

8 0 68 73 76 77 79 80 78 75 72 74 71 70 69 67 107 106 0     

9 0 29 32 28 35 36 34 31 30 33 27 24 22 25 19 16 17 20 23 26 21 109 0

Total Distance = 679.60 

Problem 12 - 100 customers 

Route 

Index 

Sequence of Nodes 

1 0 24 25 27 29 30 28 26 23 22 21 20 0   

2 0 72 61 64 68 69 66 62 74 63 65 67 0   

3 0  9 3 4 2 1 75 0   

4 0 40 41 42 44 45 46 48 51 50 52 49 47 43 0 

5 0 12 14 16 15 19 18 17 13 10 0     

6 0 80 79 77 73 70 71 76 78 81 86 87 90 0  

7 0 82 83 84 85 88 89 91 0       

8 0 92 93 94 95 96 97 100 99 98 0     

9 0 31 35 37 38 39 36 34 33 32 0     

10 0 60 58 56 53 54 55 57 59 0      

Total Distance = 534.24 

11

5. Conclusions

In this paper we have proposed a metaheuristic method, called Backtracking
Adaptive Threshold Accepting (BATA) for solving the Open Vehicle Routing Prob-
lem (OVRP). The OVRP is of particular importance for fleet planning as it allows
companies to adopt the practice of hiring a fleet of vehicles to service their cus-
tomers and assigning these vehicles to open routes (i.e., routes that do not close
at the depot). The fundamental contribution of BATA is the employment of the
backtracking policy of the threshold value when no acceptances of feasible solu-
tions occur during the search process. The excellent performance of BATA and its
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simplicity shows that it can be employed (without demanding high coding skills)
as a powerful tool for effective fleet planning in real life problems.

In terms of future research directions, as an important number of industries
model their distribution operations as the OVRP (since they do not own a ve-
hicle fleet), we strongly believe that the goal should be to design simple (i.e.,
containing few parameters) and effective (i.e., resulting in high quality solutions)
metaheuristics for solving this interesting and practical distribution problem.
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