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Abstract. The present study proposes a theoretical model to test
sales velocity for new products introduced in small format retail stores.
The model is designed to distinguish fast moving products within a
relatively short period. Under the proposed model, the sales of a newly
introduced product are monitored for a prespecified period T , e.g., one
week, and if the number of items sold over T is equal to a prespecified
integer k or more, the product is considered a fast moving product and
is carried over to the following sales periods. A slow moving product
could be quickly replaced with alternative merchandise in order to make
best use of shelf space. The paper first presents definitions of fast and
slow moving products, and then a proposed sales test policy based on
the model is formulated, where the expected loss is to be minimized
with respect to the integer k. Numerical examples based on actual
data collected from a convenience store in Japan are also presented
to illustrate the theoretical underpinnings of the proposed sales test
model.
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1. Introduction

In modern retailing, there is an on-going trend to ever increasing centralization
of decisions, effectively taking the decision making away from the retail store. Such
a method has proved very successful in larger format chains such as supermarkets
and general merchandise stores [9, 10]. In Japan, the prestige of being a store
manager, even within a large chain, comes with markedly greater responsibility
than is now common in many other countries. There are even cases of store
managers being involved in store building design and having a relatively free reign
on aspects of layout and product display. Such methods are slowly disappearing
at larger chains, however, as companies seek the efficiency of centralized decision
making.

Where Japan differs, however, is in the significant number of small retailers.
Since the 1930s, it has been an active government policy to attempt to protect
smaller, independent retailers [7]. One result of this has been the long-term reg-
ulation on the opening of new large stores, and even the largest retail companies
have had little option but to turn to smaller formats. In the 1970s, Japan im-
ported the concept of convenience stores from the United States, and through the
introduction of best practices in logistics, merchandising and information systems,
built these chains into some of the most successful retailers in the world [7]. The
largest retailer overall and the largest food retailer in Japan is now Seven–Eleven
Japan [11].

There have been many studies on the product selection problem from the point
of view of large format, centralized buying [1, 4–6, 8, 17–19, 21, 22]. The models
proposed in these studies attempt to optimize nonlinear objective functions ex-
pressing, for example total profit, on the conditions that the values of parameters
involved in the models are, a priori, known or are to be estimated based on a large
volume of data associated with the parameter estimation. Such models have less
relevance in the case of small, independently operated outlets because of much
smaller merchandise volumes per store, and the need to adjust merchandise selec-
tion for a very limited commercial area around each store. The average convenience
store has a commercial area with the radius of as little as 500 meters from the
store. The types of merchandise and the specific product mix is, therefore, highly
variable.

The largest convenience store chains in Japan are major buying concerns. The
largest chains, which include Seven–Eleven and Lawson, gather a pool of merchan-
dise numbering up to 4500 items. Each individual store in the thousands of stores
in the chain will then select an appropriate 2000 or so items for their own store
and needs. The majority of merchandise will be fairly uniform between stores, but
between 20 and 30 per cent will vary from store to store. Even within a kilometer
or so, two stores from the same chain may carry very different selections. A neigh-
borhood convenience store would carry more top-up food items, more cosmetics
and toiletries and so on than would a similar store located on a busy road nearby.
The latter store would include more alcohol, more magazines and entertainment
related merchandise.
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Japanese convenience stores were created by Japan’s biggest retailers as fast
growth alternatives to larger formats. As such, these chains have been built with
minute attention to detail. Japanese distribution has a history of being criticized
for being archaic and anti-competitive (for example [2,16,20]), but in building con-
venience store chains, the largest retailers by-passed almost all aspects of Japan’s
traditional system to create state-of-the-art retail management systems. In the
early 1980s, for example, a single 100 square meter convenience store would re-
ceive up to 70 deliveries of product a day from numerous suppliers. Today, a
store will receive from three to five deliveries a day, but all from a centralized,
cross-docking logistics center. Three to five deliveries a day may still seem a lot,
but the reasons have now changed. Frequent deliveries no longer occur due to the
number of different suppliers, but because product turnover within the store is
so rapid. A typical convenience store will expect certain product lines to sellout
three times a day, so deliveries are made to correspond to this very short sale
time period. The systems used by convenience store chains are the epitomy of
just-in-time replenishment.

Convenience stores are exclusively FMCG (fast-moving consumer goods) retail-
ers, and they clearly live up to their format. Not only is product turnaround so
rapid, however, as an FMCG retailer, convenience stores face the added prob-
lem of keeping their merchandise assortments as current as possible. Most chains
will consider as many as 10 000 new product introductions a year from FMCG
manufacturers. The majority of these will not last a year, but the need to stock
a significant proportion of these items in order to maintain current merchandise
lists is vital as a marketing component.

In addition, Japan’s largest FMCG manufacturers are well aware of convenience
stores as the make-or-break option for some of their new products. The nationwide
coverage of the largest chains means that new product introductions which find
their way onto these shelves stand a far higher chance of success than those that
do not.

In summary, Japanese convenience stores face the problems of all FMCG retail-
ers, with the added complication that store level merchandise assortments need to
be adjusted for a limited geographical area. The majority of convenience stores
are also franchises, so individual store owners have greater responsibility to mon-
itor and alter merchandise assortment within the store. Clearly this is a problem
that is in a way simpler than the case for large supermarkets carrying 10 000 or
more items, but more difficult in that convenience store shelf space needs to be
optimized far quicker and on a far more fragmented scale than for supermarkets.

The model presented in this paper addresses this problem. From the myriad
of new FMCG products which find their way onto the shelves of franchised con-
venience stores, how does a single store owner quickly and accurately access the
suitability of each new product? To a certain extent, the store owner’s knowl-
edge of his local clientele and competitive environment is important, but, in most
categories, he needs products that will sell very quickly indeed. How should he
optimize this?
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The model presented here aims to support decision making associated with
product selection in a small format, FMCG retailer operating within a restricted
geographical area. Under the proposed strategy, a sales test for a newly introduced
FMCG product such as a new soft drink or potato chips product is conducted
over periods ((j − 1)T, jT ](j = 1, 2, · · · ), where T is one or two weeks. The
model aims to identify whether a particular product is fast moving or not. For
simplicity, it is assumed that one facing is used for the objective product and
that m(m = 1, 2, · · · ) items are arranged in the facing for total stock on the
shelf. It is also assumed that when all the m items are sold out during the sales
test, the facing is replenished with other m items. Given the rapid turnaround of
merchandise within convenience stores and their rapid replenishment systems, it
is a safe assumption that the facing would almost never be empty.

Under the proposed sales test strategy, if the number N(T ) of items sold over
j-th period, ((j − 1)T, jT ] becomes equal to an non-negative integer k(k = 0, 1,
2, · · · ) or more, the sales test is continued over the next period (jT, (j + 1)T ].
Alternatively, if N(T ) becomes less than k, the sales test is terminated at the end
of the j-th period, and so releases the shelf space for use with other merchandise.

The definitions for a fast and a slow moving product are presented below, along
with that of a standard product. The expected loss due to a miscalculation of
the product’s sales velocity under the proposed policy is then formulated, which
is to be minimized. It is shown that there always exists a finite optimal integer k∗

which minimizes the expected loss. Numerical examples based on the actual data
collected from a single convenience store are also presented to illustrate the theo-
retical underpinnings of the proposed sales test policy formulation.

2. Assumptions and definitions

It is assumed throughout this paper that demand for the newly introduced
product occurs following a Poisson process. This is because using a Poisson process
for the demand distribution of frequently purchased consumer goods has a long
validated history [3,15]. Hence, let N(t), denote the number of items of the product
demanded on (0, t], and we have

Pr[N(t) = i] ≡ pi[λ(x)] =
[λ(x)t]i

i!
e−λ(x)t, i = 0, 1, 2, · · · , (1)

where x = (x1, x2, · · · , xn) is a vector of marketing variables. In equation (1),
λ(x) expresses the mean number of items demanded per unit of time when x is
fixed, and thus we call it a demand rate. In the following, we consider a specific
set of the marketing variables x = x0, and λ(x0) is written as λ for simplicity.

Under the above assumption, let α and β respectively denote gross profit per
item and the facing occupation cost per unit of time (see Eq. (4) below), where a
gross profit signifies the profit obtained by subtracting all the cost associated with
purchasing, transportation, except facing occupation from its selling price.
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The definitions of a fast moving and a slow moving product are given below
along with that of a standard product:

Definition 1 (Classification of products). If the demand rate λ for a product sat-
isfies

αλ − β > (<)0 (2)

such a product is called a fast (slow) moving product.
It is convenient to introduce the concept of a standard product, with a demand

rate of λ = λ0 where

αλ0 − β = 0. (3)

From equation (3), the facing occupation cost, β can be expressed, in terms of α
and λ0, as

β = αλ0. (4)

Hence, the subtraction of the facing occupation cost from the gross profit of a newly
introduced product is equivalent to comparing the newly introduced product with
a standard product in terms of the profit acquired from each.

Notations Λ1 and Λ2 shown below will be used in the following:

Λ1 =
{

λ

∣∣∣∣α − β

λ
> 0

}
, (5)

Λ2 =
{

λ

∣∣∣∣α − β

λ
< 0

}
· (6)

3. Model

In this study, we consider consumer nondurables, specifically FMCG merchan-
dise such as grocery products, within a single merchandise category. This cat-
egory will be allocated one product facing within the store’s shelf space. Some
of the product will be on display within this single facing at all times, with
m(m = 1, 2, · · · ) items in the facing itself, and that the product will be imme-
diately replenished should the facing become empty. In effect, we are assuming
that there is always product in the facing in question.

Under such a situation, a sales test policy is conducted over periods (0, T ],
(T, 2T ], (2T, 3T ], · · · using one facing, where T is predetermined as relatively a
short time period of only one or two weeks. When the number of items demanded
over ((j − 1)T, jT ] becomes equal to an integer k(k = 0, 1, 2, · · · ) or more, we
regard the product as a fast moving product, otherwise it is regarded as a slow
moving product. Being considered a fast moving product, the item will stay on
the shelves for the next period. Products that are deemed by the model to be slow
moving products will have their test sales period terminated at the end of the j-th
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period to release the facing to another candidate product in the overall product
list. The remaining products unsold by the time the sales test is terminated are
assumed to be disposed of in some way. In reality, this is a feasible assumption
as retailers will return the products to suppliers for refund, or, cases of a small
number of products, simply dispose of them. If all the m items are sold out during
the sales test period, the facing will be replenished with items of the same product
as explained above.

Figure 1 illustrates the proposed sales test for three periods. In the first two
periods (0, T ] and (T, 2T ] the number of items sold exceeded k and the sales test
was continued for subsequent periods, but in the third period (2T, 3T ] the number
of items sold drops to below k and so would be considered for replacement.

time

1 2 i

Demand

k 1 2 ik 1 2 i <k1 32

T T T

Figure 1. Sales test policy.

4. Expected loss

Under the proposed policy, there exists the possibility of two types of misjudg-
ment or decision errors: (1) the misjudgment of regarding an actual fast moving
product as a slow moving product where N(T ) incidentally becomes less than k,
and (2) the misjudgment of regarding an actual slow moving product as a fast
one due to an event of N(T ) ≥ k. In the following, these misjudgments are called
Type I and II Errors, respectively. It does not seem that the Type II Error would
be a critical mistake since we have N(T ) ≥ k in the corresponding period, but it
is not negligible because the model would suggest continuing the sales test over
the next period. This would compound potential inefficiencies and therefore losses
due to shelving a less than optimum merchandise selection.

The probability of making Type I and II Errors in each period is given by

Pr[J2|λ = λ1 ∈ Λ1] =
k−1∑
i=0

pi(λ1), (7)

Pr[J1|λ = λ2 ∈ Λ2] =
∞∑

i=k

pi(λ2), (8)

λ1 > λ2

where J1 and J2 express to regard the objective product as a fast and a slow
moving respectively, and

∑−1
i=0 · = 0.
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When λ = λl ∈ Λl, and if the demand rate is constant with respect to time, that
is, it does not change over considerably long periods, we can derive the expected
profit of the proposed policy, from a renewal reward process [13, 14], as

Al(k) =
k−1∑
i=0

(iα − βT ) pi(λl) +
∞∑

i=k

[iα − βT + Al(k)] pi(λl), (9)

k = 0, 1, 2, · · · , l = 1, 2.

In equation (9), the first term of the right-hand-side expresses the expected profit
in case we terminate the sales test since the number N(T ) of items sold is un-
der k. The second term of the right-hand-side signifies the expected profit when
we continue the sales test over the succeeding period due to N(T ) ≥ k. This ex-
presses the expected profit until the sales test is terminated since N(T ) falls to less
than k. In an actual retail situation, however, it would be unwise to assume that
the demand rate remains constant over a considerably long period, theoretically
over an infinitive period, and consequently we cannot use Al(k) in equation (9).

In this study, we define expected profit by the sum of the expected profit over
the corresponding period and over the succeeding one, assuming the demand rate
will not change significantly over the subsequent periods. Then the expected profit
is given by

Al(k) =
k−1∑
i=0

(iα − βT ) pi(λl) +
∞∑

i=k

[α(i + λlT ) − 2bT ]pi(λl), (10)

k = 0, 1, 2, · · · , l = 1, 2.

4.1. Fast moving product

Where the objective product is actually a fast moving product with demand
rate λ1 ∈ Λ1, we would carry over the sales test to the next period. In such a case,
the expected profit is given by

B1(k) =
∞∑

i=0

[α(i + λ1T ) − 2bT ]pi(λ1), k = 0, 1, 2, · · · , (11)

where B1(k) expresses the expected profit when we continue the sales test over
the next period independently of the number i of sold items.

Hence, the loss incurred by the proposed policy when the product is a fast
moving product can be given by

C1(k) = B1(k) − A1(k)

= (αλ1 − β)T

k−1∑
i=0

pi(λ1), k = 0, 1, 2, · · · (12)
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4.2. Slow moving product

If the objective product is actually a slow moving product with demand rate
λ2 ∈ Λ2, we should terminate the sales test independently of the sales test results.
The expected profit in such a case is given by

B2(k) =
∞∑

i=0

(iα − βT ) pi(λ2), k = 0, 1, 2, · · · (13)

Hence, the loss incurred if the product is a slow moving product can be ex-
pressed by

C2(k) ≡ B2(k) − A2(k)

= − (αλ2 − β)T
∞∑

i=k

pi(λ2), k = 0, 1, 2, · · · (14)

4.3. Expected loss

Let q1(0 < q1 < 1) and q2(= 1 − q1) denote respectively the prior probabilities
that the objective product is a fast or a slow moving product. In this case the
expected loss becomes

C0(k) ≡ C1(k)q1 + C2(k)q2

= q1 (αλ1 − β)T

k−1∑
i=0

pi(λ1) − q2 (αλ2 − β)T

∞∑
i=k

pi(λ2), (15)

k = 0, 1, 2, · · ·

In the above, we have formulated the expected loss of the proposed policy, so if
k = k∗ minimizes C0(k) in equation (15), it is optimum.

5. Optimal policy

Let ∆C0(k) = C0(k + 1) − C0(k), then we have

∆C0(k) = q1(αλ1 − β)Tpk(λ1) + q2(αλ2 − β)Tpk(λ2), (16)
k = 0, 1, 2, · · ·

Since we have αλ1 − β > 0, ∆C0(k) ≥ 0 which agrees with

(
λ1

λ2

)k

≥ −q2(αλ2 − β)
q1(αλ1 − β)

e(λ1−λ2)T , k = 0, 1, 2, · · · (17)
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Let us denote the left-hand-side and the right-hand-side of inequality (17) by L(k)
and c, respectively, then we notice that L(k) is strictly increasing in k due to
λ1 > λ2 along with L(0) = 1, limk→+∞ L(k) = +∞ and c > 0.

From the above observations, the optimal sales test policy can be shown as
follows:

(1) where c ≤ L(0) = 1, we have ∆C0(k) ≥ 0. It follows that C0(k) increases
with k and consequently k∗ = 0. This recommends that the sales test should
continue over the next period independently of the sales test result over the
corresponding period;

(2) if c > 1, the sign of ∆C0(k) changes from negative to positive only once.
Hence, there exists an optimal positive finite integer k∗(> 0) which mini-
mizes C0(k).

6. Numerical examples

This section presents numerical examples using sales data for bags of potato
chips from a single convenience store located on the campus of the authors’ uni-
versity. The store is a member of Lawson, one of Japan’s largest convenience
store chains, but, as it is used for education and research purposes, sales are not
completely representative of all stores in the chain. Specifically, the store is prone
to heavier than usual sales during lunch periods with lighter than usual sales at
other times, and suffers from significant falls in sales out of school terms. Nev-
ertheless, the store provides appropriate and actual data for a test of the model.
Being reliant on college students for much of its sales, the store reflects the im-
portance of geographical location and the adjustments in merchandise necessary
at convenience stores.

6.1. Parameter values

The proposed model includes parameters, λ1, λ2, λ0, α, β, T . Among these,
the value of α is easily determined by obtaining the mean gross profit per SKU
(Stock Keeping Unit) for each of the brands in the category under study. The
value of T can also be determined easily by considering its physical tractability
and this is set to one week. The value of β can be calculated by equation (4) if
the values of α and λ0 are predetermined.

There are intuitively several possible methods for determining the values of λ1,
λ2 and λ0. The retailer may set these values empirically or estimate the values in
order to meet some specific sales or merchandising objective. In this subsection,
we illustrate an intuitive method for determining the values of λ1, λ0 and λ2 based
on the actual data.

Table 1 provides the actual sales data for 29 brands of potato chips, each of
which occupied only a single facing. The data were collected for a ten week period
between May 3, 1999 and July 5, 1999 from the single convenience store mentioned
previously. In Table 1, products introduced partly through the collection period
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are indicated by “∗” in the weeks prior to their introduction. Equally, brands which
were removed by the store manager during the period under study are shown by
“–” during the weeks when they were no longer stocked because of removal. It
would be possible to omit these brands, but this would mean the data were not
realistic. For this reason, we make the assumption that a week where the number
of items in stock was zero due to removal (indicated by “–” in the table) is equal
to a week whereby no sales were achieved for a brand, even though it was in
stock. Finally, in the weeks indicated by “??”, the corresponding brands were
unpredictably out of stock because of shortage, and we omit the weeks indicated
by “??” in computing mean sales of the corresponding brands.

Table 1. Sales data.

Brand 1stweek 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean Cumulative
share

A 52 84 76 91 100 77 64 ?? ?? 43 78.38 0.221
B 18 32 34 31 29 38 37 38 27 30 31.40 0.316
C * 42 38 36 18 23 11 ?? ?? 11 22.38 0.383
D 23 23 20 44 33 55 22 – – – 22.00 0.449
E 20 21 26 17 23 20 17 ?? ?? 6 18.75 0.506
F 15 30 19 15 16 12 8 0 9 14 13.80 0.547
G * * * * * * * * * 13 13.00 0.587
H * * * * 14 23 10 8 8 8 11.83 0.622
I * * * * * * * 17 12 6 11.67 0.657
J 18 15 23 12 12 14 12 2 0 4 11.20 0.691
K 10 13 11 8 7 14 13 14 12 9 11.10 0.725
L * * * * 17 12 12 7 4 3 9.17 0.752
M * * * * * * * * * 9 9.00 0.779
N 10 9 12 10 7 14 11 1 0 13 8.70 0.806
O 6 13 10 3 14 15 7 7 – – 7.50 0.828
P * * 6 10 4 7 5 5 13 8 7.25 0.850
Q 7 6 4 4 5 6 9 13 6 9 6.90 0.871
R * * 13 11 7 3 9 8 5 9 6.50 0.890
S 15 8 8 5 4 11 3 5 3 – 6.20 0.909
T * * * 8 5 8 4 1 5 5 5.14 0.925
U * * * 6 6 4 3 3 5 3 4.29 0.937
V 6 6 9 5 8 – – – – – 3.40 0.948
W 12 15 6 – – – – – – – 3.30 0.958
X * * * * * * 3 2 2 5 3.00 0.967
Y * * * * * * 6 4 2 0 3.00 0.976
Z 3 8 16 – – – – – – – 2.70 0.984
AA 1 6 19 – – – – – – – 2.60 0.992
AB 16 6 – – – – – – – – 2.20 0.998
AC * 5 – – – – – – – – 0.56 1.000

In order to determine the relevant parameters necessary for the model, a tech-
nique that is currently used by convenience store managers was employed. Brands
are classified into three groups: A, B and C according to past sales and the store
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manager’s own past experience. The three groups represent the relative level of
sales accounted for by each brand. The top seven brands A,B, · · · ,G account for
around 65.7 per cent of total sales. These brands are called Group A. The succeed-
ing 14 brands H, I, · · · ,W account for a further 30.1 per cent of total sales. Hence,
brands H, I, · · · ,W are called Group B. The remaining eight brands are Group C.
This study postulates that brands in Group A are predetermined as meeting cri-
teria as fast moving products, those in Group B are standard products, with the
remainder are slow moving products.

Based on these preliminary assumptions, the demand rate λ1 was set to 11.67,
that is the mean number of sold items per week for the fast moving product I
(see Tab. 1). The demand rate λ0 is set to 7.25, i.e. the median number of items
sold per week for brands J to W . The demand rate λ2 is set to 3.0 or the mean
number of brand X sold per week (i.e. a slow moving product).

As noted above, where the number of items in stock fell to zero due to removal,
we regarded the number of items sold to be zero. As the store had not deliberately
cut the brand at this point, the item is considered to be “receiving the benefit of
the doubt” and still available for sale in subsequent periods. This illustrates the
importance of a manager’s personal experience as well as extraneous factors such
as problems with supply or the unavailability of alternative products. Most of the
brands that suffered from this problem belong to Group C, the slow moving group
mentioned above, and so λ2 might be slightly underestimated as a result.

Table 2 summarizes the results. In Table 2, the gross profit α is set to the mean
gross profit per item of brands A,B, · · · ,AC, and the space occupation cost β per
week is computed using equation (4).

Table 2. Parameters.

λ1 λ2 λ0 α β m T
(yen) (yen) (weeks)

11.67 3.0 7.25 40 290 10 1

Table 3. Optimal policies.

q1 0.1 0.3 0.5 0.7 0.9
k∗ 8 7 7 6 5

C0(k∗) 3.67 6.90 7.71 7.37 4.66

6.2. Characteristics of the model

Figure 2 reveals the expected loss for q1 = 0.1, 0.3, 0.5, 0.7, 0.9, where q1 de-
notes the probability that the newly introduced product is a fast moving product.
Table 3 shows the optimal non-negative integer k∗ and its corresponding expected
loss C0(k∗) when the prior probability q1 changes. It is observed in Table 3 that k∗

tends to decrease with increasing q1. This signifies that if the objective product is,
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Figure 2. Expected loss.

a priori, considered to become slow moving, it will be regarded as a slow moving
product unless its sales are unexpectedly high. On the contrary, when the ob-
jective product is, a priori, considered to be fast moving, k∗ takes a small value
so that the objective product is likely to be continued over numerous sales peri-
ods without significant falls in sales. It is also seen in Table 3 that the expected
loss tends to take its maximum value when q1 = q2 = 0.5, which is equivalent
to the situation where there is no information with respect to whether or not the
candidate brand is a fast moving product.

This section applies the optimal integer k∗ in Table 3 to another set of data
associated with 16 brands of potato chips3, which were collected from the store
over a ten week period between May 15, 2000 and July 17, 2000. Figure 3 shows the
transition of sales per week of the top eight brands, Brand a to h, while Figure 4
reveals the results of the succeeding eight brands, Brand i to p. Table 4 shows the
details of these sales data. In Table 4, marks, “∗”, “–” and “??” have the same
meanings as those in Table 1.

As discussed in 1., the authors know of no theoretical model to cope with this
problem of the sales velocity of relatively small numbers of products within a
small format store. Consequently, there exists no theoretical tool to verify the
effectiveness of the proposed method. We can only consider the validity of the
proposed method by comparing the above results with the actual decisions made
by the manager of the convenience store from which we collected the above data.

Evaluation of each brand in Table 4 begins at the point where it first appears on
sale in the store. Table 5 shows the week when, for each brand under evaluation,

3In 2000, the convenience store under study increased the number of categories and reduced
the number of brands for each category. The number of brands of potato chips was reduced from
29 to 16.
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sales should be terminated according to the prior probabilities based upon k∗ for
q1 = 0.1, 0.3, 0.5, 0.7, 0.9. In Table 5, periods marked by “+” signify that the
results indicate that sales should continue beyond the data collection period. It
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Table 4. Sales data.

Brand 1stweek 2nd 3rd 4th 5th 6th 7th 8th 9th 10th Mean Cumulative
share

a * * * 38 38 24 21 13 7 9 21.43 0.119
b * * * * * * * * 28 14 21.00 0.236
c * * * * * * * * 24 12 18.00 0.336
d * * * 25 22 16 17 28 10 4 17.43 0.433
e 26 28 25 19 8 10 12 15 13 13 16.90 0.526
f 29 24 13 15 6 19 13 12 9 16 15.60 0.613
g 20 22 17 10 11 11 13 12 12 6 13.40 0.688
h 18 17 18 11 10 10 14 14 8 7 12.70 0.758
i * * * * * * * 12 12 7 10.33 0.816
j 6 ?? 6 9 6 9 8 6 5 10 7.22 0.850
k 4 7 6 7 7 9 5 6 4 7 6.20 0.884
l 11 9 7 6 4 3 4 7 1 6 5.80 0.916
m 3 ?? 6 5 8 7 5 4 7 2 5.22 0.945
n 8 5 6 6 6 6 5 6 1 – 4.90 0.972
o 6 8 6 3 6 6 5 1 – – 4.10 0.994
p 2 8 – – – – – – – – 1.00 1.000

Table 5. Time to terminate the sales test.

Brand q1 = 0.1 q1 = 0.3 q1 = 0.5 q1 = 0.7 q1 = 0.9
a 9 + + + +
b + + + + +
c + + + + +
d 10 10 10 10 10
e + + + + +
f 5 5 5 + +
g 10 10 10 + +
h 10 + + + +
i 10 + + + +
j 1 1 1 9 9
k 1 1 1 1 1
l 3 4 4 5 5
m 1 1 1 1 1
n 2 2 2 2 9
o 1 1 1 4 4
p 1 1 1 1 1

should be noted here that Brand k was introduced in midweek of the first week
and therefore its sales in the first week were smaller than those in the other weeks.
If we had ignored this sales result of Brand k in the first week, it would have been
cut off in the second week for q1 = 0.1, in the third week for q1 = 0.3, 0.5, and in
the ninth week for q1 = 0.7, 0.9.
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If we had applied the proposed method to the brands in Table 4, Brands j,
k, · · · , p would have been cut off more promptly than in Table 4 for most values
of q1. In addition, Brands a, b, · · · , i except d would have been carried over the
next period for large values of q1. From these observations, the proposed method
tends to detect fast moving products without errors and slow moving products
efficiently for a large value of q1.

It should be noted in the above that the actual data shown in Tables 1 and 4,
and Figures 3 and 4 do not seem to follow a Poisson process if we look at them
over the all weeks at once. It should, however, be reminded that we have not
assumed the demand rateλ remains constant over a long period. We here consider
that the actual value of λ varies in each week like a random variable.

7. Summary and concluding remarks

This study proposed a theoretical model of for sales test policy which tests the
sales velocity of newly introduced products at a retail store. Under the proposed
model, a sales test is conducted for m items of a newly introduced product over
period (0, T ]. If the number N(T ) of items of the product sold up to time T is
greater than or equal to an non-negative integer k, it is regarded as a fast moving
product. In contrast, if N(T ) is smaller than k, we regard the newly introduced
product as a slow moving product and the manager will consider cancelling the
sale of the product to release shelf space to an alternative candidate product.

The expected loss incurred by the misjudgments or the decision errors by the
proposed model was then formulated, which was to be minimized with respect
to k. The existence of an optimum integer k was then shown for a prespecified
sales test period T . Numerical examples were also presented using the actual data
on potato chips collected from a single convenience store to discuss characteristics
of the proposed model.

The authors are currently collecting data on a variety of products to clarify to
what extent the proposed model can effectively be applied. In addition, we are
investigating the model which takes account of sales interaction among brands.
At present, however, the model provides a first step for managers of small, locally
competitive retail stores in the FMCG sector.
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