
RAIRO Operations Research
RAIRO Oper. Res. 36 (2002) 175-190

DOI: 10.1051/ro:2003001

A DIMENSION-REDUCTION ALGORITHM
FOR MULTI-STAGE DECISION PROBLEMS

WITH RETURNS IN A PARTIALLY ORDERED SET

Teodros Getachew
1

and Michael M. Kostreva
2

Communicated by Franco Giannessi

Abstract. In this paper a two-stage algorithm for finding non-
dominated subsets of partially ordered sets is established. A connection
is then made with dimension reduction in time-dependent dynamic pro-
gramming via the notion of a bounding label, a function that bounds
the state-transition cost functions. In this context, the computational
burden is partitioned between a time-independent dynamic program-
ming step carried out on the bounding label and a direct evaluation
carried out on a subset of “real” valued decisions. A computational ap-
plication to time-dependent fuzzy dynamic programming is presented.

Keywords. Multi-criteria optimization, time-variant networks,
dimension reduction.

1. Introduction

Dynamic Programming, as formulated by Bellman [1], has proven to be one
of the most fruitful contributions to the solution of multi-stage decision prob-
lems. Over the years, it has been generalized to decision problems with returns
in multiplicative lattices by Brown and Strauch [3], and partially ordered sets
by Henig [12]. The domain of application of this principle has also expanded to

Received December, 2000.

1 Department of Management, Providence College, Providence, RI 02918-0001, U.S.A.
2 Department of Mathematical Sciences, Clemson University, Clemson, SC 29634-1907, U.S.A.

c© EDP Sciences 2003

176 T. GETACHEW AND M.M. KOSTREVA

cover decision problems involving multiple objectives in works by Daellenbach and
DeKluyver [6] and Corley and Moon [5].

Cooke and Halsey [4] proposed one of the earliest algorithms for Dynamic
Programming in a time-dependent context. Their application concerned a rout-
ing problem with time-dependent transition times between nodes in a network
where the temporal dimensions was incorporated into the state of the system via
a time-grid. Other work in this vein includes Dreyfus [8] who proposed a mod-
ification of Djikstra’s [7] famous shortest path algorithm to finding the shortest
paths in networks with time-dependent arc lengths and Halpern [11] and Orda
and Rom [15] who considered a similar problem with waiting (“parking”) allowed
at nodes. Kostreva and Wiecek [14] introduced two algorithms that unified the
themes of multi-objectivity with time-dependency. Their first algorithm extended
Cooke and Halsey’s result to the multi-objective case, while their second algorithm
generalized earlier work by Kaufman and Smith [13] (on finding minimum travel
time paths in networks with time-varying transit times), under the restriction that
all cost functions be non-decreasing. Contributions which connect fuzzy sets and
dynamic programming are reviewed in Kacprzyk and Esogbue [16] and a mul-
ticriteria fuzzy problem is handled by scalarization in the paper of Hussein and
Abo–Sinna [17]. Finally, Getachew et al. [10] proposed a “backward-forward”,
recursive algorithm for finding all the non-dominated paths in a network given
time-dependent cost functions, the only restriction on the cost functions being
boundedness.

In this paper we will show the result in Getachew et al. [10] to be a particular
instance of an algorithm for finding non-dominated subsets of partially ordered
sets satisfying a simple “bounded label” condition. We shall then show how this
general algorithm can be applied to decision making in a fuzzy multiple objec-
tive context with time dependency. Thus, the new approach will comprehend
more complex and more realistic models of decision making than any of the above
previous research contributions.

2. Non-dominated subsets of partially ordered sets

2.1. Notation, definitions and terminology

Definition 1. Let S and P be two sets, P partially ordered, with partial order “=”.
Let P be any nonempty subset of S. Let E: P → P and C: P → P. For any p ∈ P ,
C(p) will be called the C-cost of p, and E(p) the E-cost of p.

Definition 2. Let p, q ∈ P , P as defined above.

(1) If E(p) = E(q) (or E(q) = E(p) then p and q are said to be E-comparable.
(C-comparability is defined analogously).

(2) If E(p) = E(q) and E(p) 6= E(q), p is said to E-dominate q. This will be
denoted as E(p) > E(q) (C-domination (and notation) is defined analo-
gously).

DIMENSION REDUCTION FOR DP OVER POS 177

(3) Let Q ⊆ P and p ∈ P . If the set {q ∈ Q: q E-dominates p} is empty,
then p is said to be E-nondominated over Q; if Q = P , then p will simply
be said to be E-nondominated. (These notions are defined analogously for
C).

Notation 1. Let P be as defined above. By the main decision problem (MDP)
we will mean the problem: find all E-nondominated elements of P .

Definition 3. Let P , C and E be as defined above. If for all p ∈ P , C(p) = E(p),
then C is said to be a Uniformly (upper) Bounding Label for E.

Notation 2. Let Q, R ⊆ P , P a set as defined above.

(a) [Q]E ≡ {(q, E(q)): q ∈ Q};
(b) [Q]E1 ≡ {q : (q, E(q)) ∈ [Q]E};
(c) ND[[Q]E] ≡ {(q, E(q)) ∈ [Q]E: q is E-nondominated};
(d) ND[[Q]E]1 ≡ {q : (q, E(q)) ∈ ND[[Q]E]};

(In light of the notation above, MDP can now be restated as: find ND[[P]E]1.)
(e) ND[[Q]E]2 ≡ {E(q): (q, E(q)) ∈ ND[[Q]E]};

With analogous notation holding for C, we finally have
(f) ND[[Q]E∪ [R]C] ≡ {{q ∈ ND[[Q]E]1: C(r) = E(q) and C(r) 6= E(q) is false

for all r ∈ R} ∪ {r ∈ ND[[R]C]1: E(q) = C(r) and E(q) 6= C(r) is false for
all q ∈ Q}.

2.2. Algorithm

The first iteration of the algorithm begins by determining all C-nondominated
elements of P ; this computation creates the set N1. For this iteration this will
coincide with the set T1 (since the set A1 is empty). For each element of this
set T1, the corresponding E-value is computed. The set of all those elements in
this set whose C-value is different from their E-value forms the set A2. If A2

is empty, the algorithm stops; T1 solves the Main Decision Problem. Otherwise,
the second iteration of the algorithm commences with the determination of all
C-nondominated elements in the complement of A1 ∪ A2. This operation yields
the set N2. It then determines the nondominated set of the set N2 ∪ (A1 ∪ A2)
with the elements of N2 having their C-value and the elements of (A1 ∪A2) their
E-value. The nondominated elements so determined constitute the set T2. As in
the first iteration, the set A3 consisting of all those elements in T2 whose C-value is
different from their E-value is determined by direct evaluation. If this set is empty,
the algorithm halts; the set T2 solves the Main Decision Problem. Otherwise, the
next iteration commences by determining the set of all C-nondominated elements
in the complement of A1 ∪ A2 ∪ A3, and so on until convergence (to the solution
of the Main Decision Problem).

The algorithm is presented formally next.
Let P , C and E be as defined above, P a finite set. Consider the following

algorithm G.

178 T. GETACHEW AND M.M. KOSTREVA

BEGIN
0: A1 := Ø; k := 1;

DO

1: Nk := ND
[[

P\
k⋃

i=1

Ai

]
C

]
1

;

2: Tk := ND
[
[Nk]C ∪

[
k⋃

i=1

Ai

]
E

]
1

;

3: Ak+1 := {p ∈ Tk : C(p) 6= E(p)};
4: k := k + 1;

WHILE (Ak+1 6= Ø)
END

The following diagram summarizes the Algorithm.

Figure 1

Note the computational partitioning: combinatorial considerations enter only
in the first phase of the algorithm and only involve the bounding label C. All
subsequent steps involve either comparison or direct evaluation, using already
constructed elements. In particular, consideration of the “real” E-costs is confined
to these last two steps.

DIMENSION REDUCTION FOR DP OVER POS 179

Therefore, given the ambient structure that characterizes this algorithm, con-
sisting of costs C, E: P → P, P a partially ordered set and P a finite (nonempty)
set, the task of solving MDP, in as much as it involves combinatorial consider-
ations, may benefit from the introduction of a partitioning such as is suggested
above, provided that the bounding label C allows for a reduction of combinatorial
complexity3.

We are now ready to state and prove the main theoretical result of this paper.

Proposition 1. Let P , C and E be as defined above, P a finite set. If C is a
Uniformly Bounding Label for E, then algorithm G converges to a solution of the
Main Decision Problem in a finite number of iterations.

Proof.

(i) Finiteness.
Suppose G does not terminate in a finite number of iterations. Let N > 0.
We must then have that for each i, 1 ≤ i ≤ N , |Ai| ≥ 1. Now, since

Ak+1 ⊆ Nk and Nk ∩
k⋃

i=1

Ai = Ø, the Ai’s must be pairwise disjoint. But

then,
N⋃

i=1

Ai ⊆ P implies that |P| ≥ N . Since N was arbitrary, P cannot

be a finite set. Contradiction.
(ii) Convergence.

Suppose p ∈ ND[[P]E]1\Tt. Consider the following cases:

a) p ∈ Nt (and p /∈ Tt).

Then there exists q, q ∈
t⋃

i=1

Ai, q 6= p and E(q) > C(p). But then,

since C(p) = E(p), q E-dominates p, contradicting p ∈ ND[[P]E]1.

b) p /∈ Nt (and p /∈ Tt). Consider the following sub-cases.

(1) p ∈
t⋃

i=1

Ai (and p /∈ Tt). This implies that there exists q,

q ∈ Nt ∪
t⋃

i=1

Ai such that either, C(q) > E(p) (if q ∈ Nt) or

E(q) > E(p) (if q ∈
t⋃

i=1

Ai) is true. The latter case renders

p ∈ ND[[P]E]1 impossible directly. In the former case, since
without loss of generality q ∈ Tt and t is the terminal iteration,
C(q) = E(q) again forcing a contradiction by rendering p ∈
ND[[P]E]1 impossible.

3This is not to say that the contributions of comparison and evaluation to the total com-
putational cost can be ignored; however, the relative efficiency of search algorithms and the
plummeting cost of storage would make this cost less onerous by comparison.

180 T. GETACHEW AND M.M. KOSTREVA

(2) p ∈ P\
t⋃

i=1

Ai. Then there exists q, q ∈ P\
t⋃

i=1

Ai such that

C(q) > E(p). Without loss of generality, we can pick this
q ∈ Nt and indeed Tt. But then, since t is the terminal itera-
tion, C(q) = E(q), implying that q E-dominates p, contradicting
p ∈ ND[[P]E]1.

Whence ND[[P]E]1 ⊆ Tt.

Suppose on the other hand there exists p, p ∈ Tt\ ∈ ND[[P]E]1.
Then there exists q, such that E(q) > E(p). Consider the following cases:

(1) q ∈
t⋃

i=1

Ai.

Suppose now that p ∈
j⋃

i=1

Ai for some j. Then, p ∈ Tt would not be possi-

ble since by the terminal iteration, q will have E-dominated p. Therefore,

p ∈
j⋃

i=1

Ai is impossible for any j. Therefore we must have p ∈ P\
t⋃

i=1

Ai.

Since p ∈ Tt, p ∈ Nt must thus be true. But then, E(q) > C(p) is impossi-
ble (for otherwise p could not be in Tt, being dominated by an element of

t⋃
i=1

Ai, namely q). By terminality of t, E(p) = C(p), rendering E(q) > E(p)

also.

(2) q /∈
t⋃

i=1

Ai. Consider now the two sub-cases.

1. p ∈
t⋃

i=1

Ai. Since q ∈ P\
t⋃

i=1

Ai, we must have q ∈ Nt. Otherwise,

there must exist an r, r ∈ P\
t⋃

i=1

Ai, such that C(r) > C(q). Without

loss of generality, we can assume that r ∈ Nt. Since E(q) > E(p)
and C(r) > C(q) = E(q), we must have C(r) > E(p), rendering p ∈ Tt

impossible. So, q ∈ Nt (without loss of generality, we can assume
that q ∈ Tt) and so C(q) = E(q) by terminality of t. This forces
C(q) > E(p), thus rendering p ∈ Tt impossible.

2. p /∈
t⋃

i=1

Ai, or p ∈ P\
t⋃

i=1

Ai. Since p ∈ Tt, p ∈ Nt and by terminality

C(p) = E(p). Now, on the other hand, since E(q) > E(p), and without
loss of generality q ∈ Nt we have C(q) = E(q) > E(p) = C(p) making
p ∈ Tt impossible.

Whence Tt ⊆ ND[[P]E]1.

DIMENSION REDUCTION FOR DP OVER POS 181

3. Application to time-dependent dynamic programming

The application we present next suggests that the class of time-dependent multi-
stage decision problems does admit of such a fruitful partitioning; that is, the
combinatorial optimization step, in this case dynamic programming, can be carried
out with a bounding label C of lesser dimension than would have been associated
with “real” cost E.

Our formulation is a extension of a general Fuzzy Decision Problem formulated
by Bellman and Zadeh [2]. In this formulation, the system under control is deter-
ministic, with states σi varying over a finite state space X , and a set of inputs αj

from an input space U . State-Transition is given by a function f : X × U → X
which depends on the state and the input ui at stage i; that is,

xi+1 = f(xi, ui), i = 1, 2, ...N − 1.

For each stage n, there are two types of constraints, characterized by membership
functions:

(i) corresponding to the stage k, a fuzzy constraint with membership func-
tion µk which is a function of the input input ui;

(ii) corresponding to the goal (at the terminal stage N), a fuzzy constraint with
membership function µN

G which is a function of the state at the terminal
stage σi.

A decision D ≡ (u0, u1..., uN−1) is then characterized by a “confluence” member-
ship function µD given by:

µD(u0, u1..., uN−1) ≡ µ0(u0) ∧ µ1(u1) ∧ ... ∧ µN−1(uN−1) ∧ µN
G (xN),

where xN is obtained from u0, u1..., uN−1 and the initial state x0, by iterations
of f .

The decision problem then becomes: find those decisions D with maximal (non-
dominated) values for confluence functions costs µD. This is readily done via the
recurrence equations,

µN−ν
G (xN−ν) = MaxN−ν

u (µN−ν(uN−ν) ∧ µN−ν+1
G (xN−ν+1)),

xN−ν+1 = f(xN−ν , uN−ν), ν = 1, ..., N.

We now modify this problem to include time-dependency, as follows.
Let there be a state-transition-time function T : X × X × U → R+ ∪ {0}, that

gives the time it takes to enter a state xi ∈ X from some other state xj ∈ X via
an input uk ∈ U . Similarly, let the fuzzy constraint functions ui: U ×R+ ∪ {0} →
R+ ∪ {0} be functions of input uk ∈ U and time t(≡ t(uk)) at input. Finally,
let the membership function characterizing the fuzzy constraint on the goal, µN

G :
X × R+ ∪ {0} → R+ ∪ {0}, be a function of the terminal state xN and the
time t(≡ t(uN

G)) of arrival at this final state4. In this modified problem, a decision

4In this paper, we shall take “times of arrival” and “times of input” to be crisp notions.

182 T. GETACHEW AND M.M. KOSTREVA

takes the form,

D ≡ (u0, t(u0)), (u1, t(u1)), ..., (uN−1, t(uN−1)),

where t(ui) is the time of input ui.
With each such decision D, we shall associate the confluence function

µD ≡ µ0(u0, t(u0)) ∧ µ1(u1, t(u1)) ∧ ... ∧ µN−1(uN−1, t(uN−1)) ∧ µN
G (xN , t(xN)).

Once again, the problem is:
Find all decisions D with maximal (or non-dominated) values for confluence func-
tions.
As noted in the introduction to this section, the standard approach to solving this
second problem would be to somehow incorporate time into the state space of the
system and by invoking the principle of optimality derive and solve the appropriate
recurrence equations. Cooke and Halsey [4], when they first considered Dynamic
Programming in a time-dependent context, took the time of arrival at a node in a
network to be part of the state characterizing the network, capturing this enlarged
state space by a grid enumeration of all possible arrival times. While this was in
the spirit of the concept of state for multi-stage decision problems (see for example
ElMagrahby [9]), problems involving large networks with time-dependent intern-
odal transition times, and multi-criteria objective functions make this approach
computationally prohibitive, due chiefly to the exponential growth of the size of
the state space.

The motivation behind the algorithm that we propose is the observation that
this enlargement of the state space can be partially mitigated by replacing a one
step algorithm over the entire state space (which includes time) by a backward-
forward algorithm with time being excluded from the backward step and instead
“evaluated-out” in the forward step over a subset of the underlying decision space.

Prior to starting with the computations, we shall first make the following nota-
tional adjustments:

P ≡ (P, =) ≡ (R × R, =), where “=” is component-wise comparison of two-
dimensional vectors and R is the set of real numbers with the usual order.

P ≡ {D ≡ D((u0, t(u0)), (u1, t(u1)), ..., (uN−1, t(uN−1))): ui ∈ U}
C: P → P given by,

C(D) = suptµ0(u0, t) ∧ suptµ1(u1, t) ∧ ... ∧ suptµN−1(uN−1, t) ∧ suptµ
N
G (xN , t),

t ∈ R+ ∪ {0}

E: P → P given by,

E(D) = µ0(u0, t(u0))∧µ1(u1, t(u1))∧ ...∧µN−1(uN−1, t(uN−1))∧µN
G (xN , t(xN)),

DIMENSION REDUCTION FOR DP OVER POS 183

where, given an initial state x0, and letting t(u0) = 0, the subsequent sequence of
states x1, x2,..., xN induced by the inputs u0, u1, u2,..., uN−1, t(uk) is evaluated by:

t(uk) =
k−1∑
i=0

T (xi, xi+1, ui).

We can now readily observe that
(1) P is finite, and
(2) C is a bounding label for E.

This enables us to invoke the main proposition to solve the problem.
The algorithm has a “backward” and “forward” phase. Note in particular that

the backward phase is carried out with time-independent costs (the suptµi’s), thus
achieving the reduction in dimensionality, as desired.

4. A numerical example

We next present a numerical example in which we carry out the algorithmic
computations in detail.

This is the data for the example:
a state space X = {σ1, σ2, and σ3};
an input space U = {α1, α2, α3, α4, α5, α6};
a state transition function f given by the following matrix:

xi σ1 σ2 σ3

ui

α1 σ1 σ2 σ3

α2 σ1 σ3 σ2

α3 σ2 σ1 σ3

α4 σ2 σ3 σ1

α5 σ3 σ1 σ2

α6 σ3 σ2 σ1

A state-to-state transition time function T given by:

ui α1 α2 α3 α4 α5 α6

σj → σk

σ1 → σ1 0 0
σ1 → σ2 6 2
σ1 → σ3 3 5
σ2 → σ2 0 0
σ2 → σ1 7 3
σ2 → σ3 2 1
σ3 → σ3 0 0
σ3 → σ1 1 5
σ3 → σ2 2 5

184 T. GETACHEW AND M.M. KOSTREVA

Multi-Criteria Constraint Membership Functions:

µk(αj , t) ≡
{

µk1(αi, t)
for k = 0, 1;

µk2(αi, t)

α1 α2 α3 α4 α5 α6

µ0(αj , t)

{
0.0
0.1

{
0.3
0.8

{
0.3 if t < 3 and 0.7 otherwise

0.8 if t < 2 and 0.3 otherwise

{
0.5
0.5

{
0.3
0.7

{
0.2
0.5

α1 α2 α3 α4 α5 α6

µ1(αj , t)

{
0.9
0.1




0.2 if t < 2
and 0.8 otherwise

0.3

{
0.5
0.9




0.4

0.6 if t < 5
and 0.2 otherwise

{
0.1
0.1

{
0.7
0.3

and the goal membership function for the terminal stage N = 2,

µ2
G(x2, t) ≡

{
µG21(x2, t)

for x2 ∈ {σ1, σ2, σ3}·
µG22(x2, t)

σ1 σ2 σ3

µ2
G(x2, t)

{
0.8
0.7

{
0.5
0.8

{
0.5 if t < 8 and 0.9 otherwise

0.4 if t < 7 and 0.9 otherwise

We are now ready to carry out the computations leading to the solution of the
MDP. Find all the E-nondominated decisions in the system depicted above5. We
find it convenient to organize out calculations in tabular form.

αj f(σ1, αj) suptµ1(αj) suptµ
2
G(αj , σ1) suptµ1(αj) ∧ suptµ

2
G(αj , σ1)

α1 σ1 (0.9, 0.1) (0.8, 0.7) (0.8, 0.1)
α2 σ1 (0.8, 0.3) (0.8, 0.7) (0.8, 0.3)*
α3 σ2 (0.5, 0.9) (0.3, 0.8) (0.5, 0.8)*
α4 σ2 (0.4, 0.6) (0.3, 0.8) (0.3, 0.6)
α5 σ3 (0.1, 0.1) (0.9, 0.9) (0.1, 0.1)
α6 σ3 (0.7, 0.3) (0.9, 0.9) (0.7, 0.3)

* µ1
G(σ1)

5For the backward (constant cost) phase we shall still be using the recurrence relations,

µN−ν
G (xN−ν) = MaxN−ν

u µN−ν (uN−ν) ∧ µN−ν+1
G (xN−ν+1),

xN−ν+1 = f(xN−ν , uN−ν), ν = 1, ...,N

where “Max” will be replaced by “Vector-(Component-Wise) Max”, “µN−ν” by “suptµN−ν”

and “µN−ν+1
G ” by “suptµ

N−ν+1
G ”.

DIMENSION REDUCTION FOR DP OVER POS 185

αj f(σ2, αj) suptµ1(αj) suptµ
2
G(αj , σ2) suptµ1(αj) ∧ suptµ

2
G(αj , σ2)

α1 σ2 (0.9, 0.1) (0.3, 0.8) (0.3, 0.1)
α2 σ3 (0.8, 0.3) (0.9, 0.9) (0.8, 0.3)*
α3 σ1 (0.5, 0.9) (0.8, 0.7) (0.5, 0.7)*
α4 σ3 (0.4, 0.6) (0.9, 0.9) (0.4, 0.6)
α5 σ1 (0.1, 0.1) (0.8, 0.7) (0.1, 0.1)
α6 σ2 (0.7, 0.3) (0.3, 0.8) (0.3, 0.3)

* µ1
G(σ2)

αj f(σ3, αj) suptµ1(αj) suptµ
2
G(αj , σ3) suptµ1(αj) ∧ suptµ

2
G(αj , σ3)

α1 σ3 (0.9, 0.1) (0.9, 0.9) (0.9, 0.1)*
α2 σ2 (0.8, 0.3) (0.3, 0.8) (0.3, 0.3)
α3 σ3 (0.5, 0.9) (0.9, 0.9) (0.5, 0.9)*
α4 σ1 (0.4, 0.6) (0.8, 0.7) (0.4, 0.6)
α5 σ2 (0.1, 0.1) (0.3, 0.8) (0.1, 0.1)
α6 σ1 (0.7, 0.3) (0.8, 0.7) (0.7, 0.3)*

* µ1
G(σ3)

αj f(σ1, αj) suptµ0(αj) µ1
G(αj , σ1) suptµ1(αj) ∧ µ1

G(αj , σ1)
α1 σ1 (0.0, 0.1) (0.8, 0.3) (0.0, 0.1)

(0.5, 0.8) (0.0, 0.1)
α2 σ1 (0.3, 0.8) (0.8, 0.3) (0.3, 0.3)

(0.5, 0.8) (0.3, 0.8)*
α3 σ2 (0.7, 0.8) (0.8, 0.3) (0.7, 0.3)*

(0.5, 0.7) (0.5, 0.7)*
α4 σ2 (0.5, 0.5) (0.8, 0.3) (0.5, 0.3)

(0.5, 0.7) (0.5, 0.5)
α5 σ3 (0.3, 0.7) (0.9, 0.1) (0.3, 0.1)

(0.5, 0.9) (0.3, 0.7)
(0.7, 0.3) (0.3, 0.3)

α6 σ3 (0.2, 0.5) (0.9, 0.1) (0.2, 0.1)
(0.5, 0.9) (0.2, 0.5)
(0.7, 0.3) (0.2, 0.3)

* µ0
G(σ1)

186 T. GETACHEW AND M.M. KOSTREVA

αj f(σ2, αj) suptµ0(αj) µ1
G(αj , σ2) suptµ1(αj) ∧ µ1

G(αj , σ2)
α1 σ2 (0.0, 0.1) (0.8, 0.3) (0.0, 0.1)

(0.5, 0.7) (0.0, 0.1)
α2 σ3 (0.3, 0.8) (0.9, 0.1) (0.3, 0.1)

(0.5, 0.9) (0.3, 0.8)
(0.7, 0.3) (0.3, 0.3)

α3 σ1 (0.7, 0.8) (0.8, 0.3) (0.7, 0.3)*
(0.5, 0.8) (0.5, 0.8)*

α4 σ3 (0.5, 0.5) (0.9, 0.1) (0.5, 0.1)
(0.5, 0.9) (0.5, 0.5)
(0.7, 0.3) (0.5, 0.3)

α5 σ1 (0.3, 0.7) (0.8, 0.3) (0.3, 0.3)
(0.5, 0.8) (0.3, 0.7)

α6 σ2 (0.2, 0.5) (0.8, 0.3) (0.2, 0.3)
(0.5, 0.7) (0.2, 0.5)

* µ0
G(σ2)

αj f(σ3, αj) suptµ0(αj) µ1
G(αj , σ3) suptµ1(αj) ∧ µ1

G(αj , σ3)

α1 σ3 (0.0, 0.1) (0.9, 0.1) (0.0, 0.1)

(0.5, 0.9) (0.0, 0.1)

(0.7, 0.3) (0.0, 0.1)

α2 σ2 (0.3, 0.8) (0.8, 0.3) (0.3, 0.3)

(0.5, 0.7) (0.3, 0.7)

α3 σ3 (0.7, 0.8) (0.9, 0.1) (0.7, 0.1)

(0.5, 0.9) (0.5, 0.8)*

(0.7, 0.3) (0.7, 0.3)*

α4 σ1 (0.5, 0.5) (0.8, 0.3) (0.5, 0.3)

(0.5, 0.8) (0.5, 0.5)

α5 σ2 (0.3, 0.7) (0.8, 0.3) (0.3, 0.3)

(0.5, 0.7) (0.3, 0.7)

α6 σ1 (0.2, 0.5) (0.8, 0.3) (0.2, 0.3)

(0.5, 0.8) (0.2, 0.5)

* µ0
G(σ3)

DIMENSION REDUCTION FOR DP OVER POS 187

The result from the first iteration of the algorithm is as follows:

Initial State N1 [[N1]C]2
σ1 ((α2, 0), (α3, 0)) (0.3, 0.8)

((α3, 0), (α2, 6)) (0.7, 0.3)
((α3, 0), (α3, 6)) (0.5, 0.7)

σ2 ((α3, 0), (α2, 7)) (0.7, 0.3)
((α3, 0), (α3, 7)) (0.5, 0.8)

σ3 ((α3, 0), (α3, 0)) (0.5, 0.8)
((α3, 0), (α6, 0)) (0.7, 0.3)

Since for iteration one A1 = Ø, we get

Initial State T1 ≡ ND
[[

1⋃
i=1

Ai

]
E

∪ [N1]C

]
1

= N1 C(D) E(D)

σ1 ((α2, 0), (α3, 2)) (0.3, 0.8) (0.3, 0.8)
((α3, 0), (α2, 6)) (0.7, 0.3) (0.7, 0.3)
((α3, 0), (α3, 6)) (0.5, 0.7) (0.5, 0.7)

σ2 ((α3, 0), (α2, 7)) (0.7, 0.3) (0.7, 0.3)
((α3, 0), (α3, 7)) (0.5, 0.8) (0.5, 0.8)

σ3 ((α3, 0), (α3, 0)) (0.5, 0.8) (0.5, 0.4)*
((α3, 0), (α6, 0)) (0.7, 0.3) (0.3, 0.3)*

* A2 = {((α3, 0), (α3, 0)), ((α3, 0), (α6, 0))}
Since A2 is nonempty, we proceed to a second iteration (this time only for

state σ3).

αj f(σ3, αj) suptµ0(αj) µ1
G(αj , σ3) suptµ1(αj) ∧ µ1

G(αj , σ3)

α1 σ3 (0.0, 0.1) (0.9, 0.1) (0.0, 0.1)

(0.5, 0.9) (0.0, 0.1)

(0.7, 0.3) (0.0, 0.1)

α2 σ2 (0.3, 0.8) (0.8, 0.3) (0.3, 0.3)

(0.5, 0.7) (0.3, 0.7)*

α3 σ3 (0.7, 0.8) (0.9, 0.1) (0.7, 0.1)*

α4 σ1 (0.5, 0.5) (0.8, 0.3) (0.5, 0.3)

(0.5, 0.8) (0.5, 0.5)*

α5 σ2 (0.3, 0.7) (0.8, 0.3) (0.3, 0.3)

(0.5, 0.7) (0.3, 0.7)*

α6 σ1 (0.2, 0.5) (0.8, 0.3) (0.2, 0.3)

(0.5, 0.8) (0.2, 0.5)

* µ0
G(σ3)

188 T. GETACHEW AND M.M. KOSTREVA

Initial State N2 [[N2]C]2
σ3 ((α2, 0), (α3, 2)) (0.3, 0.7)

((α3, 0), (α1, 0)) (0.7, 0.1)
((α4, 0), (α3, 1)) (0.5, 0.5)
((α5, 0), (α3, 5)) (0.3, 0.7)

Since from iteration one we have:

Initial State A2 [[A2]E]2
σ3 ((α3, 0), (α3, 0)) (0.5, 0.4)

((α3, 0), (α6, 0)) (0.3, 0.3)

We get:

Initial State T2 ≡ ND
[[

2⋃
i=1

Ai

]
E

∪ [N2]C

]
1

C(D) E(D)

σ3 ((α2, 0), (α3, 2)) (0.3, 0.7) (0.3, 0.7)
((α3, 0), (α1, 0)) (0.7, 0.1) (0.3, 0.1)*
((α4, 0), (α3, 1)) (0.5, 0.5) (0.5, 0.5)
((α5, 0), (α3, 5)) (0.3, 0.7) (0.3, 0.7)

* A3 = {((α3, 0), (α1, 0))}
Since A3 is nonempty, we proceed to a third iteration.

αj f(σ3, αj) suptµ0(αj) µ1
G(αj , σ3) suptµ1(αj) ∧ µ1

G(αj , σ3)
α1 σ3 (0.0, 0.1) (0.9, 0.1) (0.0, 0.1)

(0.5, 0.9) (0.0, 0.1)
(0.7, 0.3) (0.0, 0.1)

α2 σ2 (0.3, 0.8) (0.8, 0.3) (0.3, 0.3)
(0.5, 0.7) (0.3, 0.7)*

α4 σ1 (0.5, 0.5) (0.8, 0.3) (0.5, 0.3)
(0.5, 0.8) (0.5, 0.5)*

α5 σ2 (0.3, 0.7) (0.8, 0.3) (0.3, 0.3)
(0.5, 0.7) (0.3, 0.7)*

α6 σ1 (0.2, 0.5) (0.8, 0.3) (0.2, 0.3)
(0.5, 0.8) (0.2, 0.5)

* µ0
G(σ3)

Initial State N3 [[N3]C]2
σ3 ((α2, 0), (α3, 2)) (0.3, 0.7)

((α4, 0), (α3, 1)) (0.5, 0.5)
((α5, 0), (α3, 5)) (0.3, 0.7)

DIMENSION REDUCTION FOR DP OVER POS 189

Since from iteration two we have:

Initial State A3 [[A3]E]2
σ3 ((α3, 0), (α1, 0)) (0.3, 0.1)

We get:

T3 ≡ ND
[[

3⋃
i=1

Ai

]
E

∪ [N3]C

]
1

C(D) E(D)

((α2, 0), (α3, 2)) (0.3, 0.7) (0.3, 0.7)
((α4, 0), (α3, 1)) (0.5, 0.5) (0.5, 0.5)
((α5, 0), (α3, 5)) (0.3, 0.7) (0.3, 0.7)

This time A4 is empty. Hence we’re done! The solution to the MDP is:

Initial State D E(D)
σ1 ((α2, 0), (α3, 0)) (0.3, 0.8)

((α3, 0), (α2, 6)) (0.7, 0.3)
((α3, 0), (α3, 6)) (0.5, 0.7)

σ2 ((α3, 0), (α2, 7)) (0.7, 0.3)
((α3, 0), (α3, 7)) (0.5, 0.8)

σ3 ((α2, 0), (α3, 2)) (0.3, 0.7)
((α4, 0), (α3, 1)) (0.5, 0.5)
((α5, 0), (α3, 5)) (0.3, 0.7)

Future research

This paper has established the theoretical basis for a dimension reduction algo-
rithm for finding the non-dominated subset of a partially ordered set. An instance
of one possible area of fertile application has also been given. There are however
questions that naturally arise as a consequence of these results.

(1) The issue of the efficiency of the algorithm was raised in connection with
the benefits that could accrue from a partitioning of the computational
effort between a combinatorial step with a possibly simple cost structure
and a direct evaluation and comparison step involving the more complex,
“real” cost. Work needs to be done to make this claim more precise,
both in terms of a theoretical analysis of computational complexity, and
simulation studies of examples from a specific area of application.

(2) The choice of the bounding label C is crucial to the success of the algorithm
in reducing computational cost. The example showed how this function
could be chosen in one instance. It is of interest to investigate whether or
not this is the best way of choosing this function in more general settings.

190 T. GETACHEW AND M.M. KOSTREVA

(3) Time-Dependent, Multi-Stage problems have been shown to be one possi-
ble area of fruitful application of this algorithm. As the main theoretical
result has great generality (depending only on the existence of a labeling
function, and a return space that is partially ordered), it is of interest to
identify other classes of problems that may benefit from this approach.

References

[1] R.E. Bellman, On a Routing Problem. Quarterly Appl. Math. 16 (1958) 87-90.
[2] R.E. Bellman and L.A. Zadeh, Decision-Making in a Fuzzy Environment. Management Sci.

17 (1970) B-141-B-164.
[3] T.A. Brown and R.E. Strauch, Dynamic Programming in Multiplicative Lattices. J. Math.

Anal. Appl. 12 (1965) 364-370.
[4] K.L. Cooke and E. Halsey, The Shortest Route through a Network with Time-Dependent

Internodal Transit Times. J. Math. Anal. Appl. 14 (1966) 493-498.
[5] H.W. Corley and I.D. Moon, Shortest Paths in Networks with Vector Weights. J. Opt.

Theory Appl. 46 (1985) 79-86.
[6] H.G. Daellenbach and C.A. DeKluyver, Note on Multiple Objective Dynamic Programming.

J. Oper. Res. Soc. 31 (1980) 591-594.
[7] E.W. Djikstra, A Note on Two Problems in Connection with Graphs. Numer. Math. 1

(1959) 269-271.
[8] S.E. Dreyfus, An Appraisal of Some Shortest Path Algorithms. Oper. Res. 17 (1969) 395-

412.
[9] S.E. ElMaghraby, The Concept of “State” in Discrete Dynamic Programming. J. Math.

Anal. Appl. 29 (1970) 523-557.
[10] T. Getachew, M. Kostreva and L. Lancaster, A Generalization of Dynamic Programming

for Pareto Optimization in Dynamic Network. RAIRO: Oper. Res. 34 (2000) 27-47.
[11] J. Halpern, Shortest Route with Time-Dependent Length of Edges and Limited Delay Pos-

sibilities in Nodes. Z. Oper. Res. 21 (1977) 117-124.
[12] M.I. Henig, The Principle of Optimality in Dynamic Programming with Returns in Partially

Ordered Sets. Math. Oper. Res. 10 (1985) 462-470.
[13] D.E. Kaufmann and R.L. Smith, Minimum Travel Time Paths in Dynamic Networks with

Application to Intelligent Vehicle-Highway Systems. University of Michigan, Transportation
Research Institute, Ann Arbor, Michigan, USA, IVHS Technical Report 90-11 (1990).

[14] M.M. Kostreva and M.M. Wiecek, Time Dependency in Multiple Objective Dynamic Pro-
gramming. J Math. Anal. Appl. 173 (1993) 289-308.

[15] A. Orda and R. Rom, Shortest-Path an Minimum-Delay Algorithms in Networks with Time-
Dependent Edge-Length. J. Assoc. Comp. Mach. 37 (1990) 607-625.

[16] J. Kacprzyk and A.O. Esogbue, Fuzzy Dynamic Programming: Main Developments and
Applications. Fuzyy Sets Sys. 81 (1996) 31-45.

[17] M.L. Hussein and M.A. Abo-Sinna, A Fuzzy Dynamic Approach to the Multicriterion Re-
source Allocation Problem. Fuzzy Sets Sys. 69 (1995) 115-124.

To access this journal online:
www.edpsciences.org

