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Recherche opérationnelle/Opérations Research
(vol. 23, n° 1, 1989, p. 67 à 96)

GENERALIZED OPTIMAL SEARCH PATHS FOR CONTINUOUS
UNIVARiATE RAMDOM VARIABLES (*)

by Zaid T. BALKHI (*)

Abstract. — The purpose of this paper is to solve the Generalized Linear Search Problem for
continuous random variables. This problem is concerned with finding a target located on a Une.
The position of the target is given by the value of a random variable which has a prior distribution.
A searcher starts looking for the target from some point, moving along with an upper bound on
his speed. The target being sought for might be in either direction from the starting point, so the
searcher needs to change his direction many times before he attains his goal, with minimality of
average time to target détection as the measure of optimality of search paths, we have obtained
algorithms that find such paths for those targets which have absolutely continuous distributions.
More detailed properties of optimal search paths are, also, studied. One o f the main results is that:
these search paths are not minimal, in some cases, for some types of target distributions.

Keywords : Linear search; Optimization; Normal and bimodal normal distributions.

Résumé. — Dans ce papier nous étudions le problème de la recherche linéaire généralisée dans
le cas des variables aléatoires continues. Ce problème consiste à trouver un objet localisé sur une
ligne. La position de Vobjet est donnée par la valeur de la variable aléatoire qui répond à la loi de
probabilité. Un chercheur commence à chercher son objet à partir d'un certain point en se déplaçant
sur la ligne avec une vitesse ne dépassant pas une certaine borne. Vu que l'objet peut être situé à
droite ou à gauche du point de commencement, le chercheur a besoin de changer sa direction
plusieurs fois avant de détecter l'objet. En considérant le temps moyen minimum pour détecter
l'objet comme mesure de l'optimalitè du chemin de recherche, nous avons obtenu des algorithmes
qui permettent de trouver tels chemins pour les objets qui ont des lois de probabilité absolument
continues. Des autres propriétés des chemins optimaux sont également étudiées. Un des résultats
fondamentaux est: ces chemins ne sont pas minimaux, dans certains cas, pour quelques types de
lois de probabilité.

1. INTRODUCTION

The following problem has been considérée in the literature. A target is
assumed to be located on a line. lts position x is given by the value of a
random variable X, which has a known (or unknown) distribution F.
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68 Z. T. BALKHI

A searcher starts looking for the target from some point a0 on the line
( | a0 | < oo), moving along the line with an upper bound on his speed. The
target being sought for might be in either direction from the starting point
a0, so the searcher would conduct his search in the following manner: Start
at a0 go to the left (right) as f ar as av If the target is not found there, turn
back and explore the right (left) part of a0 as far as a2. If the target is still
not found, retrace the steps again to explore the left (right) part of ax as far
as a3, and so fourth until the target be detected. Let us define c and d as
follows

c = inf{x: F(x)>0}, d = sup{x: F(x)<l}.

Then a search path may, in gênerai, be represented by a séquence
A — {at; i^O} with a2i->c and a2i-i-+d as i-> oo, or vice versa. Figure 1
gives an illustration of such search paths. Observe that the two search paths
depicted in Figure 1 are duals and of sequential type. Moreover it is to be
noted that these two search paths will give us several possible cases of search
when we consider ail relative positions, of the starting point a0, to the origin
(see [2]).

a3

a4

a l

a2

ao

a0

a2

a l

a4

a3

Figure 1.

The problem is of interest because it may arise in many real world situations
such as:

(i) Searching for lost persons or objects on roads (Beck [5], Beck and
Newman [7], and Rousseeuw [13]).

(ii) Searching for a faulty unit in a large linear system such as electrical
power lines, téléphone Unes, petrol or gas supply Unes, and mining Systems
(Balkhi [2]).

(iii) Estimating a distribution parameter whose probability locations are
given. The parameter, hère, may be regarded as a target to be searched for.

In the above examples, and in many others of this type, (see [2]) the target
distribution is given or to be estimated. It is possible, however, to study this
problem as a game between the searcher and the target (see [7] and [11]).

Recherche opérationnelle/Opérations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 6 9

For any of such problems the path length of some search path
A = {at; i^O}, from the starting point a0 until reaching the target x, is
considered as the cost of the search. By virtue of the randomness of the
position of x, it is clear that the cost of the search is, also, a random variable.
The aim of the search is, then, to minimize its expected cost. Any search
path that fulfils this aim is referred to as an optimal search path (O.S.P.).
For ail possible cases of search, the solution of this problem consists of two
stages. The first is the establishment of the existence of (O.S.P.)'s. This stage
has been, in fact, completed by many authors. A review of their results will
be the subject of the next section. The second stage is the construction of
(O.S.P.)'s, Concerning the case ao = 0 and the second stage Beek [6] and
Franck [10] have indicated that a recursive formula for the entries a/s of a
minimizing search path is available under proper differentiability conditions
on the expected cost. But the solution there has not been given in a useful
sense. Rousseeuw [13] has done some investigations about (O.S.P.)'s for the
case ao = 0. But his wotk was concentrated on the Normal distribution and
its analogous symmetrie distributions only. Besides to the case ao=0, there
are, however, many other cases of possible search. Some of these cases have
been previously considered in Balkhi [1]. Later Balkhi [2] has shown that
there are only five cases of possible search one of which is the case ao=0.
The other four cover all possible cases of search for which ao^0. The work
of [2], in fact, has focussed on giving sufficient conditions under which there
exists an (O.S.P) for each possible case of search.

In this paper the construction of (O.S.P.)'s, for the only five possible
cases of search considered in [2] and for regular target distributions (see
définition 2.2), will be introduced in a unified way. The main properties of
(O.S.P.)'s will be given some emphasis. An algorithm by which we can
calculate (O.S.P.)'s together with an illustrative examples are also introduced.
The numerical results of these examples will then show that some of the
possible cases of search is better than some others in the sense that they give
less expected cost. Justifying, thus, the generalization of this problem that
have been previously considered by this author.

2. LITEEÀTURE REVIEW

Authors in [5] to [8], [10], [11] and [13] have dealt with the case a o =0
only, Under the name "The Generalized Linear Search Problem" (GLSP)
Balkhi [2] has introduced this problem in more gênerai approach by consider-
ing any starting point a0 ( | a01 < oo) other than the origin. The additional
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7 0 Z. T. BALKHI

assumption that the number of éléments, of a search path A — {at; i ^
between the origin and a0, is finite, is also presumed in [2] (This assumption
may be justified by [2] Lemma 3.8). It is shown, then, that we have only five
possible cases of search, one of which is the case ao=0. These cases are
referred to as case (k); fc = 0, 1, 2, 3 and 4 [case (0) is the case for which
a0 = 0]. The class of search paths in case (k) is denoted by Qk;
Zc=O, 1, 2, 3 and 4. With the conventions that a o #0 for Jfc = l, 2, 3 and 4,
a_A=0 for fc = 0, and ao^at for all k (The last assumption is justified by
the fact that the searcher needs to move from a0 to a new point nameiy al9

at the outset of his search). Then class Qk consists of all search paths of the
following type

(2.1) . . .<a 4 <

(2.2) . . . < a 5 < a 3 < a 1 ^ 0 < a o < a 2 < a 4 < . . . ;

(2.3) . . .<a 4 <

(2.4) . . .<a 5 <

(2.5) ... <a4S0^a2<^ao<ai<^a3<a5<...; k=A

and their duals which can be obtained by reversing the inequalities in (2.1)
through (2.5) (See [2] for more details). For a search path A~{at; Ï ^ O } form
class Qk, the expected cost is denoted by Dk(A, F). As has been shown in [2]
we have

(2.6) Dk(A, F) = M(F) + Ak(A, F); fc = 0, 1, 2, 3 and 4

where M (F) = \x\ dF(x) (The first absolute moment of F).

(2.7) A0(A, F) =

(2.8) At(i4,f)=-2|j"°|x|«iF(x) ( 1 V e I I _i_ o \™* I I

^ ƒ2 sisn((x-\ \F(Q,^ F(d 11 \* k^ 1 2

(2.9) - 4 | a k _ 2 |

+ 2 X |ai|{l-sign(a|.)[F(ai)-F(a£_1)]},- fc = 3, 4
i = X

Recherche opérationnelle/Opérations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 71

(see Balkhi [2], theorems 2.1, 2.3 and remark 2.4). An (O.S.P.) from class Qk

is given formally by the following définition:

DÉFINITION 2.1: Let

(2.10) mk=inî{Dk(A, F): AeQk}; k = 0, 1, 2, 3 and 4

If A*eQk is such that mk=D (A*, F), then A* is said to be an (O.S.P.) from
class Qfc; fc = 0, 1, 2, 3 and 4.

The existence of (O.S.P.)'s in class Qo has been established in Beck [5] and
Franck [10] by assuming different (but not equivalent) conditions on the
underlying distribution F, that give necessary and sufficient conditions for
such existence. For the (GLSP) considered hère, Balkhi [2] proved the follow-
ing two theorems.

THEOREM 2.1: There exists a search path from class Qk; fc = 0, 1S 3 and 4,
withfinite expected cost if and oniy if M(F)< oo.

THEOREM 2.2: Let F~ (0), F+ (0) dénote the left hand and right hand
derivatives ofF at zero respectively. IfM(F)<co, then there exists an (O.S.P.)
from class Qkif

(i) For fe^O, 1» at least one of F' (0), F + (0) isfinite.

(ii) For fc = 2, 3 and 4, both F~ (0), F+ (0) are finite.

Thus the ̂ existence of (O.S.P.)'s for fc = 0, 1 (/c = 2, 3 and 4) is guaranteed
under the finiteness of M (F) and F " (0) or F + (0) (M (F), F " (0), and F + (0)).
Under some special assumptions which include the above ones Fristedt and
Heath [11] proved the following theorem.

THEOREM 2.3: /ƒ M(F)<oo> then there exists an (O.S.P.) from class Qo with
constant speed equal to 1.

Theorem 2.3 does not have special assumptions concerning class Qo per
se, so this theorem holds for any of the classes Qfc; fc=09 1, 2, 3 and 4. Thus,
for ail classes Qk we might consider the expected cost of the search to be
either Dk(A, F) or Tk(A, F), where Tk(A, F) dénotes the expected searching
time using the search path A — {a{, Ï ^ 0 } from class Qk L e.

(2.11) Dk(A, F)=Tk(A, F) = M(F) + Ak(A, F)\ k = 0, 1, 2, 3 and 4.

The following définition is often needed in the sequal.

DÉFINITION 2.2: If the target distribution F is absolutely continuous with
strictly positive density f then F is said to be regular.

vol. 23, n° 1, 1989



72 Z. T. BALKHI

Of special interest are symmetrie target distribution L e.

(2.12) F ( - x ) = l - F ( x ) , VxeR.

For this type of distributions (i. e. symmetrie) then more appropriate
formulas, for theoritical and computational purposes, are available for the
expected cost. To see this let A = {at; i^0}eQk; yt~ |a£|, i^O. If Fis symme-
trie then

(213) l-sign(a i)

for & = 1, 2, 3 and 4 and f^l for fc = 0.

Let Y={yt; z^O}, then from (2.13) and our hypotheses we can easily see
that Ak(Y, F) = Ak(A, F); fc = 0> 1, 2, 3 and 4, where

(2.14) Ao(7, F) = 2X [l-F(yd](yt+yi+ô=yi + 2 E [l-F(yd](y,+yt+1)

(2.15) Ak(Y,F)=-2Ïy°\x\dF(x)
Jo

(2.16)

+2 X [l-F(yd](y,+yl+ly; fc = 3, 4

Formulas (2.14) through (2.16) make it possible to disregard the signs of the
entries of a search path A~{a{, i^O} by using the equivalent search path
Y—{y{J f^O}. This, in fact, results in more efficient computational algorithms
that calculate the entries of (O.S.R)'s and the corresponding optimal costs.
Moreover, by using (2.14) and (2.15), Balkhi [1] proved the following interest-
ing result {see [1] pp. 173-174).

Recherche opérationnelle/Opérations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 73

THEOREM 2.4: If the underlying distribution F is symmetrie, and if A is an
(O.S.P.) from class gfc» then

K + i | > N foralli^O; fe = 0, 1, 2.

Using similar techniques as those used in [1] we can easily show that this
theorem holds, also, for k = 3 and 4 with i^fc —2. Thus we have

i^O for fc = 0, 1 and 2 and i^k-2 for fc = 3 and 4

Thus for symmetrie target distributions we can restrict our attention to the
search paths Y={y; i^O} for which

(2.17) {
\teO for fc=0, 1 and 2, and i^fc —2 forfe = 3and4.

Remark 2.1. — There is a kind of scale invariance on the expected cost.
For if A = {at; i^Q} is a search path from class Qk; fe = 0, 1, 2, 3 and 4 And
if we define XA = {Xat; i^O}, Fx(x) = F(x/K)9 so that the support of Fx is
(%c, Xd), then

(2.19) Dk(XA, Fx) = XDk(A, F); fc=0, 1, 2, 3 and 4

which can be easily seen from (2.6) through (2.9) (see also [13] remark 1,1).

Remark 2.1 means that the expected cost of the search does not depend
on the type of distribution, but it dépends also on its scale parameter. It is,
therefore, meaningful to standardize the expected cost by other parameter of
the same scale? say by M (F). Relating to this fact Rousseeuw [13] has proved
the following theorem.

vol. 23, n° 1» 1989



74 Z. T. BALKHI

THEOREM 2.5: If the underlying distribution F is symmetrie and regular, and
if A is an (O .S.P.) from class Qo, then

(2.18) 2<T0(A, F)/M(F)<4.591.

3. OPTIMAL SEARCH PATHS

(a) Critical search paths

As it can be seen from (2.6) through (2.9) the (GLSP) dépends on two
unknown factors. Those are the target distribution F, and the search path
A = {a{, 1^0} used by the searcher. Let us assume, from now on, that the
target distribution is known. Nevertheless we still face a difficult optimization
problem. Because this problem has an infinité number of variables; that is
A = {at; 1^0}. However, if we assume (from now on) that the target distribu-
tion F is also regular and that M (F) is finite. Then the structure of the
(GLSP) becomes easy and even simple as we shall see below. But let us first
give a pertinent définition and remark.

DÉFINITION 3.1: If A = {at; i^O} is a search path from class Qk such that
tha derivative of Ak(A, F) with respect to A does exist and all partial
derivatives of Ak (A, F) with respect to rhe a,'s vanish, then A is said to be a
critical search path (C.S,P.) from class gfc; k = 0, 1, 2, 3 and 4.

Remark 3.1. — We infer that if Ak{A9 F) is differentiable on Qk then the
set of critical search paths from Qk will contain all of the relative minimal
and relative maximal search paths. Of course this set may also contain search
paths at which àk(A, F) does not have relative minimal or maximal search
paths. In addition the function Ak(A, F) may have relative extremum at a
search path from Qk at which the derivative of Ak(A, F) with respect to A
does not exist or Ak(A% F) may have a relative extremum at a search path
which is not an interior point from Qk. •

Now by the regularity condition on F and the finiteness of M (F), then
Theorem 2.2 guarantees the existence of (O.S.P.)'s in each of the classes
Qk; k = 0, 1» 2, 3 and 4. If A = {a{, i^Q} is a (CS.P.) from class Qk, then
dAk(A, F)/dat exist for all pertinent values of i and fc, and then

ÖAk(Ay F)

(3.1) dat

i^O for k = 1, 2, 3 and 4, and iè 1 for k=0.

Recherche opérationnelle/Opérations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 7 5

Moreover, for the following tupled values of i and k

(3.2) (Jfc = 0, 1 and 2; i^ 1), (fe = 3, i^2) and (fe = 4; i^ 3).

Then relations (2.7) through (2.9) together with (3.1) give the following
results.

(3.3) dA"(A> ^ = 2 sign(a;){1 -sign(a,)[F(a t)-F(a^,)}
da

And from our hypotheses we have

(3.5) a i + 1 = - s ign(a i ) . | a i + 1 | .

Using the same reasoning as applied for the tupeled values of k and i in
(3.2), the rest a,'s of a (C.S.P.) 4 = {af; i^0}eQk are given by the following
relations:

(3.6) \ai\=l/2f(a0)-\a0\; fc = l

(3.7) \ai\ = \a0\-ll2f(a0); fe = 3

(3.8) 1^1=1/2/(00)+ \ao\; k = 2,4

(3.9) , | = l + Sign(a1)[F(a1)F(ao)]

(3.10) kl-Kl-1

(3.11) | a | = l + s i g n(a 2 ) [F (a 2 ) (q l ) ] fc = 4

For the signs of these entries we recall, from the hypotheses, that: For
fc = l, a0 and ax have different signs. Whereas for k = 2, 3 and 4, ail the af's
for which i^k — l have the same sign. Now, as it can be noticed from
relations (3.4) through (3.11) and the signs of the a/s indicated above, then
for k = 1, 2, 3 and 4 we have that a1 is a function of a0, and ai+A is a function
of ai^1 and at for ail i ^ 1. Hence ai + l is a function of a0. Thus if we assume
that ao = r, then there exists a function vl/, such that

(3.12) at = ̂ j (r) for ail i ̂  0, and fe = 1, 2, 3 and 4

vol. 23, n° 1, 1989



76 Z. T. BALKHI

where \|/0(r) = r. But for the case fc = 0 we have to take r = a1 since then
ao=0. With the convention that \|/o(0) = 0 for fc = 0, then a (C.S.P.)
A = {at; i^O} from class Qk; fc = 0, 1, 2, 3 and 4 is of the form

(3.13) A = {^(r);fâO}

Therefore, if the set of (C.S.P.)'s from class Qk is not empty (see Remark 4.1
in the next section) then we have

(3.14) inf {Ak(A, F); A = {aù iêO}eQk}=inf {Afc({^(r); i^O}, F); reU}.

Thus under regularity condition on F, the (GLSP) problem has been
reduced from a problem with an infinité number of variables {at; i^O} to a
problem with only one single variable, namely r=a0 for fc = l, 2, 3 and 4,
and r = a1 for fc = 0.

(b) Optimal search paths

Let us assume that the set of (C.S.P.)'s from class Qk is not empty, and let

Ajf (r*, F)=inf {
(3.15)

fc = 0, 1,2, 3 and 4.

We then can address ourselves to solving (3.15) under the side condition
[recall the conditions (2.1) through (2.5)].

(3.16) \^i+2(r)\>\Mr)\ fora lUèfc-1; fe = 0, 1, 2, 3 and 4

at any distribution. And the side condition [recall (2.17)].

(3.17) |*i+i(r)|>|*,(r)|,

Ï ^ O for fe=0, 1 and 2 and i^fc-2 for fe = 3 and 4

at the symmetrie distributions. Whenever these side conditions are not satis-
fied, we shall consider that the corresponding Ak({\|fi(r); i^O}, F) is not
defined. The search path {^(r*); i^O} that defined by (3.15) and that
satisfies these side conditions is an (O.S.P) from class Qk; !c = 0, 1, 2, 3 and 4.

The procedure of finding an (O.S.P) from (3.15) would be as follows: For
each reR we construct all a^^iir) from the relevant relations of (3.4)
through (3.11). And then we calculate the corresponding Ak ( {\|/£ (r)}, F) from
(2.7) through (2.9). From those values of r that satisfy the pertinent side
condition, we choose the value r* that satisfy (3.15). Another equivalent

Recherche opérationnelle/Opérations Research



GENERALIZED OPTIMAL SEARCH PATHS FOR RANDOM VARIABLES 77

procedure of finding an (O.S.P.) from (3.15) is as follows: From all (C.S.P.)'s
of the form (3.13) we find the minimal search paths. Then we take the overall
minimum of all minimizing search paths. However, there are some difficulties
that arise when applying such procedures. One of the main difficulties for
instance, is to consider all values of r from U. Another one is that; it is not
known as to whether the relevant side conditions, indicated above, are fulfilled
everywhere. A third one is that; though our optimization problem has been
reduced from a problem with an infinité number of variables to a problem
with only one single variable. But it is still one difficult variable. This is so
since each (C.S.R) has an infinité number of entries. It would be therefore,
rather difficult to verify that a given (C.S.P.) is of minimal type. Unfortunately
overcoming such difficulties is not always possible as we shall see in the next
section. Nevertheless, the properties of (O.S.P.)'s which will be studied in the
next section will provide us with valuable information that will, at least, be
a helpful tooi for verifying and facilitating the numerical calculations of
(O.S.P.)'s.

4. PROPERTIES OF OPTIMAL SEARCH PATHS

Some properties of (O.S.P.)'s have already been established, and being
held at any distribution F (see theorem 2.5 in [2] for the nonsymmetric
distributions, and recall relation (2.17) for the symmetrie ones). For regular
distributions, however some other properties do, in fact, hold and are helpful
in facilitating the solution of the (GLSP). In order to help the flow of our
ideas we start with the following property of (O.S.P.)'s.

1. Nonminimality of some classes for certain type of distributions

Though the function Ak (A, F) has an infinité number of variables, the
structure of our problem makes it possible to take Ak(A, F), with finite
number of variables, as an approximation of its exact value. Such an approxi-
mation is justified by the fact that | at \ { l-sign(<zt) [F(ai)—F(ai^1)]}
approaches 0 as i-+ oo (recall that «;-• —oo and aiml -•oo as i->co or vice
versa). Dénote by n the number of entries from A = {at; i^O} for which the
indicated approximation is fulfilled for any desired level of précision. If
A — {at; O^i^n} is an (approximated) search path, then A can not be
minimal unless the Hessian matrix evaluated at A is positive definite (see
theorems 42.4, 42.5 in [3]). For /c = 1,2,3 and 4, let &i = d2Ak(A, F)/daf; ï^O.
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78 Z. T. BALKHI

Simple calculations on (2.8) and (2.9) have shown that the Hessian is symme-
trie (provided that the derivative ƒ' of ƒ does exist and is continuous). And
that the matrix H has the following form:

(4.1) H =

So
2/(a0)

0

0

0

2/(a0)
Si

2/(ai)

0

0

0

2/(ai)

82

0

0

0
0

2/(a2) . . .

0

0

0
0

0

8„-i
2/K-i)

0
0

0

2/(a„_1)
5

[For the case k~0 the resulting matrix H has a similar form as (4.1) with
replacement of at by ai+1 and o, by Si+1; i^O]. But H is positive definite if
and only if the déterminants of its principle submatrices are strictly positive.
Thus A = {at; i^O} can not be a minimal search path from class Qk unless

(42) d2Ak(A, F) > 0 ; k = o, 1, 2, 3 and 4
dr2

And

^¥ ^ l 2 > 0 ; h = *> 2' 3 and 4

But when the derivative ƒy of ƒ does exist, then (4.2) is equivalent to

(4.4) h(r) = 2f (r) + sign(r)Ç^{ 1 - sign (r) [F (r) - F (0)]} < 0; fc =
ƒ(»•)

(4.5) h (r) = 2 ƒ (r) + sign ( r ) "^^ < 0; fc = 1 and 3
f(r)

(4.6) A (r) = 2 ƒ (r) - sign ( r ) " ^ < 0; k = 2 and 4.

Suppose now that the distribution F is of the following type:

(4.7) "F is regular and has unimodal density ƒ with the mode occuring at
zero and the derivative/' does exist and is continuous".

Then ƒ' (r)//(r)>0 for r<0 and ƒ' (r)//(r)<0 for r>0, which means that
the necessary condition (4.6) can not hold for k = 2,4. On the other hand,
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simple calculations on (2.9) yield:

oa\

From which we can easily see that d2 A3/dal<0 whenever F satisfies (4.7).
But then (4.3) can not hold. For if d2A3/ôr2^0 we are through, otherwise
ô2 A3/dr2 d2 A3/da2 - 4 [f (r)]2 < 0. Thus we have actually proved thee f ollowing
resuit.

THEOREM 4.1: If F satisfies (4.7), then for fc = 2,3 and 4, any critical search
path is not of minimal type.

An illustration of Theorem 4.1 is given by the f ollowing example

Example 4.1: Suppose that the target position follows the Normal law

(4.8) F(x)=—Lf* e~^2t2dt; xeU.

which is symmetrie and unimodal with the mode occuring at zero. The
optimal value Af (r*, F) that has been obtained from the (C.S.R)'s is found
to be 2.11282145. Ho wever, some given search paths (Noncritical) for which
ao = r for k — 1, 2, 3 and 4 such as

{at = ri + 1;i^0, \r\>\}

(4.9) {a£

And for which ax = r for k = 0 such as

{a( = ir; i ^ l } , {a—r1; i ^ l ,

have also been considered for comparison purposes (The value of Afc's at
such search paths will be denoted by Ak(r, F) so that those values can be
distinguished from Afc({\|/£(r); i ^O}, F) which we shall use for (C.S.P.)'s.)
The minimal values of Ak(r, F) at the special search paths defined by (4.9)
have been found to be 1.969 376523, 1.848029 33, 2.024573 89, 2.12323133,
1.99386908, 2.37207621, 2.07379500 respectively. One can easily see that
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the value of Af (r*, F) is greater than the minimal values of A2 (r, iO at
almost all special search paths defined by (4.9) giving thus an in sight to
theorem 4.1 for k = 2.

Remark 4.1: It has been found, by means of computers, that for the
distribution (4.8), then

\a11<0 for fc = 3 and reU and | a 2 | <0 for k = 4 and reU

This means that the set of (CS.P.)'s, from each of the classes g3 , g 4 and
for the distribution (4.8), is empty, which seems to contradicts the result of
Theorem 2.2. However, by reasons mentioned in Remark 3.1, one may
construct many noncritical search paths like those defined by (4.9) and (4.10)
and then use the trial and error process to extract (O.S.P.)'s from them.

2. Bounds on r

As indicated above, solving (3.15) for all reR is not an easy task. However
some useful bounds on the only characteristic variable r are available. Since
any (O.S.P.) is a minimal search path, some of these bounds come from the
necessary condition (4.2) that have to hold for any minimal search path
A = {at; f^O} from class Qk. When the inequalities (4.4), (4.5) and (4.6) have
solutions they would be of special importance for obtaining significant bounds
on r. An illustration is given in the following example.

Example 4.1 (Continued): Considering again that the target distribution is
given by (4.8). Then for k= 1, (4.5) gives.

(4.11) h(r) = 2f(r)-r<0

which is equivalent to

(4.12) r e ( - o o , - a ) U ( a , oo) where a~0.6471428.

Obtaining thus a lower (upper) bound a ( - a ) o n r when r>0(r<0). •

However, the solution of each (4.4), (4.5) and (4.6) is highly dependent on
the type of search (i. e. on k) and the type of target distribution F. For
instance, équation (4.6) can not hold for any unimodal distribution with the
mode occuring at zero as we have seen in the previous property.

Other bounds on r may be obtained from j the forms of Ak(A, F) given by
(2.7), (2.8) and (2.9). To see this, let 8k be the value of Ak(A, F) at a given
search path such as those given by (4.9) and (4.10). And dénote by Q,™ the
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set of minimal search paths from class Qfcs k = 0, 1, 2, 3 and 4. Then some
other significant bounds on r are given by the following theorem.

T H E O R E M 4.2: Let B^ = \x\dF(x), B2 = \ \x\dF(x). IfQ% is not empty,

J-t» Jo
then

(4.13)

(4.14)

(4.15)

(4.16) = 4.

Proof: Let Mjt(r) be the subset from (R for which the resulting (CS.P)'s
are minimal search paths. Let also Am = { a, = \|/f (r); ii ̂  0 } be a minimal search
path, and Ak (Am, F) be the corresponding value of Afc at the search path Am.
Since, Q™ is not empty so for each reMk(r) we have

(4.17) F); fc = 0, 1, 2, 3 and 4.

The proof of (4.14) is direct from (2.8) and (4.17) with k = l. We shall
now give the proof for fc = 0 and fc=4. The proof for fc = 2 and 3 can be
done by similar fashion.

(i) k = 0: Let reM0(r), then from (2.7) and (4.17) we have

which implies that | r | ^ '\dF(x) . Since the integrand on the

right side of the last inequality is a nonnegative function so by [4] Lemma 3.8
we have

po ro
\r\dF(x)è\ \x\dF(x) for r^O,

Jr J — oo

and(4.18)

Jo Jo

which in turn implies (4.13).

for r>0
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(ii) k=4: Let reM4(r). Then from (2.9) and (4.17) with k = 4 we have

• | r l - 4 | a J+2 | a J
Jo

-21 ö l I signCaJ[F(ai)-F(a0)]

+ 2|a2|{l-sign(a2)[F(a2)-F(a1)]}

+ 2|a3|{l-sing(a3)[F(a3)-F(a2)]}.

Since for fc = 4, \a3 | ^ | a t | > | a o | = | r | ^ | a 2 | so we have

Jo
x\dF(x) - | r | + 2|r

-2|a1 |sign(a1)[F(a1)-F(a0)]

-2|a2 | { l-sign(a2)[F(a2)-F(a1)]}

+ 21 a31 {1 -sign (a3) [F(as)-l
?(fl2)]}

\x\dF(x) |r|-2|a1 |sign(a1)[F(a1)-F(a0)

-2|a3|{l-sign(a2)[F(a2)-F(a1)]}

+ 2|a3|{l-sign(a3)[F(a3)-F(a2)]}

or

+\r\-2
ÜQ

which implies

I r |<2 +2 + 54.

But, for fe = 4, the entries ao = ri alt a2 and a3 have the same sign, so by
similar arguments as those used in pro ving (4.18) we can easily see that:

J*° Cao Cai

| JC | dF{x\ | ax | dF(x) and | a3 \ dF(x) is less than or equal
r J a\ v£t3
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f°
to \x\dF(x) = Bx for r^0. And each of

J -oo

fr|x|<*F(x), ïai\ai\dF(x) and !"3\a3\dF(x)

is less than or equal to | x | dF(x) = B2 which in turn imply (4.16).
Jo

Remark 4.2; Examination of (2.14) through (2.16) show that, for symmetrie
distributions, the case r>0 is equivalent to its dual r<0 in the sense that both
give the same value of Afc ( {i^ (r); f^O}, F) (see also [13]). For nonsymmetric
distributions, however, we have to solve (3.15) for the two cases r>0 and
r<0. And then choose the one with the least expected cost Moreover, the
bounds on r given by Theorem 4.2 will be relaxed in case of symmetrie
distributions. This is so, since then B1 = B2 = (l/2)M (F). Thus for symmetrie
distributions we can content ourselves to the following bounds on r:

(4.19) Either r ^ r ^ O , or 0^rgr 2 ; fc = 0, 1, 2, 3 and 4

where rx — —r2i and

[[50 + M(F)] for k = 0, r2 = 51 + M(F) for k = \
(4.20) 2

8 + 2M(F) for /c = 2 and 3 and r2 = 54 + 3M(f) for

Example 4.1 (continued): For the distribution (4.8) and the fifth search
path of (4.9) we obtain 5^1.47, rx~ -2.26, r2-:2.26. Thus for the distribu-
tion (4.8), relation (3.15) is equivalent to

A*(r*, iO= inf {AiUMr) ; Ï^O}, F)}
S A , } * } re(-2.26, -0.647 142 8)

for r<0

and

At(r*,F)= inf { At ({+M i>0}, F)}
,* j~, r e (0.647 142 8, 2.26)

for r>0

But (4.8) is symmetrie, so by remark 4.2 we consider either (4.21) or (4.22).
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3. Fixed points

We have mentioned in section 3(b) that the function Afc({\|/£(r); ï^O}, F)
is not defined whenever the related side condition from (3.16) and (3.17) is
not fulfilled. (recall that we are concerned with search paths of the form
(3.13)). From our hypotheses, the relation

(4.23) *i + i ( r ) # * , ( r ) * V 1 ( r )

for all pertinant i and k should also hold at any regular distribution. But it
can happen that (4.23) does not hold everywhere for any distribution. Indeed
if we assume that

(4.24) •i+ i(r) = *,(r)=iW-1(r) = Y

for all pertinant i and fc, then équation (3.12) is equivalent to

(4.25) Y =

for all pertinant i and k.
In such cases, then by the bounds on r indicated above and by Brouwer

Fixed Point Theorem (see [3] Theorem 23.8] the continuous function \[/£ (r)
has at least one fixed point. In this case équation (3.4) is equivalent to

(4.26) 21 y | =0; i and k are given by (3.2)

which in turn gives the fixed points of v|/,(r) (if any) at any regular distri-
bution F. Moreover, it is also possible to obtain some other kinds of fixed
points for the function | \|/,(r) |. For if we assume that

(4.27) | ^ i ( r ) H ^ ( r ) H * < - i ( r > l = P

for all pertinant i and fe.
Then (3.4) is equivalent to

( 4 2 8 ) , ^ • • { -p)-F(p)] / / (±p)-2p=0;
' T^O; i and k are given by (3.2)

which gives the fixed points (if any) for the function | \|/f (r) | at any regular
distribution F. When the F is also symmetrie, then by (2.13), relation (3.4)
will have the form

(4.29) yi+1 =
 2-[F(yi+^)]-yi; iïk; fc = 0, 1, 2, 3 and 4.

f ( ù
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Substituting (4.27) in (4.29) we obtain

(4.30)
i and k are given as in (4.29)

which gives the fixed points (if any) of | ^ ( r ) | for regular and symmetrie
distributions. From the above discussion we observe that the existence of
fixed points for the functions ^ ( r ) , | \h(r) | is not guaranteed. Because we
cannot assure that each or both of (4.24) and (4.27) are realy fulfilled for ail
pertinent i and k. However when such points do exist the functions x|^(r)
and |^,*(r)|; î^O change their values very slowly near them. Therefore the
search paths {*)/,• (r); Ï ^ 0 } , { j\|/i(r)|; i^O}, get trapped around these points.
Then the side consition (3.16) [(3.17) for symmetrie distributions] no longer
holds which means that the corresponding Â  ( {\|/f (r); i^O}, F),
(âk({\ \|fj (r) |; i g 0 }, F)) is not defined.

Example 4.1 (continued): For the distribution (4.8), the solution of (4.30)
is P^0,7517915. The corresponding {|^(r) | ; i^O] for fc = 0 does in f act
get trapped around this value of P (see [1] the table on pages 27-28 concerning
with the case k = 0 at the distribution (4.8)). This results in a gap on the plot
of Ao( {1^(r) |, i^O}, F) as it can be seen from figure 2 below which shows
the plot of Afc({\|^(r); i^O}, F), fe = 0, 1 and 2 as functions of r, at the
distribution F that is given by (4.8). Each point from the plot of
Afe({^j(r); i^O}, F), in this figure, corresponds to a critical search path from
class Qk; /c = 0, 1 and 2. (The set of critical search paths from each of Q3

and Q4i for the distribution (4.8), is empty as has indicated before.)

4. The (GLSP) as a fonction of r only

So far we have shown that the (GLSP) is completely characterized by the
first entry r. The question we address now is how the changes in r affect the
values of the Afc's and the a/s i. e. what about the derivatives of the Afc's and
the a/s with respect to r as the only significant variable. In fact we have

(4.31) — = Z f ^ k ^ i . jc = l ,2 , 3and4 .
dr i = 0 dat dr

Since (3.1) holds at any critical search path, we obtain

(4.32)
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DELTA(O),DELTA(1) ,AND DELTA(2)

AS FUNCTIONS OF R

_ 4-.50

. 4.00

. 3.50

_ 3.00

_ 2.50

_ 2.00

_ 1.50

0. -500 1.00 1.50 2.00 2.50

NORMAL DISTRIBUTION

Figure 2.

[(4.31) and (4.32) hold also for k = 0 with summations starting from i=l].
Let D^dajdr, then for fc=l, 2, 3 and 4 we clearly have Do=\, and then
from (3.6), (3.7) and (3.8) we obtain

(4.32) » . - £ - li *- ,2 ,3and4

whereas D t = 1 for fe=0.
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Since for i g 1 each ai+l is a function of at and a,_l5 we have

(4 33) D ^dai + 1
 =

a a«-+i dai | da da

dr da{ dr dai_l dr

With the convention that Do = 0 for fc = 0, then simple calculations on (3.4)
and (3.5) yield the following recursive formula.

(4.34)
i and k are given by (3.2).

For the other values of i and k we may obtain Di+X from (3,9) through
(3.11). Now from (4.32), (4.33) and (4.34), D{ is a function of r for ail
i^O. And both dAJdr, d2 AJdr2 could be expressed as functions of r. These
results may, in fact, facilitate the task of studying the convexity and concavity
of the functions Afc({v|/,(r); i^O}, F); /c = 0, 1, 2, 3 and 4. Moreover, the
values of Z)/s as functions of r will provide us with good indications of how
the changes in r will affect the entries af=\J/f (r) as will be seen in the next
example.

Example 4.1 (continued): Let us return to the distribution (4.8) and
consider the case fc = l. The optimal value of ^ ( { ^ ( r ) ; i ^ 0 } 5 F) has been
found to occur at an extreme point for which we have obtained Computer
Results (1) below concerning the optimal search path {x(i); f^O} and the
optimal value of r with the corresponding optimal value of
Al({tyi(r); i^O}, F) together with the derivatives of x(Q's with respect to r.

Making an infinitésimal change in r gives Computer Results (2) with more
of the entries x (O's.

The infinitésimal changes in r have been continued to be made upon
reaching 29 décimal digits giving us Computer Results (3) with about 20 of
the entries x(i)'s5 upon reaching the system capacity.

One can easily see, from these results, how the changes in r affect signifi-
cantly the entries of a (C.S.R) especially the last ones.
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5. ALGORITHM AND ILLUSTRATION

(a) Computational algorithm

We have pointed out that there are bounds on the main variable r. And
that the functions | \|/f (r) |, \|/; (r) may have some kinds of fixed points causing
a gap in the graph of ÀJt({\|/I(r); i^O}, F) (recall, Figure 2). In the case of
no fixed points (Le. the side conditions (3.16) or (3.17) are satisfied) then
the function Ak({^(r); i^O}, F) would be of continuous type. For example
the side conditions are always fulfilled for any of the special search paths
(4.9). Note that, for these special search paths, the plot of A1(r, F) at the F
given by (4.8), as shown in [1] figure 26, is of continuous type.

If Afc({\|/l(r); Ï ^ O } , F) is continuous and of convex or concave type, we
may use the following algorithm for finding the optimal value r* of r and
the corresponding A£ (r*, F) as defined by (3.15).

The algorithm

rx =left bound of r, r2 =right bound of r.
8 is an infinitely small positive quantity say £ = 0.1 x 10 ~10.
1=1, and N is the number of suitable itérations, say N~ 100.
Step(l):

;i^0}, F)

If S is greater than zero go to step (2).
If 8 equals to zero go to step (5),
If 5 is less than zero go to step (3).
Step (2): ri=rli go to step (4).
Step (3): r2=r21.
Step (4): If I is greater than N go to step (8) otherwise 1=I +1.
If {r2—rl) is greater then 2e go to step (1) otherwise go to step (5).
Step (5): If ôi is less than Q2 go to step (6) otherwise go to step (7).
Step (6): The optimal values are r* = rll9 Ajf (r*, F) = Q1 go to step (8).
Step (7): The optimal values are r* = r21, AJ(r*, F) = Q2.
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Step (8): Stop.
If, however, Ak({^t(r); i^O}, F) is piecewise continuous so that its curve

is constituted of several parts each of which is either convex or concave.
Then we minimize on each part and take the overall minimum value of the
minimums of those parts. In cases with gaps like figure 2 we have first to
find the extreme points of these gaps (the points after which or before which
the side conditions (3.16) or (3.17) start to be violated). Then we consider
the left or right bounds of r starting from these points. It is then to be noted
that if Afc({\|/f(r); i^O}, F) is concave or convex on the parts that result
from the extreme points as it is the case in figure 2. Then one of the extreme
points would be a strong candidate to represent the optimal solution as will
be seen in the next example.

(b) Example (5.1)

By the result of Theorem 4.1, a family of distributions called the Bimodal
Normal is to be considered. This family is characterized by the positive
parameters |i and a so that their densities are given by

(5.1) ƒ ( x ) = L
2 a /2TC

Each member of these densities is symmetrie and have two modals occuring
at — p,, \i. The results presented here are concerned with a = l (recall
remark 2.1). The following formula for the F's has been used for computa-
tions.

(5.2) F^ (x) = - + - [ERF ((x + VÙ/fî) + ERF ((x - \x)//2)]; x e R

because the error function ERF(t)= 2//n \ e x dx does exist in the com-
Jo

puter library. Table I contains the extremal values of Afc({\|/j(r); t^O}, F)
for fc=0, 1, 2 and 4, at different values of ji (p.= l, 2, 3, 5, 7 and 10). We
note that, for [i^2, /c = 0, 1 and 2 there are two extreme values of r, between
which there is a gap. The optimal value of Ak({\|/f(r); i^O}, F); A;=05 1
and 2, occurs at one of these values. When p,= l, ho wever, there is only one
(right) extreme point for each of fc = 0, 1 and 2 at which Afc({\|/l(r); / ^ 0 } , F)
attains its optimal value. On the other hand, it has been found that \a2\ <0
for k = 4, | i= l , which means that, for | i=l , the set of critical search
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paths from the class Q4 is empty. The ealeulations showed that
Ak({^fi(r); i^Ö}, F); Jfc=0, 1 and 2, decrease when r varies from zero to the
left extreme (1. e.) point, and increase when r takes on values greater than
the right extreme (r. e.) point, so that the optimal value of A '̂s, fc = 0? 1 and
2 occurs at the right extreme points. However, the situation for fe = 4 is quite
different from those of Jc=O, 1 and 2. For k = 4, \x^2 there are two extreme
points with a gap before the first, and a gap after the second so that the side
conditions (3.17) is fulfilled between these two extrêmes. It happens that the
optimal value of A4( {ty£(r); i^O}, F) for fi=2 occurs at the second extreme,
whereas for \i>2 this optimal value occurs at a point that lies between the
indicated two extreme points. In all cases (fc = 0,1, 2 and 4), the existence of
a gap before or after an extreme point means that the side condition (3.17)
is violated, hence Afc({\[^(r); i^O}, F) is not defined. Some other significant
values in Table I has the following meaning: The value (values) of a indicates
the bounds on r that can be obtained from (4.4) for k = 0, (4.5) for k = 1, 3,
and (4.6) for fe=2, 4. The value of p indicates the fixed points that have
been obtained from (4.30). Some other kinds of fixed points may be obtained
from (4.26). The M (F) indicates the first absolute moment of F. Table II
contains some of the entries x(t)=|ö,-|; i^O (fgrl for fc=0) of the optimal
search path for each value of \x given in Table I and for each of the cases
fc = 0, 1, 2 and 4. These entries has been calculated as far as the system
capacity. The f act that the optimal value of A*({\{ff(r); i^O}, F); /c=0, 1
and 2, occurs at an extreme point was a very helpful tooi in studying the
strong relations between r and the entries x(ï); i ^ l as these relations are
given by (4.32) and (4.34) (recall the last example in the previous section).
The entries x(Ö), x(l), x(2), x(3), x(4), . . . , in Table II should be under-
stood, for k = l for instance, as follows; %=x(ö)5 a1 — ~x(l), a2=x(2),
a3=—x(3)> a4=x(4), . . . with similar understanding for k = 09 2 and 4.
Table II contains also the optimal searching time denoted by 7f (r*, F) for
fc= 0,1,2 and 4. One can easily verify that T*(r$, F)/M(F) satisfies
Theorem 2.5.

We would finally like to mention that the results in Table I and Table II
are only roughly correct due to many difficulties in the calculational system
such as accumulation errors, the bounds on the system ranges, the system
capacity, etc. Thus the large values of x(ï); i^O in Table II would, in fact,
result in less précision than the small ones. Nevertheless, this will cause a
very slight change in the resulting ^({^/^r); ï£Q}9 F). Because the term
2-™[F(xi) —F(x;_x)], for those large values of x4, equals zero in the computer
digits. [Recall the values of Af (r*, F) in the three computer results concerning
the distribution (4.8), in the last example of Section 4.]
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6. CONCLUSION

In this paper we have introduced analytical methods for constructing and
studying some important properties of optimal search paths for the (GLSP)
at the absolutely continuous class of target distributions that have strictly
positive densities. We have shown, then, that the (GLSP) can be eharacterized
by only a single variable instead of infinitely many. The techniques used in
this study are those of standard calculas so that an optimal search path
would, in gênerai» be a critical one. It has also been shown that for three of
the only five possible cases of search, and for the distributions of unimodal
type with the mode occuring at zero, then these (CS.P.)'s are not minimal
(maximum, saddle, or extreme). We would finally, note that the results of
Table I indicate that for the distributions (5.1), the class Qt is better than
the class Qo, and for most of the values of \x the classes Q2i and Q4 are
better than the class Qo in the sensé that they give less expected cost Note
also that some of the classes Qk is better than some others justifying, thus,
the generalization of the linear search problem that has been introduced
in [2], Some other results concerning the search for a target located in the
plane or on a line may be found in [14], and [15].
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