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Abstract. We consider a system of three queues and two types of
packets. Each packet arriving at this system finds in front of it a
controller who either sends it in the first queue or rejects it according
to a QoS criterion. When the packet finishes its service in the first
queue, it is probabilistically routed to one of two other parallel queues.
The objective is to minimize a QoS discounted cost over an infinite
horizon. The cost function is composed of a waiting cost per packet in
each queue and a rejection cost in the first queue. Subsequently, we
generalize this problem by considering a system of (m + 1) queues and
n types of packets. We show that an optimal policy is monotonic.
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1. INTRODUCTION

In this paper we first study a queueing system composed of three exponential
servers. The input to the system comes from two different Poisson processes and
can be controlled by accepting or rejecting arriving packets. A packet entering
queue 1 is then routed to queue 2 or queue 3 with given probabilities. There
is a waiting cost per packet in each queue and a reject cost in the first queue.
Our goal is to prove that there exits an optimal admission control that minimizes
a waiting/rejection cost. We furthermore derive monotonicity properties of the
control policies. We use induction on a sequence of finite-horizon problems to
establish this and other interesting properties of optimal policies, for both finite
and infinite horizon problems, with discounting. Furthermore, we generalize this
problem by considering a system of (m + 1) exponential servers. The input to the
system comes from n different Poisson processes and can be controlled by accepting
or rejecting arriving packets, each arrival enters queue 1 and then routed to one
of the m other queues with given probabilities.

The routing probabilities are chosen according to the service rates and the
coefficients of the waiting costs in queues 2 and 3 for the first case, and in queues 2,
3, ..., and m + 1 in the second case.

Admission control and routing are key issues arising in the design and oper-
ation of communication and computer networks, and have received considerable
attention in the last years. The admission control problem implies a determina-
tion of efficient policies for allowing incoming packets to gain access to network
facilities. The routing problem involves selecting paths from several alternatives
in the network along which accepted packets can be efficiently forwarded to their
destinations. Admission control and routing play a key role for Quality of Service
provisioning in modern broadband packet networks (such as IP, ATM etc.).

Numerous studies of admission control and routing problems at an entrance
node or at several intermediate nodes of a network can be found in the literature.
We cite below some of the studies relevant to our work; this list is by no means
exhaustive.

Stidham [22] has considered admission control policies for several simple queuing
models. The optimal admission control policies for all these models share the
characteristic that they can be expressed in terms of a “switching curve”. Viniotis
and Ephremides [25] have demonstrated a similar characterization of the optimal
admission strategy at a simple node in an Integrated Services Digital Network.
Results in the same vein have been obtained by Christidou et al. [2] for a cyclic
interconnection of two queues, and by Lambadaris et al. [15] for a circuit-switched
node. Farrel [5] considered the problem of routing packets to one of two queues,
but without the option of rejecting an arriving packet. Davis [3] considered the
routing problem for two parallel queues with the rejection option. He showed that
the optimal policy is monotonic (i.e., the optimal rejection region is an increasing
set) and that it is optimal to send an accepted packet to the shorter of the two
queues. (The latter property has also been proved by Winston [28], Weber [27]
and Ephremides et al. [4].) Davis also demonstrated that the optimal rejection
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has an additional property: moving a packet from the longer to the shorter of the
two queues makes it less advantageous to accept an arriving packet. In addition
to being of interest in its own right, this property was crucial to the proof that
the optimal rejection region is an increasing set. Ghoneim [7] and Ghoneim and
Stidham [8] studied a system with two exponential servers in series and Poisson
arrivals to each server, with the rejection option. Stidham and Weber [23] have
extended some of the results of Ghoneim [7] for two queues in series to an arbitrary
finite number of queues in series.

Hajek [9] studied a class of control problems for a general two-node network,
in which it is possible to control routing of incoming packets, transfers from one
node to another, and service priorities. He showed that an optimal control policy is
characterized by a monotonic switching curve, with the property that one should
switch attention from node 1 to node 2 when the number of packets in node 2
decreases or the number in node 1 increases. Hajek’s model includes as a special
case optimal routing of arrivals between two parallel nodes (the problem considered
by Farrel [5], Winston [28], Weber [27], and Ephremides et al. [4]), but it does
not include Davis’s, Ghoneim’s and Stidham’s models and the one in the present
paper. Haqiq and Mikou [10] studied a network consisting of two different parallel
exponential servers with two types of packets, in which the first server is subject to
intermittent breakdowns and it is possible to control routing of incoming packets of
type one. Hagiq [11] has extended the latter problem by adding the rejection option
and by limiting the capacity of the second queue. Lazar [16] examined control
of arrivals to an arbitrary network of queues, with the objective of maximizing
throughput subject to a constraint on average response time. As a consequence,
Lazar necessarily restricted attention to policies based on the total number of
packets in the network. Among such policies, he showed that it is optimal to use
“end-to-end” control, that is, to reject arrivals when the total number of packets
in the network exceeds a critical level. Lambadaris and Narayan [14] studied the
problem of jointly optimal admission and routing controls at a network node, they
proved that optimal admission and routing strategies are characterized by means
of “switching curves”.

The paper contains two parts, in the first we study a system with three in-
teracting queues and two types of packets and it is organised as follows: we first
informally describe the system, and give a mathematical formulation, after that,
the continuous-time problem is transformed into another one with discrete time by
looking at an embedded Markov chain. In Section 3.3, the structural properties for
the optimal policies are given for the finite and infinite horizon and discounted cost
problems. Section 3.4 gives a characterization of the optimal policies. Section 3.5
gives the proof of the structural properties and we finish this part by a conclusion.
In the second part, we generalize the first study by choosing a system with m + 1
interacting queues and n-types of packets. The next section is a motivation of our
problem.
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2. MOTIVATION

The Internet Protocol (IP) architecture is based on a connectionless packet ser-
vice using the IP protocol. The advantages of its connectionless design, flexibility
and robustness, have been amply demonstrated. However, these advantages are
not without cost: careful design is required to provide good service under heavy
load. In fact, lack of attention to the dynamics of packet forwarding can result in
severe service degradation. This phenomenon was first observed during the early
growth phase of the Internet of the mid by Nagle [19], and is technically called
“congestion collapse”.

Beginning in 1986, Jacobson [12] developed the congestion avoidance mecha-
nisms that are now required in TCP implementations [1,12]. These mechanisms
operate in the hosts to cause TCP connections to “back off” during congestion. It
is primarily these TCP congestion avoidance algorithms that prevent the conges-
tion collapse of today’s Internet.

Considerable research has been done on Internet dynamics since 1988, and the
Internet has grown. It has become clear that TCP congestion avoidance mecha-
nisms [21], while necessary and powerful, are not sufficient to provide good service
in all circumstances. Basically, there is a limit to how much control can be ac-
complished from the edges of the network. Some mechanisms are needed in the
routers to complement the endpoint congestion avoidance mechanisms.

It is useful to distinguish between two classes of router algorithms related to
congestion control: “queue management” wversus “scheduling” algorithms. Queue
management algorithms manage the length of packet queues by dropping pack-
ets when necessary or appropriate, while scheduling algorithms determine which
packet to send next and are used primarily to manage the allocation of bandwidth
among flows.

In this paper, we propose to control dynamically the packets before entering
into the router by accepting or rejecting them in order to minimize the waiting
and the rejection discounted costs. The router is modelled by the first queue.
Our control prevents the congestion in the network by rejecting packets arriving
at the router, when the load of the system exceeds a certain threshold. This
is another method which is in agreement with that of Random Early Detection
(RED) gateways presented in [6], where the gateway detects incipient congestion
by computing the average queue size. When the average queue size exceeds a
certain threshold, the gateway drops or marks each arriving packet with a certain
probability, where the exact probability is a function of the average queue size.

3. OPTIMAL CONTROL OF THREE INTERACTING QUEUES
WITH TWO TYPES OF ARRIVALS

The main model considered in this part is pictured in Figure 1 and described
below.
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FiGUuRrE 1. Illustration of basic system.

3.1. DESCRIPTION AND FORMULATION OF PROBLEM

The evolution of the system is influenced by a possible time-varying state-
dependent control with values z = (21, 22) € {0,1}2

Two types of packets arrive to queue 1 in two Poisson streams of rates A\; and Ao
(Fig. 1). Packets (of variable length) are served at station 1 by an exponential
server at rate pu; and they routed to station 2 with probability p and to station 3
with probability 1 — p. Packets are served at station 2 and 3 by two exponential
servers at rates ps and pgs respectively. After being served by one of these servers
a packet departs from the system.

An input controller at queue 1 has the option of refusing entry to each packet,
based on the size of the three queues at the arrival time of each packet.

However, a cost & (respectively, £2) must be paid for each rejection of packet
of type 1 (respectively type 2), such that & < & . Rejected packets are assumed
lost.

The state of the system at time ¢, ¢ > 0, is defined by a stochastic process
(x¢,t > 0), describing the evolution of the total load of the system, where z; =
(z}, 22, 23) takes values in the state space S = N® and z! is the total number of
packets in queue 4 (including the packet in the server).

With each state x in S we associate a set of admissible actions D = {0,1}2.
Thus, an admissible action z:(x) in state = at time ¢, with values in D will have
the form

2(2) = (2 (2), 27 (x))

where z! = 1 or 0 according to whether an arriving packet of type i is accepted
into the first queue or is rejected (and lost).

Defining the action space to be the set A = D¥, we can now represent an
admissible Control Strategy (CS) as an A-valued stochastic process (z;,t > 0),
where z; = (z:(x),2 € 9).
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Hereafter, we shall use the abbreviated notation z for the CS (z¢,t > 0). Let P
denote the set of all admissible control strategies. A law of motion corresponding
to a CS z is specified by a transition probability P(y|x,z:), x,y € S, t > 0,
denoting the conditional probability that the system moves to state y at time ¢+
when the action z¢(x) is applied to it at time ¢ while in state x.

Our objective is to find a CS 2z in P minimizing the following discounted cost:

(P1) limsupEZ

T—o0

T 3 2
/ et <Z cixi + Z )\1&]1{2;_0}> dt‘|
0 i=1 i=1

where o >0 and ¢; € R}, ¢=1,2,3, such that co <c¢; and c3 < c1.

If such a minimizing CS exists, it will be called the “optimal strategy” for the
discounted cost problem (P1).

Now, we introduce two special classes of relevant CS’s.

An admissible CS which is an independent identically distributed (i.i.d) stochas-
tic process will be called a Stationary Randomized Strategy (SRS). Furthermore,
if the common distribution of SRS z has all its mass concentrated at some point
in A, we shall refer to it as a Stationary Strategy (SS). Let P, C P denote the set
of all SS’s.

For our problem, we assert from Lippman [18] (p. 1228) and Walrand [26]
(p. 275) that an optimal CS exists which, furthermore, is stationary.

The inter-arrival and inter-departure times of the packets are exponentially
distributed. Furthermore, the action set D is finite. The assumptions of [18]
(Th. 1, p. 1229) and [26] (Prop. 8.5.3, p. 275) are therby satisfied, leading to our
assertion above.

Hereafter, we replace zi(x;) by z; for notational convenience. Furthermore,
in view of our previous assertion, we restrict attention to stationary CS’s and
define the a-discounted cost starting with initial state x associated with the prob-
lem (Py) by:

« — s EZ
J% (@) = min By

oo 3 2
/ efat (Z Cix’ti —+ Z )\15111{4:0}) dt‘| . (1)
0 i=1 i=1

The minimum cost in (1) can be expressed in an alternative form which facilitates
further analysis. Let 0 = tg < t; < ... < tp... be the (random) instants in time
denoting transition epochs of the system state (x¢,¢t > 0), where each transition
epoch represents an arrival of a packet into the system, or a transfer of a packet
from queue 1 to queue 2, or a transfer of a packet from queue 1 to queue 3, or a
departure of a packet from the system.

It is convenient to introduce at this point the a-discounted expected cost over
the time-horizon [0,t,), with initial state x, and following a control strategy z
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in Ps, namely,

tn 3 2
Vna(sz) — E; / e—at <Z cixi + Z)‘z&ﬂ{zf—o}> dt‘| . (2)
0 i=1 i=1
Let
« _ 3 « —
Jo () = min Vi (x,z), n=0,1,..
JE () = lim JS(z).
n—oo

In the same way as [14], we can prove that the minimum cost in (1) has the
alternative expression:
S () = (@) (3)

for every initial state x.

3.2. THE EQUIVALENT DISCRETE-TIME PROBLEM

In this section we convert the original continuous-time problem (P;) into its
discrete-time equivalent by the standard procedure of “uniformization” [9,13,20].

As previously, 0 = tg < t1 < ... < tp... are the (random) instants in time
denoting transition epochs of the system state. By suitably introducing dummy
departures as in [17,20], the inter-epoch intervals are seen to be ii.d. random
variables with distribution:

PT’[thrl —tE > t] = e*t(A1+)\2+,u‘1+,u‘2+,u,3)

for k=0,1...
Consider the discrete time system obtained as in [13,20] by sampling the original
continuous-time system at its transition epochs. To this end, we introduce the

. A A
notation x, = xy, and zp = z(z,) and define:

AL+ Ao+ p 4 po + ps

e Nt rtmtmtmta

hence 0 < § < 1. We can then conveniently convert the continous time optimiza-
tion problem into an equivalent discrete time problem.

The (-discounted cost incurred by the n-step discrete time system for the CS z
is defined [13,20] as:

Vi (2,2) 2 B2

n—1 3 2

Z g <Z ey, + Z Aifiﬂ{z,gzo})] :
k=0 i=1 i=1

It then follows as in [13,20] that

Vi(e,2) = LT, ) @
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Let
VP (x,2) 2 lim VP (x,2).
n—oo
We can now state the minimization problem (P1) in terms of a discrete-time
problem of equivalent cost as follows. Define the minimum [-discounted cost for
the n-step and infinite horizon discrete-time systems, respectively, by:

78(2) 2 min V72

Jn(2) = minV,’(z, 2) (5)
and

78(2) 2 min VP

J(x) 7rzléllr)1V (z, 2). (6)
Letting

T8 (2) & lim JP(x). (7)

As in previous section, we have
T (x) = TP ()

for every initial state x.

Finally, the equivalence, in the sense of optimal discounted cost, between (P1)
and the discrete-time formulation above follows readily from (4) and (7) by noting
that:

T (x) = %jﬁ(x).
Thus, we may restrict our attention hereafter to the discrete-time [-discounted
cost problem defined by (6).

We can now proceed to develop the dynamic programming equation for the
problem in (6).

Walrand [26] (Prop. 8.5.3, p. 275), proves that J?(z) is the unique bounded
solution of the following dynamic programming equation:

J? () = min {C(I,Z) +ﬁZP(ylx,2)«7ﬁ(y)}- (8)

Y

Where ¢(z, z) is the instantaneous cost and P(y|z, z) is the conditional probability
(for the discrete-time problem) that the system moves to state y at time n + 1
when the action z(z) is applied to it at time n while in state x.

Then J? is characterized by the dynamic programming optimality equation
JB=1TJ B where T is the operator defined on real-valued function on S by:

Tf(x) =cx+ (a+7) " B{paf (Do) + psf(Dsx) + ppr f(Rizx)
+ (1 =p)pa f(Rizx) + Ay min{ f(Arx), f(x) + &} + Ao min{ f(Arz), f(z) + &2}
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where v = Ay + Ao + 1 + po + ps, € = (z1,22,23) € S, cx = Zle cixi, ¢; € R,
DQI' = (1'1;(1'2 - 1)+,£L'3), de = (1'1;1'2;(1'3 - 1)+)7 Alx = (1'1 + 17332;1'3)7 if
x1 > 1 then Rigx = (x1 — 1,29 + 1,23) and Risz = (x1 — 1,z9, 25 + 1) else
Rioz = Rizz = z, 7 = max(0, z),

For convenience we assume: a + v = 1.

3.3. STRUCTURAL PROPERTIES FOR THE OPTIMAL POLICIES

In the same proposition that cited above, Walrand [26] provides a method for
deriving structural properties of optimal policies.

Assume that the hypothesis of Theorem 1 (p. 1229) in [18] hold and that H is
a set of functions from S into R that contains the function that is identically zero
and is such that:

feH = g(x):=minqc(r,2)+ 8 Plylr,2)f(y) p € H
yeSs

and H is closed under pointwise limits (i.e., if f,, € H for all n and f,(z) — f(z)
for all x € S, then f € H). Then JP € H. We are using this result to find
properties of the optimal policies for our problem. In this way properties of jﬁ
carry to JB.

We have the following properties:

Property 1. If it is optimal to reject a packet (of type 1 or type 2) in state x =
(1,29, x3) then it is also optimal to reject it in states (x1+1, x2,x3), (x1,22+1, 23)
and (x1,x2, 3 + 1).
ie. if f(z) — f(Ai1z) < =& then f(Ajx) — f(Aidjz) < =¢ for i = 1,2 and
j = ]-a 27 3
1.€.

F(Aje) — F(A1Az2) < f(2) = f(Aiz) for j=1,2,3 (9)
where A; corresponds to an arrival at station j (j = 1,2,3).
Property 2. If it is optimal to reject a packet (of type 1 or type 2) in state
x = (x1,22+ 1,23) or in state x = (x1,x2, x5 + 1) then it is also optimal to reject
it in state © = (x1 + 1, 22, x3).
ie. if f(Aox) — f(A1Azz) < =& or f(Asz) — f(A1Asz) < =& then f(Aiz) —
f(A1Arz) < =§;

B f(Aiz) — f(A1Arz) < f(Asx) — f(A1Azx)
f(Aiz) — f(A1Arz) < f(Asz) — f(A1A3x)

f(x) — f(Aiz) < f(Rizz) — f(A1R127) (10)
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f(x) — f(A1x) < f(Rizx) — f(A1Ri3x) (11)

for all x € N3, with z; > 0.

Property 1 is equivalent to saying that the rejection region R for each type of
packet is an increasing set, that is (141, 22, 23), (21, 22+1, z3) and (z1, 22, 235+1)
belong to R whenever (x1, 2, x3) does. This is a generalization to three dimension
of the monotonicity of optimal policies for optimal control of admission to a single
queueing facility and two dimensions.

Property 2 is a generalization to three dimension of two-dimensional control
problems, it says that moving one of the existing packets from queue 1 to queue 2
or queue 3 makes it more likely that a new packet (of type 1 or type 2) will be
admitted. B _

For the sake of notation, we will denote J? and J? respectively by .J, and J.

Let H be the set of functions J,, defined by (5) such that:

1) J, is increasing in x1, x3 and x3;
2) J, obeys the inequalities (9, 10) and (11) above.
Then the function g,, defined by:

gn(x) =TJ,
belongs to H whenever J,, does.

TJn(x) =cx + B{uaJn(D2x) + psJn(Dsx) + pprJn(Rizx) + (1 — p)p1 Jn(Rizx)
+ A min{J, (A1), Jo(z) + &} + A min{J, (A1x), Jo(z) + &} -

We assume that: Jy(.) = 0.
We shall prove this result in the Section 3.5.

3.4. CHARACTERIZATION OF THE OPTIMAL POLICIES

In [26], the Proposition 8.5.3 (p. 275) assures the existence of the limit in (7)
such that J is the unique bounded solution of the equation TJ(z) = J(z) and
J(x) € H for all z € S.

The optimal policy is given by part (d) of the same proposition. It is the
function z = (21, 22) such that each 2 achieves the minimum in the equation (8).

That is,

i 1 i J(A) < J(2) + &
2'(z) = {O otherv;ise (12)

fori=1,2.

According to the properties of the optimal policies, there are two switching
surfaces one for each type of arrival. These surfaces divide the state space into two
regions, one of which relates to packet rejection and the other to packet admission.
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The structure of these surfaces is illustrated in the Figure 2 in which z repre-
sents 2 (i = 1,2) and the rejection region is defined by the following set:

{reS/z(x)=0}

x3

FI1GURE 2. Illustration of the optimal policy.

3.5. PROOF OF STRUCTURAL PROPERTIES

Remark 1. 1) It is easy to see that the function:
TJy:z+— cx

belongs to H.

2) All products of a function that belongs to H with a positive number is also
in H, as well as all sum of functions of H.

Now, we are going to prove the assertions 1 and 2 given in the Section 2.3.

Assume that J,, € H.

In the expression of T'J,,(x) —T'J, (A1), the terms which the coefficients are p2,
us, pur and (1 — p)uq belong in H (by using the above remark and hypothesis).

It is easy to see that the function T'J, is increasing in x1, 2 and x3 whenever
J,, does.
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Prove that T'J, satisfies the inequality (9) for j = 1 whenever J,, verifies this
inequality for j = 1.
We need only to prove that:

min{J, (A12) + &, Ju(Afz)} — min{Jy(2) + &, Ju(Ar2)}
< min{J,(Ax) + &, Jo(A32)} — min{J, (A12) + &, J.(A22)}

for i = 1,2, i.e., we need to prove an inequality like:

min{p,p2} — min{q1, g2} < min{ry,r2} — min{sy, s2}- (13)

To prove this inequality we must distinguish sixteen cases, but by the following
remark, we can only study four cases.
If we prove that:

pi —min{qi, g2} < min{ry,r2} —s;
for one ¢ and one j, then we will have the inequality (13), because:
p; > min{pi,p2} and s; > min{s;, sa}

Put: pP1 = Jn(Alx) + fi; P2 = Jn(A%x)a q = Jn(x) +§’L7 q2 = Jn(Alm); T =
Jn(A2x) + &, ro = Jo(A3x), 81 = Jo (A1) + &, 82 = J,(A32).

For the case ¢, r1 we choose p; and sy and for the case g2, 792 we choose ps
and so, because the inequalities:

pr—q<ri—s; and pz—q2 <712~ 35

are satisfied by hypothesis.
We need only to prove the inequality when min{q1, g2} =¢1 and min{ry,re} =79
or when min{qi, g2} = ¢2 and min{ry,ro} = ry.

Case q1, 12
We choose ps and s7.
Prove that: po —q1 <19 — 51

ie. Jn(Afz) = (Ju(@) + &) < Jo(Af2) — (Jn(Arz) + &)  fori=1,2
ie.  Jn(A3x) — Jo(2) < Jn(Afz) — J(Ar2)
ie.  Jn(A1x) — Jy(2) < Jn(Afz) — J,(A32)

which is true by hypothesis.

Case g3, 11
We choose p; and ss.
Prove that: p; — g2 <11 — 89
ie. (Jo(A1m) + &) — Jn(A12) < (Jn(A22) + &) — Ju(A22)  fori=1,2
e & <& fori=1,2
which is true.
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Conclusion. T'J, satisfies the inequalitiy (9) for j = 1.

Prove that T'J, satisfies the inequality (9) for j = 2 whenever J,, verifies this
inequality for j = 2.

We need only to prove that:

min{Jp (A1) + &, Jo (Af2)} — min{Jy (z) + &, Jo(A12)}
< min{J, (A1 Aox) 4 &, Jn (AT Agx)} — min{J, (Asx) + &, J, (A1 Asx)}

fori=1,2.
Put: p1 = Jo(Ai2) + &, p2 = Ju(Af2), @1 = Ju(@) + &, @2 = Jn(A12),
r=J, (A A2x) —l—&, ro = Jn (A Agx), =J, (AQI) +§i; S = Jn(AlAQx)

For the case q1, r1 we choose p; and sy and for the case g2, 73 we choose ps
and sz, because the inequalities:

pr—qr<r1—s1 and py—qs<ry— sy

are satisfied by hypothesis.

Case q1, 12
We choose p; and ss.

Prove that: p1 —q1 <rg — s9
e (Jn(A12) +&) — (In(2) +&)
ie.  Jn(A1x) — Jn(x) < Jn(A3Asx) —
which is true because Jp,(A12) — J,

Jn(A2Ayz) — J, (A1 Agz)  fori=1,2
J (AlAQLL‘)
x) is increasing in x1 and in xs.

\"I/\

/—\

Case g3, 11
We choose p; and ss.
Prove that: p1 —qe <ry — 59
ie. (Jn(Ar1x) +&) — Jn(Arz) < (Jn(A1422) + &) — Jn(A1Agz)  fori=1,2
e & <& fori=1,2
which is true.

Conclusion. T'J,, satisfies the inequalitiy (9) for j = 2.

We can prove that T'J,, satisfies the inequality (9) for j = 3 whenever J,, verifies
this inequality for j = 3 in the same way that for j = 2.

Prove that T'J,, satisfies the inequality (10) whenever J,, verifies this inequality,
for all z € N3, with z; > 0.

We prove that:

mln{J (Alngx) +€Z, (A ngx)} mln{J (R12$) +€z7 (A1R12$)}
< min{J,(A12) + &, Jo(Afz)} — min{Jn () + &, Jo(Aiz)}

fori=1,2.
Put: p1 = Ju(A1Ri2z) + &, p2 = Ju(AfR12z), 1 =

aQ n(Ri2z) + &y q2 =
Jn(A1R127), 11 = Jp (A1) + &, o = J,(A32), 51 = Ju(2)

J,
+ &, s2 = Jn(Arz).



204 A. HAQIQ ET AL.

For the case q1, 11 we choose p; and sy and for the case g2, 79 we choose ps
and s, because the inequalities:

pr—qr<r1—s1 and pz—qs <7ry— sy

are satisfied by hypothesis.

Case q1, 12
We choose p; and ss.
Prove that: p1 —q1 <rg — s9
ice.  (Jn(A1Ri2z) + &) — (Jn(Ri2z) + &) < Jn(A%z) — Jp(A1z)  fori=1,2
ie.  Jn(A1R127) — Ju(Riox) < Jn(A22) — Ju(Arz)
which is true because:

Jn(A1R12£L') — Jn(R12£L') S Jn(A1£L') — Jn(IL')
Jn(A2x) — J, (A1)

IN

these inequalities are true by hypothesis.

Case g3, 11
We choose p; and ss.
Prove that: p; — g2 <11 — s
i (Jn(A1Rioz) + &) — Jn(A1Rioz) < (Ju(Arz) +&) — Jo(Arz)  fori=1,2
i.€. €l SGL fOI"L':1,2
which is true.

Conclusion. T'J, satisfies the inequalitiy (10).

We can prove that T'.J,, satisfies the inequality (11) whenever .J,, verifies this
inequality in the same way that we proved the inequality (10).

Thus T'J,, € H for all n € N.

3.6. CONCLUSION

We proved that there are two optimal admission control policies which are
“switching surfaces”, one for each type of packets. The switching surfaces divide
the state space into two regions, one of which relates to packet rejection and the
other to packet admission. This result generalizes the result found for a system
consisting of two queues in series with the rejection option and for which the
optimal policy is also expressed in terms of a “switching curve”.

We also proved that if the rejection costs decrease or the load of the system
increases, the rejection regions increase. Consequently, the rejection region for
packets of type one is included in the rejection region for packets of type two
because & < &1, which means that we accept more packets of type one in the
network than those of type two.
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4. OPTIMAL CONTROL OF m + 1 INTERACTING QUEUES
WITH n-TYPES OF ARRIVALS

In this section, we generalize the previous problem by considering n-types of
packets and m + 1 queues.

The packets of type i arrive in queue 1 in a Poisson stream with constant
rate A; (¢ = 1,...,n). The packets are served at this queue by an exponential
server at rate p; and they routed to queue j with probability p;—1 (j = 2, ...,
m+ 1), the queues 2,3, ...,m+ 1 are parallel and they have exponential servers at
rates pa, {3, ..., flm+1 respectively.

As before, denote by &; the rejection cost of packets of type 1.

m

We have: ijzl and & <§ forl1<i<j<n.
j=1
The state space is: S = N™T1 the admissible action space is: D = {0,1}", and
the instantaneous cost function is defined by:

m+1 n
(e z) = Y crt+ Y Nbillisgy (14)
i=1 i=1
1
where z, = (z},27,...,2]"t"), 2 = (2}, 22, ..., 2"), and ¢1, 2, ..., Emy1 € R (such

that ¢; < ¢, for j =2,...,m+ 1) with

i 1 if at time ¢ a packet of type ¢ is accepted into the first queue
t7 10 otherwise

and z¢ = is the total number of packets in the queue i (including the packet in
the server).
The objective is to find an optimal control z minimizing the following discounted

cost:
T
/ e “e(xy, z)dt
0
where a € R

Let A; corresponds to an arrival at station 1, let R;; corresponds to a potential
transfer from queue 1 to queue j and let D; corresponds to a potential departure
at station j, with 7 =2,3,....m + 1.

We use the same notations that the first case and we only replace in the previous
formulas the cost function by the cost defined in (14).

Let H be the set of functions J? (or J,, if there is no ambiguity) defined as (5)
and verify the following properties:

(P2) limsup EZ

T—o0

1) Jp is increasing in x1, Za,..., Tint1;

2) Ju(Aiz) — Jp(z) < Jp(A1Ajz) — Jp(Ajx), for j=1,2,...,m+1;

3) Ju(A1Ryjx) — Jn(Rijz) < Jn(Aiz) — Ju(z), for j = 2,...,m+ 1, and for
all x € N1 with 21 > 0.
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We assume: Jo(.) =0

Property 1 says that the rejection region for each type of packets is an increas-
ing set.

Property 2 says that moving a packet from queue 1 to queue j (j = 2,3, ..., m+1)
makes it more likely that a new packet will be admitted.

As the previous problem, we can prove that the function T'J, belongs to H
whenever J,, does, where

m+1 m+1
TJn—ch:vz-i-ﬁa—f—’y Z,u]
=1
m+1
+ 1Y pj-1u(Rija) +Z>\ min{Jy, () + &, Jn(A12)}
Jj=2 i=1
with
m—+1
ZA + Z 14
ﬁ: m—+1
and
m—41

v = ZA +Zu;

By using the Proposition 8.5.3 [26], we have also J(z) € H, for all x € S, and the
optimal policy is the function z = (2%, 22, ..., 2™) defined in a manner same as (12)
fori=1,2,....n

For all z3,...,Zm41 € N (number of packets respectively in the queues 2,3, ...,
m+ 1) and for all type of packets, the arrive packet will be rejected when the first

queue reaches some threshold. This threshold is defined by:
W' (22, 23, ooy Trmy1) =max{z ENLJ (21 + 1,22, oo, Tpng1) <J (@1, T2y ooy Tyng1) + &}

for i=1,2,...,n
It is easy to see that w*, i = 1,2, ...,n, is decreasing in xs, ..., Tim+t1.
For all zg,...,z;m+1 €N, let

Ri(m% ey szrl):{M(zlaan "'7xm+1) G]Dn/xl >wi(x27 ..~,33m+1)}, for Z:]-a ey

where P, is the affine space of n-dimentional and M (z1, x2, ..., m+1) is the point
of P, having (21, ...,Zm+1) as components.
The rejection region for packets of type i (i = 1,2,...,n) is defined as follows:

R;= U Ri(z2, ..., Tm+1)

X2,X3,-,Tm+1
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and R, € Rp,—1 C ... € Ry, since § < ; for ¢ < j, which means that the rejection
region increases when the rejection cost decreases.

4.1. CONCLUSION

We showed that there are n optimal admission control policies, one for each
type of packets. We also established that these optimal policies are monotonic,
i.e., when the rejection costs decrease or the load of the system increases, the
optimal rejection regions increase. Thus the rejection region for packets of type j
is included in the rejection region for packets of type i if 1 < i < j < n, because
& < &, for 1 <4 < j < n, which means that we accept more packets of type j in
the network than those of type 1.

The mechanism of control studied in this paper may be considered for imple-
mentation in Internet routers in order to avoid packet congestion and achieve
acceptable QoS.
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