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Abstract. In this paper we consider the problem of scheduling prece-
dence task graphs in parallel processing where there can be distur-
bances in computation and communication times. Such a phenomenon
often occurs in practice, due to our inability to exactly predict the time
because of system intrusion like cache miss and packet transmission
time in mediums like ethernet etc. We propose a method based on the
addition of some extra edges to protect the initial scheduling from per-
forming badly due to such changes and provide an upper bound on the
performance guarantee for the scheduling algorithms. Moreover, this
construction guarantees a result at least as good as the result obtained
for the initial static scheduling. We also show that this construction is
a minimal set in context of partially on-line scheduling.

Keywords. Parallel processing, scheduling, stability, uncertainty,
communication delays.

1. INTRODUCTION

This paper investigates the effects of disturbances on scheduling algorithms dur-
ing the execution of a parallel program. This problem, which is one of the most
challenging problem in Parallel Processing, corresponds to determine a date when
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a task will start its execution and a processor location where it will take place.
For most applications, the computations can entirely be determined at compile
time. For irregular applications, these times may be difficult to predict with ac-
curacy. In the past it was often sufficient to run such a scheduling algorithm for
obtaining good performances (according to what it was expected). However, the
apparition of new parallel systems and execution supports have introduced some
unpredictable behaviors appearing at run time. The multiple levels of memory
hierarchy makes it also more difficult to predict the performances of local compu-
tations (inside the processors).

One of the most studied problem in parallel computing is the minimization of
the parallel time, also called makespan, of the application described by n tasks
subject to precedence constraints on m processors. This problem is known to be
NP-complete in all but a few very restricted cases, see for example [1]. Weights,
which represent the computation times, are associated to the tasks of the program,
and whenever two tasks are scheduled on different processors and they need to
communicate, a communication cost is associated to the edge between them.

There exist many efficient heuristics for the scheduling problem in the literature.
They make use of the information regarding the weights of the tasks and the edges.
But one issue that has not been addressed until recently is the stability of these
algorithms, where there are imprecisions in the estimates of computation and
communication times and these may change at run time.

For example, if the communication takes place over a network where there may
be contention for transmission, the communication delays are non-deterministic.
As regards to the computation time, the nodes may be multi users and system
intrusions render our estimates only approximate. Also this value is only ap-
proximated in most cases by the intrusion of monitoring tools. Building a good
theoretical model for such complex systems is a very intricate problem and the
analysis is in general intractable [10].

The main question in this context is: “What happens to a schedule if the initial
estimates are not good?”. People usually distinguish between static (at compile
time) and on-line (at run time) policies. We propose here an intermediate approach
where only estimations are known at compile time. From this partial knowledge,
a scheduling solution can be computed statically and then, potentially corrected
at run time. One possibility is simply to analyze the variation of the makespan
relatively to the disturbances on the estimated values, which occur at run time.
This is known as the sensitivity analysis. In this case, no further decisions are
allowed on-line. There exists a nice general result from Gerasoulis and Yang [3] for
the sensitivity, which establishes that if a scheduling algorithm has a performance
guarantee of B, then, the sensitivity remains bounded by a linear factor of B. The
coarser the grain of the task graphs, the closer to 1 is this factor.

Another way for this problem is robustness, find an a priori solution which
behaves well whatever the on-line disturbances may be, for a certain known set
of possible disturbances [6]. Robustness is an optimization problem, seeking for
a solution with good performances and low sensitivity. However, some anomalies
can not always be avoided, in these cases, we need a correction process.
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In the opposite, stabilization is the process whereby the on-line scheduler ajusts
the static schedule at run time. Some solutions have been proposed for guaranty-
ing the respect of deadlines in relation to real-time systems, see for instance [8,9].
Recently, this work has drawn attention in the context of disturbances on the com-
munication times by Guinand et al. [4]. This is one of the only existing practical
method. Their approach is to use partially on-line algorithms (i.e. a 2-phases ap-
proach based on on-line sequencing after a statically fixed allocation of the tasks).
The schedule is stabilized by adding extra edges between some tasks allocated
inside the same processors. Although some theoretical works are presented in this
work on specific task graphs, most of this study is based on experiments.

However, there have been only little theoretical investigations on this problem
except the bound of the sensitivity of [3]. Also as far as we know, the issue of
disturbances in computation time has not been addressed so far, except for some
applications in the different context of real-time [7,9]. In this paper, we provide a
theoretical framework for partially on-line scheduling algorithms and identify the
minimal set of extra edges to add on the task graph that are necessary to ensure
the performance guarantee under the severest disturbances.

We present in more details the problem and state the model precisely in Sec-
tion 2. In Section 3, we describe the new stabilization algorithm and prove its
performance guarantee. Finally, we conclude by presenting some perspectives.

2. PRELIMINARIES

We consider the problem of scheduling a parallel application described by a
directed acyclic graph G = (V, E). There is a weight associated with each node
of the graph representing the amount of computation time needed to perform
that computation. The weights associated with the edges denote the time taken
for communication, i.e. the data to exchange between processors. The set V =
{1,...,n} describes the tasks to be scheduled and E C V x V the precedence
constraints among them. Each task ¢ must perform on a processor during time
p; without preemption. Data dependence between tasks ¢ and j is represented
by a directed edge (i,5) € E. When tasks ¢ and j are not assigned to the same
processor, a communication delay C;; is assumed for data transfer between these
two tasks.

A schedule ¢ is an application such that each task i € V is assigned to be
executed on a processor, denoted 7 (i) and is associated a starting time S; where
the following holds:

Vi, 7, (i,7) € E, S; > 8 +p; + C; j where C; ; = 0 if (i) = (7).
Correspondingly, we define the finish time of task ¢ by F; = S; + p;.

For a given graph G, we denote by G the graph whose structure is the same as
that of G, it differs only in the weights associated with the nodes and the edges.
These new weights are denoted respectively by p; and C~'Z -
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FiGURE 1. Illustration of a schedule for a given graph on two
processors (the numbers beside the tasks represent the execution
times and all the communications are set to 1).

FIGURE 2. Execution graph (G,).

Figure 1 is a complete schedule example for a given graph.

Definition 1. Given a graph G and a schedule o determined on it, we denote
by G, the execution graph of G under o obtained by adding edges from task i
to j if 7 is executed before j on the same processor and there is not already an
edge between task i and task j. These edges are called pseudo-edges. They are
represented in dashed lines in Figure 2 on the same example as before.

Let us emphasize that the purpose of a pseudo-edge (i, j) is to ensure that task
gets executed before j even if there is no precedence constraint between them.

Note that G, has many transitive edges. It should be noted however that
transitive edges do not hamper the flexibility of execution order. It would be
sufficient to add an edge (4,7) if 7 is executed just before j. But the previous
definitions will simplify the presentation of the proofs.

We denote by PT(G,) the makespan of the execution graph G,. Note that a
schedule also specifies the processor allocation for each task.
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3. A NEW APPROACH

3.1. PRINCIPLE

Let us informally describe the principle of our new approach. To tackle the
problem of scheduling with on-line disturbances, most of the classical existing
scheduling methods like fully on-line scheduling and static scheduling are unsatis-
factory.

For on-line policies, since the arrival time of a task is not known at compile
time, this task can not be assigned to a processor and there is a need to exchange
informations at run time, which is generally costly. We already discussed the
limitations of the purely static approach as regards to disturbances. When some
knowledge about the tasks is known, a 2-phases clustering approach seems more
reasonable for coping up with the disturbances. Here, the assignment is deter-
mined at compile time and the sequencing is performed on-line on each processor
according to a ready list. However, there are problems with this basic 2-phases
approach. For instance, if a high priority task is not executed at the time deter-
mined by the static schedule, due to a slight communication delay, the makespan
will increase beyond what could have been achieved with static execution, i.e. in
order execution. Figure 3 shows such a case on the same example as in Figure 2
with one perturbated communication (between tasks A and C). Thus, the exe-
cution order of tasks D and C is inverted. Such cases can be avoided by adding
pseudo-edges (the precise description will be detailed later). The idea is to wait
for high-priority tasks to become ready like in the static schedule. In this case, an
on-line sequencing policy seems to be able to cope up with the disturbances very
well.

The proposed method based on the addition of adequate pseudo-edges would
help to achieve the flexibility of on-line sequencing keeping the same performance
guarantee as for off-line static schedules. A good performance can be achieved for
static schedules since we can even pay a heavy price and use higher complexity
algorithms because they are computed at compile time. If we are guaranteed to
stay close to this schedule, we expect to obtain good performances even in case of
disturbances occurring at run time.

The rest of the paper is devoted to characterizing such tasks and finding a
minimal set of additional pseudo-edges.

processors

time

F1GURE 3. Illustration of a case where a basic 2-steps scheduling
performs badly (tasks C and D are exchanged when the commu-
nication time between A and D increases slightly (1 + €)).
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3.2. CHARACTERIZATION OF HIGH-PRIORITY TASKS

For the sake of clarification of further proofs, it is helpful to introduce some
definitions:

Definition 2. For a given schedule o, we call a task i Permutable iff the following
two conditions hold:

e task ¢ communicates with some task j scheduled on another processor.
That is: (4,j) € E in G and m; # 7, in o;

e there exists at least one task j that is scheduled in o after task i on the
same processor, and ¢ and j are independent.

Definition 3. The set of tasks with which a permutable task i can possibly
permutate is denoted as P (7).

In Figure 2, the communicating tasks are A and D. P(A) is empty, but we have
P(D)=C.

We claim that the only pseudo-edges that are necessary to add are those going
from a permutable task i to tasks in P(i).

3.3. DESCRIPTION OF THE ALGORITHM

The algorithm presented informally before can be expressed as follows:

e Phase 1. Compute an off-line Schedule using any well-known algorithm
like ETF [5] or DSC [2].
For each permutable task i, add pseudo-edges between ¢ and the tasks
of P(3).

e Phase 2. Each processor executes the tasks according to a ready-list
maintained locally.

4. THEORETICAL ANALYSIS

4.1. PRELIMINARIES

Let G be the estimated (given) graph and o denote the schedule determined
by the static scheduling algorithm in Phase 1 of the algorithm. Let G be the
disturbed graph with weights corresponding to the actual values of computation
costs and communication delays, which are present at run time. Let G4 () denote
the graph obtained by adding pseudo-edges in G from @ to j iff ¢ is a permutable
task and j € P(i). Figure 4 illustrates this definition on the graph of Figure 2.
C~v'¢(g) is defined as usual as the perturbated graph of G ().

Some properties may be observed that will be helpful for the theoretical analysis.

We consider the set of tasks 1,...,n4 scheduled on a single processor q. There
may be some idle periods in processor ¢ if no task has arrived and it can not
execute any other local task. We consider the total order built after the addition
of pseudo-edges between tasks that were scheduled successively if no edge already
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FIGURE 4. Graph Gy(,)-

exists between them. This corresponds to the minimal linear extension of the
initial execution order of o. Without loss of generality we assume that the tasks
are scheduled in the order 1,...,n,.

Property 1. Any ready-list scheduling algorithm executed on one processor is
optimal when no pseudo-edge has been added.

Property 2. If we remove all the pseudo-edges except those linked with one
particular task, say ¢, and use ready-list scheduling, then the following holds:

e S; (and hence F;) does not increase;
e the makespan also does not increase.

Proof. The proof is easy and comes directly from Property 1. If we first re-
move all the edges emanating from the tasks scheduled before 7, then the starting
time of i does not decrease. This is because it may be considered as scheduling
tasks 1,...,7 — 1. The makespan is less and hence, S; does not increase. Now if
the pseudo-edges emanating from tasks ¢+1,...,n, are removed, then the starting
time of ¢ is not affected, since ¢ would have been executed before any of these tasks
start its execution. g

Property 3. If the availability date of some of the tasks is decreased, the makespan

can not increase.

Proof. This is straightforward because we consider a single processor scheduling.
|

Definition 4. We call Reduction the process of removing some pseudo-edges in

a graph.

4.2. PERFORMANCE GUARANTEE

The theorem below gives a performance guarantee on the parallel time of our
algorithm.

Theorem 1. For any precedence tasks graph G scheduled by o, we have:
PT(Gy()) < PT(Go).
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F1GURE 5. Illustration of the partitions introduced by communi-
cating tasks.

Proof. We prove this result by applying a series of reductions, which consists of
removing the pseudo-edges, on G, to get éd)(a)- At each of these steps, we will
verify the required property that the parallel time of the reduced graph is not
greater than PT (G‘a) Actually, we shall prove a stronger assertion that each
step of reduction, the parallel time cannot increase, which implies the required
assertion.

To start with, choose any processor. The communicating tasks scheduled on
this processor partition the set of tasks into ordered subsets, each of them having
no communicating task. Figure 5 illustrates how to obtain these sets for a graph
and an associated schedule (there are 4 communicating tasks, namely, B, D, E
and H, leading to 4 ordered sets).

The process of reduction consists in removing all the pseudo-edges emanating
from the tasks belonging to the partition. There are two cases to consider within
the partitions depending if the resulting order is a total order or not. If it is a total
order, the scheduling of the tasks in the partition is optimal from Property 1. If it
is a partial order, the tasks are labelled in respect to the availability dates of the
tasks that receive some data from communicating tasks (Fig. 6 illustrates this case
on the first partition on the same example as before). This gives the priority for
the ready list scheduling for Phase 2 of the algorithm. According to Property 3,
the makespan will not increase.

Thus, the completion times will not increase for the tasks inside the partitions
on each processor. Now, it remains to prove that the starting times of all the
communicating tasks in the processor have also not increased. Let consider a
communicating task, namely 7. Again, there are two cases to consider if i receives
or not some data from elsewhere.

e (a) The easy case is when ¢ does not receive any communication. Then,
1 is a root of the graph or it follows directly a partition on its processor.
The same arguments as before considering that ¢ belongs to this partition
proves that its starting time can not increase.

e (b) If i receives data from another communicating task (say k), if it is
it-self a successor of a communicating task, we proceed by a backwards
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FIGURE 6. Labelling of the tasks inside a partition according to
their availability dates when the resulting order is not a total
order.

induction until reaching a task that receives no data from elsewhere, and
then, we come back to case (a). O

Let us now consider the implications of Theorem 1. The theorem, combined with
the bound in [3], implies that there is a guarantee on our algorithm. On the other
hand, let remark that since we have been able to relax many of the constraints in
é¢(g) compared to Gy, we will obtain an improved performance.

In addition, we will also prove in the next section that this set of pseudo-edges
is minimal set.

4.3. MINIMAL SET OF ADDITIONAL CONSTRAINTS

Theorem 2. The set of pseudo-edges emanating at the Permutable tasks is a min-
imal set of pseudo-edges to guarantee the bound of Theorem 1. In other words, no
pseudo-edge from Gy, can be removed without hindering the bound of Theorem 1.

Proof. The proof consists in showing that if a pseudo-edge from task ¢ to task j
were to be removed in Gy (), there exists a possible configuration of the resulting
graph C:'d)(g) such that the PT(CNT'd)(U)) > PT(G,).

Consider a pseudo-edge from i to j in our construction, then task j could
have executed before 7 if the availability date of ¢ were to be delayed beyond the
availability date of j. Consider such a disturbance. Let k& be one of the tasks to
which task ¢ were communicating (for instance, tasks D, C and F of Fig. 1 are
such tasks).

The permutation between ¢ and j will delay the execution of k. The resulting
effect will be to increase k of at least p;. If the new makespan is still lower than
PT(GU) (this will be the case for instance for the graph of Fig. 3 with p; = 1),
then, consider the new perturbation on pj leading to a makespan greater than

PT(G,). Clearly, this perturbation violates the guarantee of Theorem 1, thus the
set of pseudo-edges is minimal. O
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5. EXPERIMENTS

5.1. CONTEXT

We report in this section some experiments obtained from simulations for as-
sessing the good practical behaviour of the strong stability algorithm (denoted
by SSA) versus ETF or any basic on-line algorithm (denoted by ON-LINE). The
experiments have been carried out on a usual PC machine. Each test has been
performed over 1000 randomly generated instances. The structures of the prece-
dence task graphs have been created by layers as in [2] for DSC within the parallel
programming environment PYRROS: the number of layers is a random number
and the number of connected nodes between the layers is randomly chosen and
decreases as the distance between the layers increases. The number of processors
is fixed and did not show a big importance. The size of the graphs was taken
from 100 to 500, depending on the number of processors. The percentage of over
and under perturbances was fixed and can vary over an interval of magnitude.
For instance, for 100 tasks, we considered 80% of disturbances, 20 tasks are over
estimated and 60 tasks are under estimated. We tried other ratios (like inverting
proportions of over and under estimated tasks) but results are the same. The
simulations were conducted in both cases of balanced communications and large
communication delays.

We concentrate on large communication times (ten times larger than the exe-
cution times) as it is the most important case in practice. In each table we report
the number of times SSA is better than the other algorithms for 1000 executions.
We consider small and large disturbances. Small perturbations means that each
time ¢ (communication, computation and both) can be disturb with a probability
of 0.8 in the interval [%t, %] Similarly, large perturbations means that each time ¢
can be disturb with a probability of 0.25 in the interval [%, 2t]. As said previously,
the distribution of the disturbances within the intervals is not homogenous (25%
of over-estimated and 75% of under-estimated times).

The analysis of the experimental results is detailed below.

5.2. ANALYSIS

We focus on the behaviour of SSA in regard to a pure static algorithm, namely
ETF and a simple greedy on-line algorithm. In the following tables, we report the
number of times SSA performs better than the other algorithm, among 1000 in-
stances.

e The experiments show that there is no significant differences between SSA
and ETF for communications and computations in the same order of mag-
nitude (equal communication and computation times).

e Asshown in Table 1, left, SSA is slightly better than ETF for small graphs
and much better for larger graphs.

e SSA performs much better than ON-LINE (see Tab. 1, right). The left
subcolums correspond to the number of times where SSA is better than
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ON-LINE. The right ones correspond to the number of times where ON-
LINE is better than SSA. In remaining cases, both algorithms perform the
same. It seems that ON-LINE performs slightly better on bigger graph,
in this case it is better than SSA in 30% of the case instead of 20% of the
case for small graphs.

TABLE 1. Left, SSA ws. ETF, large communication times
(range 1—10), right, SSA wvs. ON-LINE, large communication
times (range 1—10).

pert. | small | large pert. | small | large

n =100, m =8 n =100, m =38

+ + + - + -

comm. | 105 115 comm. | 625 | 217 | 618 | 215
comp. 140 129 comp. | 626 | 229 | 627 | 226
both 125 126 both 667 | 187 | 620 | 229

n =500, m =38 n =500, m=38
comm. | 440 | 417 comm. | 596 | 361 | 629 | 317
comp. | 417 | 417 comp. | 633 | 327 | 614 | 335
both 445 | 401 both 604 | 359 | 617 | 335

n = 500, m = 16 n = 500, m = 16
comm. | 396 | 443 comm. | 625 | 321 | 620 | 329
comp. | 426 | 403 comp. | 590 | 363 | 602 | 362
both 440 | 415 both 593 | 350 | 593 | 351

6. CONCLUSION

We have presented in this work an approach to deal with on-line disturbances in
computation and communication times with an upper bound on its performance.
The process is quite simple and, as shown in the simulation experiments, can be
useful for correcting the bad effects of disturbances. Remark that only few results
exist in this direction today. This work intents to investigate this field.

Some promising results have been achieved, however, the investigation is in
a preliminary stage. It remains to study if techniques with better performance
bounds may be obtained in the case where a limit on the maximum disturbance is
assumed to be known at compile time. Another interesting perspective is to study
the average behavior of heuristics that are less constrained than the solution we
proposed in this paper (for instance by allowing more flexibility while adding
pseudo-constraints). It is also of interest to investigate methods that may allow
to change the processor assignment during run time without loss of efficiency.
Another investigation direction is to study the impact of the initial scheduling
algorithm.
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