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EXTENSION OF REVERSE ELIMINATION METHOD
THROUGH A DYNAMIC MANAGEMENT
OF THE TABU LIST

SATD HANAFI' AND ARNAUD FREVILLE!

Abstract. The Reverse Elimination Method (REM) is a dynamic
strategy for managing the tabu list. It is based on logical interde-
pendencies between the solutions encountered during recent iterations
of the search. REM provides both a necessary and sufficient condition
to prevent cycling. The purpose of this paper is first to incorporate in
REM a chronological order rule when cycling is unavoidable, thereby
assuring the finite convergence of Tabu Search. Secondly, we correct
a generalization of REM, the so-called REM-t method proposed by
Glover (1990) where ¢ is an integer parameter which controls the num-
ber of tabu attributes. A suitable adjustment of this parameter ¢ can
be designed in order to create a balance between diversification and
intensification. In this paper, new dynamic rules for controlling the
adjustment of the parameter ¢, are proposed. Finally, to illustrate the
differences between the variants proposed for managing the tabu list,
we test some of them on the 0—1 multidimensional knapsack problem.
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Résumé. La Méthode d’Elimination Inverse (REM) est une stratégie
dynamique pour gérer la liste tabou a chaque itération de la recherche.
Elle est basée sur des interdépendances logiques entre les solutions ren-
contrées pendant les dernieres itérations. REM fournit & la fois une con-
dition nécessaire et suffisante pour éviter de cycler. Le but de ce papier
est dans un premier temps, d’incorporer dans REM une regle d’ordre
chronologique lorsque le cyclage est inévitable, ce qui assure la conver-
gence finie de la recherche tabou. Deuxiemement, nous corrigeons une
généralisation de REM proposée par Glover (1990), la méthode REM-
t, ou t est un parametre entier controlant le nombre d’attributs tabou.
D’autre part, un ajustement adéquat de ce parametre ¢t permet de créer
un équilibre entre diversification et intensification. Dans ce papier, de
nouvelles regles dynamiques pour contréler I’ajustement du parametre
t sont proposées. Enfin, quelques-unes des procédures proposées pour
gérer la liste tabou sont testées sur le probleme du sac-a-dos multidi-
mensionnel en variables 0 — 1 afin d’illustrer les différences entre les
variantes de la méthode de base.

Keywords: Tabu search, Reverse Elimination Method, 0-1 multidi-
mensional knapsack, strategic oscillation.

1. INTRODUCTION

Tabu search (TS) is a metaheuristic introduced by Glover in 1986. It is an
improvement neighborhood search approach to overcome local optimality, and it
has proved to be highly successful for solving hard combinatorial optimization
problems. TS is an iterative method that starts with one initial solution (feasible
or infeasible) or a set of initial solutions. Next, the algorithm tries repeatedly to
construct from a current solution or a collection of solutions, another solution by
searching neighborhoods. The process continues to generate neighboring solutions
until a certain stopping criterion is satisfied (a state-of-the art of the method and
its applications is given in [10]).

The main components of TS are the introduction of adaptive memory and re-
sponsive exploration. Flexible memory is subdivided into short-term memory and
long-term memory. The short-term memory also called recency-based memory
keeps track of the most recent solutions attributes that have been modified during
the search processes. The recency-based short memory called tabu list (T'L) deter-
mines moves that are forbidden for a span of time called tabu-tenure of tabu list,
as a way to control the minimal length of a cycle result during the search. The
approach of storing complete solutions generally consumes an enormous amount
of space and time when applied to each solution generated. Therefore, instead
of storing complete solutions visited, only those attributes which contain mainly
information about changes resulting in moving from one solution to another, are
recorded in T'L.

Frequency-based memory incorporates new dimensions of solution quality and/or
move influence based attributes of a subset of the solutions visited. Frequency



EXTENSION OF REVERSE ELIMINATION METHOD 253

measure is decomposed into a transition measure and a residence measure. The
transition measure counts the number of times an attribute changes the solutions
visited on a particular trajectory. The residence measure counts the number of
times an attribute belongs to solutions visited on a particular trajectory or the
number of instances where an attribute belongs to solutions from a particular sub-
set. The responsive exploration is based on the supposition that a bad strategic
choice can yield more information than a good random choice [6,7,10]. In this
paper, we focus our intention on Short-term memory functions, which provide the
important foundations of the TS methodology that prevents cycling.

Managing a tabu list is a fundamental element of TS. T'L can be defined and
handled in various ways depending on the problem to be solved. The first is
static; the attributes of the moves are forbidden for a certain number of iterations,
which stays fixed along the search process. This kind of T'L management can be
implemented by means of a circular list, which eliminates the oldest tabu move
at each iteration in order to make room for the new one. The size of T'L must
be neither too small to avoid cycling and leave unvisited regions, nor too large to
prevent the search from blocking.

The second way of managing TL is dynamic and depends on the state of the
search. It allows us to vary the tenure of the tabu status according to the attributes
considered. Some of the dynamic management methods determine a tabu status
that is based on sequential relationships between the selected moves to avoid some
special cases of cycling. The main strategies are the Cancellation Sequence Method
and the Reverse Elimination Method (REM) proposed by Glover [7]. Another
form of systematic dynamic management consists in subdividing the tabu list into
a static part and a dynamic part; this approach is called moving gap [14]. Other
adaptive mechanisms have been proposed to adjust the tabu tenure, first for solving
combinatorial optimization problems like 0-1 MKP [2], and second for solving the
constraint satisfaction problem [17].

Our paper focuses on a generalization of REM introduced by Glover [7], which
can be applied to various problems. In the following, we test it just for the 0-1
multidimensional knapsack problem (0-1 MKP) because it provides a convenient
basis to illustrate differences between different variants of the basic approach. The
0-1 MKP is a well-known integer programming model, which may be stated as
follows:

max Y7, ¢
(0—1 MKP) s.t. Z?:l Aijxj § bl 1el = {1, ,m}

;=0 or 1 jeJdJ={1,..,n}

where n is the number of items and m is the number of the knapsack’s constraints
with capacities b;, associated weights A;; and profits ¢;. The objective is to find
a feasible subset of the set of items that yields a maximum profit. The matrix A
and the vectors b and c consist of real-valued constants that satisfy A;; > 0, b; > 0
and ¢; > 0. The 0-1 MKP has a large domain of applications among which we
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can cite resource allocation and capital budgeting [16]. Several exact and heuristic
approaches have been developed for solving this NP-hard problem, including tabu
search methods in particular [12,13].

Section 2 reviews the basic ideas of REM using a single attribute and the usual
techniques for reducing the number of tracing steps. Section 3 provides a detailed
description of a generalization of REM, the so-called REM-t method, and also our
main contributions. First, we correct an initial version of REM-¢ stated in [7]
which concerns the update of the running list. Second, we propose dynamic rules
for controlling the adjustment of the parameter ¢, which is a crucial task according
to the intensification and diversification strategies. In Section 4, this new dynamic
T L management is embedded in the oscillation TS method of Hanafi and Fréville
devoted to the 0-1 MKP [12]. Numerical experiments are given in Section 5 and
are followed by the conclusion.

2. REVERSE ELIMINATION METHOD

The Reverse Elimination Method is a dynamic strategy for managing the tabu
list. Its main principle is the use of logical interdependencies between the solutions
encountered during recent iterations of the search. The basic idea of REM is to
trace back a running list (RL) containing information on all moves performed
throughout the search. While backtracing RL, a residual cancellation sequence
(RCS) is built up, consisting of a sequence of moves or attributes between two
solutions where all mutually canceling attributes are eliminated. If the remaining
attributes in the RC'S can be reversed by exactly one move, then this move is tabu
in the next iteration. In case of a single attribute, the tabu moves correspond to
RC'S reduced to only one attribute.

This initial version of REM is fully described by the following procedure REM
(Fig. 1). The symbols “+” and “—” denote the union and difference operators of
two sets respectively, and € denotes the complement of attribute e. The inputs
are the current iteration k& and an array RL that contains all attributes moves
performed up to iteration k. The outputs are the tabu list T'L of tabu-active
attributes. Initially the procedure starts with an empty T'L and an empty RC'S.
During the backtracing, RC'S is modified successively by either adding or drop-
ping attributes. At the i tracing step, dropping (respectively adding) an element
from (resp. to) RCS increases (resp. decreases) the difference between the cur-
rent solution z* visited at iteration k, and the solution z* previously visited at
iteration ¢ < k.

Example 1. REM using single attribute.

We consider the two simple ADD [z; = 0 — z; = 1] and DROP [z; =1
— z; = 0] moves for solving a 0-1 MKP instance of size n = 4. The attribute of
the ADD move (respectively DROP) is represented by the index j (resp. 7).

The first two rows of Table 1 represent the running list RL after 11 iterations by
indicating the move made at each iteration. The initial solution is (0,0,0,0) and the
solution generated at iteration 11 is (0,0,1,0). Following the RL description, each
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Procedure REM(k,RL,TL)
Initialization
TL:=0;
RCS:=[;
Backtracing
for i :=kto 1lstep -1do begin
if ﬁ_m [0 RCSthen // Restriction of RCS
RCS:= RCS-{ RL[i]}
ese // Expansion of RCS
RCS:= RCS+{RL[i]}
endif ;
if RCS={¢} then Il Length of RCSequal to 1
if e0TL then TL := TL +{ €} endif
endif;
endfor;

Ficure 1. REM using a single attribute.

TABLE 1. Illustration of REM using single attribute.

Running | Iteration 1 2 3 4 5 6 7 8 9 10 11
List Move 1 2 3 4 3 2 1 3 2 1 3
Tracing Residual Cancellation Sequence

step k=5 k=6 k=7 k=8 k=9 k=10 k=11
11 3
10 1 7 3
9 2 2 4|2 4 3
8 3 3 2 32 1 2 1
7 1 1 3 13 2|1 32 4|1 2 14
6 2 21 2 1 3 1 3 13 14 1 14
5 3 3 2 32 1 21 1 1 4|3 1 4
4 4 3|4 3 2|4 3 2 1 4 2 1 4 1 1 31
3 4 4 2 4 2 1|3 4 2 1 3 41 31 1
2 2 4 4 4 1 3 4 1|2 3 41 2 31 2 1
1 1 2 4 1 4 4 3 4 2 3 4 2 3 2

column of Table 1 illustrates the construction of RC'S from iteration 5 through 11.
The different RC'S constructed at iteration k = 5 are {3}, {4, 3}, {4}, {2,4} and
{1,2,4} during the tracing steps 5, 4, 3, 2 and 1 respectively.

Clearly, the size of RC'S cannot exceed 4, which is the size of the neighborhood
of any current solution. For each iteration k, bold indices denote the attributes
whose complement will be tabu-active in the next iteration k + 1 (at iteration 5,
the set of tabu-active attributes is {3,4}).
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Procedure REM(k, RL, TL, Last)
Initialization
TL :=[;
RCS:=[0;
Backtracing
for i :=kto 1 step -1 do begin
if RL[{] 0 RCSthen /I Restriction of RCS
RCS:=RCS-{ RL[i]}
else /I Expansion of RCS
RCS:= RCS+ {RL][i]}
endif ;
if RCS={¢€} then /I Length of RCSequal to 1
if e0TL then TL :=TL + { €}; endif
Last = RCS
endif;
endfor;

FiGure 2. REM with chronological order rule.

2.1. CHRONOLOGICAL ORDER

In Glover [7] and Dammeyer and Voss [3], efficient implementations of the gen-
eral procedure of REM with useful details are given, especially to avoid cycling.
Under the assumption that the moves are reversible and that the attributes sat-
isfy a sufficiency property, the tabu status assigned by REM provides a necessary
and sufficient condition to prevent re-visiting solutions already explored. It was
noted in [7] that “situations arise where no move exists that will avoid duplicat-
ing a previous solution”. Glover conjectures that a chronological order rule for
revisiting solutions already encountered (i.e. restarting the exploration from the
earliest solution visited in the past), has implications for finiteness in 0-1 integer
programming and optimal set membership settings. Hanafi [11] has shown that
this conjecture is true and other developments related to the convergence of tabu
search are given in [8].

In the single attribute case, the initial REM procedure can be easily modified
to incorporate the chronological order rule when cycling is unavoidable (Fig. 2).
If all available moves at iteration k are tabu-active (i.e. if all neighbor solutions of
the current solution 2% are already visited) then the next solution (iteration k1)
selected corresponds to the earliest solution z* examined during the search. This
choice rule is called an aspiration-by-default criterion in TS literature. For this
purpose a new output parameter Last is introduced, which corresponds to the
tabu-active attribute inserted last in the current tabu list TL. So, at any iteration
for which all the available moves are tabu-active, the next move selected is the
complement of the one which is stored in the parameter Last. In other words, the
indicator Last corresponds to the element inserted last in T'L.
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TABLE 2. REM modified using single attribute.

Running Iteration k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
List move 1 2 3 43 2 132 2434 134 23 1
Tracing Residual Cancellation Sequence
step k=11 k=12 k=13 k=14 k=15 k=16 k=17
17 1
16 3 3 1
15 2 23 23 1
14 1 1 2 4 234 23 1
13 1 1 12 14 2|1 4 2 3 7 23
12 4 4 1 1 1 2 1 23 23
1n 3 3 4|3 4 1 31 312 1 2 2
10 4 3 3 31 4 3 1|4 3 1 2 71 2 4 2
9 |2 12 3 2 3|2 3 1|2 4 3 1 4 3 1 7 1 ]
8 2 3 2 2 1 2 4 1 7 1 3 21 3 1
7 12 1 1 2 2 2 1 1 3 1 13 14
6 11 1 O 4 2 14 23 4|2 13 4
5 31 4 31 3 3 1 3 2 14 2 14 2 1 14
4 3 1/4 3 1 4 3 3 3 2 2 21
3 1 4 1 4 0 2 3 2 3 21
2 2 1|2 4 1 2 4 2 O 3 3 1
1 2 2 4|1 2 4 1 2 1 13 3
Last 2 1 4 2 1 3 3

Example 1. (continued)

From the fifth to the eleventh iteration, no more than two moves are tabu-active
per iteration, so that a blocking situation arises (see Tab. 1). Such is not the case
during the following iterations (Tab. 2). At iteration k = 12, 13, 14 and 17, all
potential moves are tabu-active. Each time, the search restarts from the earliest
solution visited in the past and a cycle is exhibited, a phenomenon marked by an
empty RC'S in the next iteration k£ + 1. For example, RCS is empty at iteration
k = 13, step 6, which means that a blocking situation arises at iteration 12, since
all the available moves are tabu-active. Therefore the move performed at iteration
k = 13, corresponds to the complement of Last = 1, then the solution (1,1,0,1),
already visited at iteration 6, is revisited at iteration 13.

2.2. REDUCTION OF TRACING STEPS

REM provides both a necessary and sufficient condition to prevent cycling. This
observation is valid as long as there is no maximal length of the RL limiting the
backtracing. Clearly, the effort required to determine T'L by REM increases as
the search progresses, since RL is traced at each iteration. Some techniques have
been explored to reduce the computational time [3,7]. Simple strategies consist
in decreasing the total number of backtracing or the number of steps in each
backtracing and may be made by exact or heuristic rules.



258 S. HANAFI AND A. FREVILLE

By example, the computational effort of the backtracing is reduced by limiting
the number of tracing steps per iteration with a chosen value Max_Step. The pa-
rameter Max_Step can be fixed along the search or dynamically adjusted during
the search. For example, one way of achieving a dynamic adjustment is to termi-
nate the backtracing after reaching a first local optimum. An alternative way is
to decrease the frequency of the backtracing by tracing back the running list only
after the constructive and/or destructive phases have been performed (see Sect. 5).

Earlier termination of the backtracing based on a solo-attribute are given in [7]
and corrected in [3]. A solo-attribute RL[i] is an attribute such that its comple-
ment does not appear among earlier entries of the running list. The backtracing
terminates as soon as two solo-attributes are found or as soon as the complement
of a solo-attribute becomes tabu. This exact rule can be relaxed by stopping the
backtracing when only one solo-attribute to become tabu is found. This type of
stopping criterion is “spontaneous”.

Another stopping criterion, called the “prediction criterion”, is based on the
observation that at any iteration k, the size of RCS at step ¢ cannot decrease
by more than one during the next iteration k + 1. An array Least[0...n] is then
introduced to identify the smallest integer ¢* such that backtracing up to step ¢*
leads to an RC'S with a size equal to r (i.e. Least[r] = i*). For the 0-1 MKP,
the array Least strictly identifies at iteration k the position of the first solution
encountered (the earliest) whose difference between the current solution x* is equal
to r. The update of Least at iteration k is simply made in the REM procedure by
setting Least[r] = k for r = 1, ..., n initially and by setting Least[|RCS|] =i at
each step ¢ in the backtracing. Generally, it is unnecessary to trace the running list
RL during the next p iterations earlier than ¢ = min{Least[r] : r = 0,...,p+ 1}.

3. GENERALIZATION OF REM

A simple way to generalize the original version of REM is to increase the minimal
set of tabu attributes required to prevent cycling arbitrarily. This may be done by
making tabu active the complement of attributes in all RC'S whose size is less than
or equal to an integer parameter which controls the number of tabu attributes.
In this section, firstly we correct a generalization of REM, the so-called REM-¢
method initially proposed by Glover (1990). REM-t method offers an opportunity
to balance between diversification and intensification by a suitable adjustment of
the parameter ¢. Secondly, new dynamic rules for controlling the adjustment of
the parameter ¢, are proposed.

3.1. REM-t PROCEDURE

A straightforward implementation of REM-t consists in replacing the instruc-
tion:

if RCS={e} thenif e¢TL then TL:=TL+{e} endif
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Procedure REM-t(k, RL, TL)
Initialization
TL:=0,
RCS:=0;
fore:=1toqdo Min_rep[e] =t+1;
Backtracing
for i :=kto 1 step -1 do begin
if RL[i] O RCSthen /I Restriction of RCS
RCS:=RCS-{ RL[i]}
Min_rep[RL[i]] = min{ Min_rep[RL[i]], |RCS}
dse /I Expansion of RCS
RCS:= RCS+ {RL]i]}
for (all e d RCS) do Min_rep[€e] = min{ Min_rep[e], [RCY}
endif;
endfor;
Tabu Satus
fore:=1toqgdo
if (Min_rep[e] < tand €0 TL) then TL :=TL + { €}; endif.

FicURE 3. Corrected REM-t using a single attribute.

by the following one:

if RCS ={ei,...,e;} thenfor k:=1 to t
if e, ¢TL then TL:=TL+{é} endfor; endif.

But this implementation is very time consuming since the search e, ¢ T'L can be
performed a lot of times for any attribute eg. To reduce the complexity, Glover
introduced in [7] an array Min_rep[l...q] where ¢ is the number of different at-
tributes used during the search. Thus, for the 0—1 MKP using a single attribute,
the number of potential attributes is ¢ = 2n but at each iteration, the number of
attributes contained in RC'S cannot exceed ¢* = n. The value Min_rep|e] gives the
smallest size of RC'S containing the attribute e. Therefore, the attribute € cannot
be tabu if Min_rep[e] > t. The procedure REM-t starts with an empty RC'S and
Min_reple] = ¢ + 1 for any attribute e. During an expansion step, the attribute
RLJi] is added to the current RCS and the value Min_rep[RL[i]] is updated at

each tracing step. In Glover’s procedure, RL[i] is then deleted from the current
RCS and only the values of Min_reple] related to the predecessors of RL[i] are
updated during a restricting step ¢. This is not correct as shown in Example 2.
Indeed, the values Min_reple] for all the remaining elements e of RC'S must be

updated. Figure 3 gives a corrected version of the REM-t procedure.
Example 2. Updating of array Min_rep with REM-4.

We consider an instance of the 0-1 MKP with n = 6 and a running list RL
performed up to iteration £k = 11. In its first three columns Table 3 gives the
knowledge and length of the RC'S for each tracing step. The remaining columns
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TABLE 3. Update of Min_rep with REM-4.

Running List Iteration k 1 2 E 4 ? E 7 ? ? 10 1
move 4 6 3 5 4 2 4 5 1 2 3

Residual Cancellation Seguence Update of Min_rep

Corrected version Glover procedure

tracing k=11 lengh [eIRCS| 7 2 3 4 5 6|1 2 3 4 5 6
stepi ofRCSnitial [ 56 5 5 5 5 5|5 5 5 5 5 &5
11 3 1 11 5 5 1 5 5 5 5 5 1 5 5 5
10 2 3 2 10 5 2 1 5 5 5 5 2 1 5 5 5
9 1 2 3| 3 9 |3 2 1 5 5 5|3 2 1 5 5 5
8 5 1 2 3 4 8 3 2 1 5 4 5 3 2 1 5 4 5
7 |45 71 2 3| 5 7 |3 2 1 5 4 5|3 2 1 5 4 5
6 4 5 1 3 4 6 3 2 1 4 4 5 3 2 1 4 4 5
5 51 3| 3 5 |3 2 1 4 3 5|3 2 1 4 4 5
4 1 3 2 4 2 2 1 4 3 5 3 2 1 4 4 5
3 1 1 3 1 2 1 4 3 5 1 2 1 4 4 5
2 6 1 2 2 1 2 1 4 3 2 1 2 1 4 4 2
1 4 6 1| 3 1 /1 2 1 3 3 2|1 2 1 3 4 2

compare for ¢ = 4 the values of Min_rep provided by the procedure of Glover and
our corrected version (Min_rep is restricted to the six attributes contained in RC'S
at iteration k = 11).

In these columns, the first row indicates the attributes, which appear at least
once in the RC'S during the tracing steps. The second row shows the initialization
of the array Min_rep (Min_reple] = t + 1 = 5 for any attribute e € RCS). The
following rows record the values of the array Min_rep for each tracing step; the
elements, which are updated by the REM-4 procedure, are shown in bold.

During the first restriction step (i = 6) with Glover’s version, Min_rep[3] is not
updated since 3 is a successor of the eliminated attribute 2 in the previous RC'S.
Therefore, no values are changed by Glover’s version during steps 5 and 4 since
the last element in RC'S' is eliminated. Glover’s version is incorrect, since at the

end of the procedure (i = 1), Min_rep[5] is equal to 4, which is an error.

3.2. DYNAMIC CONTROL OF THE PARAMETER ¢

Intensification and diversification are two important components of TS. Inten-
sification strategies are based on recording and exploiting elite solutions or specific
features of these solutions. There are many possibilities for modifying choice rules
so that they intensify around attractive regions located by elite solutions that have
historically been found good. On the other hand, diversification strategies drive
the search towards unexplored regions by introducing periodically into the solution
attributes that are infrequently used.

Several strategies that create a discontinuity in the trajectory of the search have
been proposed. Such a discontinuity may be made, for example, by jumping either
to a new initial solution for restarting the solution process or to an elite solution.
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Procedure REM-dynamic (k, RL, TL)
Initialization
TL =0,
RCS:= [,
for e:=1toqdo Min_rep[e] =k + 1,
Backtracing
for i :=kto 1 step -1 do begin
if RL[i] ORCSthen /I Restriction of RCS
RCS:= RCS- { RL[]}
Min_rep[RL[i]] = min{Min_rep[RL[i]], |RCS}
ese // Expansion of RCS
RCS:= RCS+ {RL[i]}
for (al e 0 RCS) do Min_rep[e] =min{Min_rep[€], RCY}
endif;
endfor;
Tabu Status
Choose a rule to compute the parameter t ;
for e:=1toqdo
if Min_rep[e] < tand €0TL) then TL :=TL + {€}; endif.

FiGUure 4. REM-dynamic procedure.

Other strategies maintain the continuity of the trajectory and provide a balance
between intensification and diversification. Such is the case in the oscillation strat-
egy based on alternation between feasible and infeasible domains [9,12].

REM also creates an opportunity to balance between diversification and intensi-
fication by oscillating according to the number of tabu attributes. The adjustment
of the parameter ¢ in a REM-t framework can be used to create a balance between
intensification and diversification by penalizing or conditionally avoiding the choice
of attributes associated with low ¢ values. Suitable values of the parameter are a
crucial task. The choice can be made either outside or inside the REM-t¢ procedure.
However, an intuitive way is to increase (respectively decrease) the parameter ¢ to
enforce diversification (resp. intensification) effect.

The following REM-dynamic procedure modifies the previous REM-t procedure
by incorporating dynamic rules to control the parameter ¢ based on information
recorded by the array Min_rep (Fig. 4). Moreover, as the size of RC'S cannot
exceed min{k, ¢}, Min_rep is initialized at an arbitrarily large value fixed at k + 1.
At the end of the backtracing, any attribute e such that Min_reple] # k + 1, is
necessarily contained in a RC'S.

Among the several ways by which the information contained in Min_rep can be
exploited, we propose two rules to compute the parameter ¢:

Rule 1 (mean value) — tp = [(ZeergMinreple])/qk]
Rule 2 (median value) t, = [(min{Min_reple]:e € I(k)}
+ max{Min_reple] : e € I(k)})/2]
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where k is the number of moves performed up to now, I(k) = {e|Min_reple] #
k + 1}, gk is the cardinality of I(k) and [z] denotes the smallest integer greater
than or equal to the real value z.

4. TS-0OSCILLATION ALGORITHM FOR THE 0-1 MKP

Most of the TS methods devoted to the 0—1 MKP use a search space that differs
from the unit cube or the extreme points of the feasible domain. Several attempts
have been made such that:

— feasibility is maintained along the process, i.e. constraints (Az < b) and
integrality requirements (x € {0,1}") are always satisfied [3];
— infeasibility dealing with the integrality requirements is allowed during the
process [1,15];
— infeasibility dealing with the constraint requirements is allowed during the
process [2,9,12,13,15].
According to the numerical results published in the literature, the most promising
methods for solving 0-1 MKP seem to be those which are based on strategic
oscillation [9,12]. In this section, we investigate the use of REM-¢ with our TS-
Oscillation algorithm [12].

Strategic oscillation consists in defining a more or less regular alternating rhythm
to cross critical levels in different directions. In the 0-1 MKP case, a critical level is
defined as a solution (feasible or infeasible) which is lying on or near the boundary
of the feasible domain {z|Az < b,z € {0,1}"}. More precisely, critical solutions
are included in the subset {x|x feasible, 3j € JO(x) such that (z+e7) is infeasible}
U {x|x infeasible, 3j € J1(x) such that (z - €’) is feasible}, where JO(x) (respec-
tively J1(z)) denotes the subset of components of = fixed at 0 (resp. 1). All these
critical solutions constitute the promising zone.

The skeleton of our T'S-Oscillation algorithm can be stated as follows (Fig. 5).
One iteration corresponds to one oscillation (two successive constructive and de-
structive phases) and this algorithm terminates as soon as a fixed number of iter-
ations has been performed without improving the best feasible solution, or after
the maximum number of iterations allowed has been reached.

A crossing exploration is achieved by performing forward paths from the feasible
domain toward the infeasible region (constructive phase) and backward paths in the
opposite direction (destructive phase) successively. The constructive (respectively
destructive) phase consists in the successive setting of variables equal to 1 (resp. 0)
according to specific priority rules, which is specified by the following procedure
TS_ADD(z, u, TL) (resp. TS_-DROP(z, u, TL)) described in Figure 6.

The priority rules are the usual ones encountered in well-known greedy algo-
rithms devoted to the 0—1 MKP. In addition, an intensification strategy is ac-
tivated each time thepromising zone is reached. Moreover, information deduced
from surrogate constraints and the memory structure controls the amplitude of the
oscillation. The depth of the oscillations corresponds to the number of times the
logical variable near_feasible remains unchanged. We have compared two versions
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TS-Oscillation Algorithm
step O: Initialization
Choose an initial solution x to befeasible or infeasible;
Initialization of tabu search and oscillation strategic parameters;
Stop := Falsg
while (Not Stop) do
switch (direction) of
Constructive Phase : (move from feasible to infeasible)
step C1 : forward to the promising zone;
step C2 : intensification phase around the current solution;
step C3 : diversification phase : moving away from the promising zone to the infeasible domain;
Destructive Phase : (move from infeasible to feasible)
step D1: backward to the promising zone;
step D2: intensification phase around the current solution;
step D3: diversification phase : moving away from the promising zone to the feasible domain;
endswitch
step 7: Update the parameters of tabu search and oscillation strategy;

endwhile
F1GURE 5. TS-Oscillation Algorithm.
Procedure TS_ADD(x, u, TL) Procedure TS DROP(x, u, TL)
while (x is near_feasible and JO(x) # O ) do while (x isnear_feasible and J1(x) # O ) do
C; C.
choosej* := argmax{ EJ’ 0j0J0(x) and jOTL} choosej* := argmin{ j 0j0J1(x) and jOTL}
u
if j* does not existsthen if j* does not existsthen
Select j* using the aspiration-by-default criterion Select j* using the aspiration-by-default criterion
endif endif
X* =1 X* =0
Update multiplier u and/or TL using REM-t; Update multiplier u and/or TL using REM-t;
endwhile endwhile

FI1GURE 6. Constructive and destructive phases.

of our TS algorithm that differ from the way the amplitude of oscillations on the
infeasible side is controlled.

e Surrogate constraint (T'S1): the infeasibility of the generated solutions is
controlled within a surrogate constraint uAz < ub where u > 0 is an optimal
dual multiplier of the LP-relaxation of the 0-1 MKP; then x is near_feasible
becomes uAz < ub.

o Violated constraints permutation (TS2): the solutions must satisfy at least
one constraint Asx < by that periodically changes in a deterministic fashion;
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if k£ denotes the number of iterations executed so far, then the condition that
x is near_feasible becomes As;x < by with s := k modulo m.

It is well known that a crucial task in heuristics is the tuning of parameters. The
tabu list TL was static in the initial implementation of the TS-Oscillation algo-
rithm and we obtained good results over a well-known benchmark of test problems
described in the literature ([12], Sect. 5). However, these attractive results required
quite some processing time in order to determine the suitable size of the tabu list
for each instance. As discussed in the previous section, the dynamic management
of the tabu list via the generalized Reverse Elimination Method provides a strat-
egy to overcome this difficulty. The main drawback is to deteriorate the quality
of the solutions, but the robustness of the method will be proved if the quality of
the best generated feasible solution remains within a reasonable range. A slight
modification of the T'S-Oscillation algorithm is necessary, corresponding to the in-
put parameter T'L of the TS_ADD(z, u, TL) and TS_DROP(z ,u, TL) procedures,
now controlled by the REM-dynamic procedure.

5. NUMERICAL EXPERIMENTS

In this section, we present computational results with different variants of the
TS-Oscillation algorithm coupled with the REM-dynamic procedure to manage
the tabu list. All the procedures have been coded using C language. The runs are
performed on a ultra-sparc SUN station. All running times are given in seconds
(CPU time). The maximum number of iterations is at most 10n.

The robustness of our 7'S-Oscillation algorithm with a dynamic management
of the tabu list was tested on two sets of instances of 0-1 MKP. The first one is
followed from Fréville and Plateau [4,5] and is composed of 54 instances. Optimal
solutions are known for all instances. The second set is due to Glover and Kochen-
berger [9] and is composed of 24 instances. All the best feasible solutions provided
by our dynamic T'S-Oscillation algorithm are compared with the optimal solution
or the best known feasible solution (v(P) in both cases).

Table 4 reports numerical comparisons related to the relative error gap =
w and the CPU time. The following variants of our TS-Oscillation

algorithm depend on the two main parameters described above:

e the dynamic strategy of the tabu list: REM-1, REM-2 or REM-dynamic;
e the control of the oscillations: TS1 or TS2.

The results show that the T'S-Oscillation algorithm coupled with a dynamic man-
agement of the tabu list provides a robust strategy since the relative error never
exceeds 4.48%. When the backtracing is made after each move, TS2 generally
obtains better results in terms of quality than T'S1 but in up to five times more
running time. REM-dynamic is the best variant in terms of solution quality;
however, its running time is slightly greater than that of the two other methods,
REM-1 and REM-2.
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TABLE 4. TS-Oscillation algorithm with a dynamic management
of the tabu list.

REM-1 REM-2 REM -dynamic
CPU # mean | max | CPU # mean | max | CPU # mean | max
TS1 1.58 10 0.67 | 448 | 219 10 0.67 | 448 | 2.28 7 0.65 | 4.48
T2 7.27 12 065 | 448 | 1165 | 12 0.65 | 448 | 1364 9 0.59 | 3.32
CPU: backtracing after each move #: the number of instances for which the gap = 0
mean: the gap average over the 78 instances max: the greatest gap

TABLE 5. Backtracing after each 1/2 oscillation.

REM-1 REM-2

CPU H mean | max | CPU # mean | max

TS1 111 11 068 | 448 | 1.44 5 0.78 | 448
TS2 2.06 11 0.60 | 4.48 | 315 8 0.68 | 448

More detailed results related to the interdependencies between the two main
parameters (TL management; oscillation control) are given in the following fig-
ures. The performances of REM-2 and REM-dynamic coupled with the strategic
oscillation TS2 are compared with a selected subset of test problems in Figure 7
(gap) and Figure 8 (CPU time).

The impact of the frequency of the backtracing is shown in Figure 9. When
the backtracing is made after 1/2 oscillation, the above comparisons remain valid.
However, it is not surprising to observe a decrease of the running time by almost
four times as well as a small degradation of the solution quality (see Tab. 5).

The effect of reducing the number of tracing steps has also been measured. In all
cases, the earlier termination of the backtracing based on a solo-attribute allows
us to reduce the running time significantly, particularly for large-size problems
(greater than 100 variables). In case of small-size instances (less than 100 vari-
ables), REM procedure with the prediction criterion using the array Least needs
more CPU time than the REM version without reduction. However, this prediction
criterion becomes interesting for large-size problems.

6. CONCLUSION

This paper investigates the dynamic management of the tabu list with the
Reverse Elimination Method. First, two technical improvements are provided:
a chronological order rule is introduced in REM to prevent cycling and the ini-
tial version of REM-t given by Glover is corrected. Second, we propose a new
REM-dynamic procedure which modifies REM-¢ by controlling the parameter ¢



266 S. HANAFI AND A. FREVILLE

4i A

35 It\ * l\

: /\ i“\ / \/'\ i
§ 28 A

Figure 7. Comparison of REM-2 and REM-dynamic.

—— REM-2
—=— REM-Dynamic

180

160 { /'

140

120 / ?

100 ﬂ
80

- . 4

- A A/

O O O B I S &
SRSy f,}& o Qq)@’f;éy & @@@ S 6’"@9 & g 04;§° ,ﬁ,?’ ,,9499 @@ @459 & & @6&@({@ o @k

CPU

Sizes

Ficure 8. Comparison of REM-2 and REM-dynamic.

dynamically. REM-¢ has been validated on the 0-1 multidimensional knapsack
problem in order to show the different approaches proposed in this paper to man-
age the tabu list. Note that all these approaches can be applied to numerous other
problems.
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