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LOWER BOUNDS
TO THE GRAPH PARTITIONING PROBLEM

THROUGH GENERALIZED LINEAR
PROGRAMMING AND NETWORK FLOWS (*)

by M. MINOUX (x) and E. RNSON (2)

Abstract. — The well-known Graph Partitioning Problem (GPP), has many applications, both
in its weighted and unweighted versions: optimal VLSI circuit design and layout, Systems analysis,
data analysis and clustering, décomposition of large scale mathematical programming problems,
etc. We investigate hère a new way of getting lower bounds based on a reformulation as a large
scale set partitioning problem, where the columns correspond to ail subsets of the vertex set X. It
is shown that the continuous relaxation of this large scale problem can be solved exactly by means
of a generalized linear programming technique, the column génération process being reducible
to maximum network flow computations. Preliminary computational results on a number of
small-to-medium sized problems are reported, and directions for future investigations are suggested
in the conclusion.

Keywords : Graph partitioning; combinatorial optimization; generalized linear programming;
quadratic pseudoboolean optimization; maximum network flows.

Résumé. — Le problème de partitionnement de graphes est bien connu pour ses nombreuses
applications, aussi bien dans sa version pondérée, que dans sa version non pondérée : optimisation
de la conception et de l'implantation des circuits VLSI, analyse de systèmes, analyse de données et
classification, décomposition de grands problèmes de programmation mathématique, etc. On étudie
ici une nouvelle méthode pour obtenir des bornes inférieures, basée sur une reformulation en un
problème de partitionnement de grande dimension, où les colonnes correspondent à tous les
sous-ensembles de Vensemble X des sommets du graphe. On montre que la relaxation continue de
ce grand problème peut être résolue de façon exacte par une technique de programmation linéaire
généralisée, la procédure de génération de colonnes pouvant se réduire à des calculs de flot
maximum. Des résultats de calcul préliminaires sur des exemples de taille petite ou moyenne sont
fournis, et des directions de recherche future sont suggérées en conclusion.

Mots clés : Partitionnement de graphe; optimisation combinatoire; programmation linéaire
généralisée; optimisation pseudo-booléenne quadratique; flot maximum.
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350 M. MINOUX, E. PINSON

1. INTRODUCTION AND PROBLEM STATEMENT

1 .1. The (unweighted) graph partitioning problem (GPP)

Let G = [X, U] a nondirected graph where X is the set of nodes ( |X|=iV)
and U the set of edges (\U\ = M) and let p be a given positive integer

The Graph Partitioning Problem (GPP) is to find a partition of the vertex
set X into p subsets Sl9 S2, • . •, Sp, so as to maximize the quantity

z=e(s1)+e(s2)+...+e(sp)

(where, VScX, 6 (S) is the number of edges having both endpoints in S),
the maximum above being taken over all possible partitions of X into p
subsets. Note that an equivalent way of stating the problem would be to
minimize the total number of edges linking two distinct subsets in the
partition.

In this form, (GPP) arises in many contexts of application such as:

— decomposing an electronic circuit diagram into a prescribed number of
modules so as to minimize the interconnections between distinct modules;

— in Systems analysis, decomposing a given large scale System into smaller
subsystems, in order to minimize the interdependencies between subsystems;

— Given a large scale linear programming problem, with sparse constraint
matrix, find an optimal "decomposed form" of the problem so as to obtain
as few coupling constraints (resp.: coupling variables) as possible. The interest
hère lies in the fact that, if a good décomposition can be found, then
décomposition techniques such as Dantzig-Wolfe (case of coupling constraints)
or Benders (case of coupling variables) can be applied (see Dantzig and Wolfe
1961, Benders 1962). The above problem is a special case of graph partitioning
where the given graph is bipartite (the vertex set has éléments corresponding
to variables and constraints of the problem, and there is an edge between
"variable/ ' and "constraint f' iff. variable; appears in the i'-th constraint).

1.2. The weighted graph partitioning problem (WGPP) with an application to
quadratic pseudoboolean programming

The weighted version of the Graph Partitioning Problem is an extension
in which weights wy>0(*) are assigned to the edges (i,j) in G. It is then

(*) It will be seen in §3.1 below why the assumption wtJ>0 is necessary.
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required to find a partition of the vertex set so that the total weight of the
edges within the subsets of the partition is maximized (equivalently: the total
weight of the edges joining pairs of distinct subsets be minimized).

Apart from the fact that many of the GPFs arising from practical applica-
tions (such as those mentioned in section 1.1) can be stated with weights, it
is of interest to point out here one more application which essentially requires
the (WGPP) formulation.

A fundamental problem in combinatorial optimization is to find the mini-
mum of a quadratic function in n boolean variables such as:

where:

— T is a subset of pairs of indices (i, j)

— lt (i = 1, . . ., n) are the coefficients of the linear terms.

— qtj are the coefficients of the quadratic terms.

The above problem is JVP-hard since it includes as special cases:

— the maximum (weight) vertex packing problem (or stable set of a graph);

— the maximum eut in a network;
and other well-known difficult combinatorial problems. Also remember that
the gênerai problem of maximizing a pseudoboolean function of any degree
can be reduced to the quadratic case (Rosenberg 1975). It follows that, in
gênerai, the quadratic pseudoboolean optimization problem can only be
solved to optimality when the number of variables is rather small (say, not
more than about 50 variables according to the computational results reported
in Williams 1985).

Now, suppose that the matrix Q = (q(J) is spar se, i. e. contains only a small
proportion of nonzero coefficients. Then a possible approach to solve a large
quadratic pseudoboolean minimization problem is to look for a partition of
the variables into subsets, in such a way that the quadratic terms involving
variables in two distinct subsets (the interactions) be as small as possible. If
such a partition is obtained with subsets of sufficiently small size, then
forgetting the interaction terms, we get an approximate problem which is
solvable since it décomposes into a number of independent subproblems of
small size.

In order to do that, the partitioning problem to be solved is of course a
weighted GPP on the graph with n vertices corresponding the n 0-1 variables,
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352 M. MINOUX, E. PINSON

and where an edge with weight | qi} | is associated with every nonzero coeffi-
cient in matrix Q.

If, in addition, we want to gct an approximation providing a lower bound
to the quadratic problem, only edges with positive qtj must be allowed to
link two distinct subsets of vertices. One way of ensuring this is to assign to
the edges (Ï, j) with négative associated qtj a sufficiently large weight vv.

1.3. Previous attempts at solving (GPP) and (WGPP)

Due to the importance and diversity of its applications, the Graph Parti-
tioning Problem has attracted much interest. However, apart from the case
of problems with ver y small size (N< 10 say) or the case of special instances
of the problem (e. g. : p = 2) no gênerai algorithmic procedure, significantly
more efficient than brute-force enumeration, seems to be available at present
for getting exact optimal integer solutions (ATP-hardness of the problem was
proved by Hyafil and Rivest 1973). Given the large sizes of the instances
arising in practice, as well as the apparent difficulty of the problem, research
in the area mainly concentrated on efficient approximate procedures. Most
of them actually dérive from a few basic and simple heuristic ideas (such as
"local improvement" methods, randomization techniques —e. g. the fairly
recent "simulated annealing" method—) often rediscovered many times in
the various contexts of application.

The first exact algorithm using branch and bound techniques for solving
the optimal bipartition problem (i. e. the special case where p = 2) can be
found in Christofides and Brooker (1976). Much more recently, Hansen and
Roucairol (1987) showed that, after reformulating the bipartition problem as a
quadratic pseudoboolean program with a cardinality constraint and applying
lagrangean relaxation, lower bounds significantly sharper than those used in
Christofides and Brooker could be derived, resulting in improved tree search
procedures.

In the rest of the paper, we will deal with the most gênerai version of the
problem, i. e. optimal graph partitioning with arbitrary (nonnegative) weights
and arbitrary number p of subsets in the required partition.

2. FORMULATION AS A LARGE SCALE SET PARTITIONING PROBLEM

Suppose that the subsets of X are numbered k = 1, 2, . . ., K (K=2N) and
let A = (aik)i=lj t Nt k=lt ^ be the incidence matrix of 3P(X) in X
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Thus, for the subset having index number k ( lgfc^K), aik = l if i is an
element of the subset, aik=0 otherwise. To each subset k, we let correspond
a binary variable xk to express the fact that the subset is, or is not, selected
in the partition, and a cost ck defined by:

E i (1)

where Uk is the subset of edges (s, t) in U such as ask = 1 and atk = 1 (thus cR

is the sum of weights of edges with both endpoints in subset k).

With the above notation, (WGPP) can be restated as the (large scale) set
partitioning problem:

Minimize— ]T ck.xk

(SPP)

subject to:

A.x = l
K

Z Xk=P
fc=l

x e { 0 , \ } K

(2)

(3)

(1 dénotes the N-vector with all components equal to 1.)

Obviously, except for the case of very small values of N(Af ̂  12 say), there
is no hope for solving it directly as an integer 0-1 program in view of the
huge number of variables. However, as pointed out in Minoux (1986) even
in the case of very large scale instances it is possible to exploit the special
structure to solve exactly its continuons relaxation which reads:

(SPP)

Minimize— ]T ck,xk

subject to:

A.x =
K

(2)

(3)
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354 M. MINOUX, E. PINSON

Obviously, an optimal solution to (SPP) provides a lower bound to the
optimal integer solution value which, as is well-known, may subsequently be
exploitée (e. g. within branch and bound procedures) to help in the search
for optimal integer solutions.

3. SOLUTION OF THE CONTINUOUS RELAXATION BY GENERALIZED LINEAR
PROGRAMMING

3.1. Basic principle

Generalized linear programming was first discovered by Dantzig and Wolfe
(1961) as a basic ingrédient of the décomposition principle. But it has also
been known for a long time as an efficient gênerai tool for solving large
scale, implicitly defined, linear programming problems with special structure
(see e. g. Dantzig 1963).

We show below how it specializes to (SPP).

Since the number of columns is usually much too large to state them ail
explicitly, one has to consider, at each step, a restricted problem consisting of
only a few columns which are made explicit. At the start, we may consider
for instance, the restricted problem containing the N columns corresponding
to subsets of one element (each containing a single vertex of the graph), the
associated cost coefficients being 0. Or, we may start with a restricted problem
containing p columns associated with the p subsets in a partition forming a
good approximate solution to the (integer) problem.

At any current step of the procedure, a (continuous) optimal solution to
the restricted problem is looked for, by applying e. g. the primai revised
simplex algorithm. As a resuit of this computation, we have optimal simplex
multipliers nl9 n2i . . ., % [associated with constraints (2)] and |i [associated
with constraint (3)].

The next task to carry out is then, based on the above simplex multipliers,
to price-out i. e. to look for the minimum reduced cost column over the whole
set of columns of (SPP). If this best column can be obtained efficiently
enough (i. e. without need for enumerating all the columns) then all the
ingrédients necessary to have the primai simplex algorithm work are at hand:
if the selected column has nonnegative reduced cost, then an optimal solution
(to the whole problem) has been obtained, and the algorithm ends up. If the
selected column has strictly négative reduced cost, then the current restricted
problem is augmented by this new column and reoptimized (the newly
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generated column thus enters the basis at the first pivot step of the simplex
algorithm).

It remains to be shown that the crucial part of the above process — gene-
rating a minimum reduced cost column —can indeed be efficiently carried out
in the case of (SPP).

3.2. The column génération subproblem as a quadratic pseudoboolean
minimization problem (Minoux 1986)

The column génération subproblem to be solved when applying generalized
linear programming to (SPP) can be stated formally as follows:

Given any set of multipliers 7^(1=1, . . ., N) and \i associated with
constraints (2) and (3) of (SPP) respectively, find a column fe0 with

(CG) minimum reduced cost, i. e. satisfying:

N f N 1
0 = - % - Z niaik0-\

i= M i n 1 ~ck~ Z niaik~v f-

To show that, indeed, (CG) can be solved efficiently (in polynomial time),
we first reformulate it as the minimization of a quadratic pseudoboolean
function of a special kind.

Associating with each element i of X a boolean variable yi9 the cost of any
subset S <= X with characteristic vector y = (yf)f e x is given by:

c(S)= X wijytyj
(i, j) e V

(the wtj being the weights attached to the edges of the graph, see § 1-2).

In view of this, the column génération subproblem (CG) can be rewritten
as:

Minimize \ - ^ W y j ^ - £ niyt \ (4)
ye{0, lf I (UJ)eU i=l )

(the constant \i has no influence on the détermination of the optimal subset).
Quadratic 0-1 programming is difficult in gênerai (see § 1-2) but, since we

assumed w l7^0, it can be seen that problem (4) concerns the special case
where all quadratic terms have nonpositive coefficients, thus can be reduced
to a maximum network flow problem (see e. g. Rhys 1970).
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3 .3. Réduction of column génération to a maximum network flow problem

To show exactly how this can be done in the case of the quadratic
problem (4), it is convenient to set up the inverse réduction.

To that aim, we build up a capacitated network F having vertex set
X{J {s}{J {t} where s and t are two additional vertices ("source" and
"sink"). To each edge (i, j) of G we let correspond a (nondirected) link with
capacity htj between vertices i and j in F. We also add N edges of the form
(s, 0 with capacities at and N edges of the form (j, t) with capacities bi (see
Figure 1). The values of hip at and bj will be specified below.

Figure 1. — Construction of the capacitated network F.

Let S a X{J{s} U {t} be any subset of nodes such that seS, t$S. If we
associate, with each node i e l a O - l variable ub with the meaning that ut=l
iff ieS, we see that the capacity of the s-t eut in F defined by S is:

N N

I at(1 - u d +YbiUi+ X htj[ut(1 -uj) + uj(l-ut)l

Thus, the minimum s — t eut problem on F is equivalent to minimizing:

(5)

where, V i, yt dénotes the sum:
jf(i, j) e U
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Now, simple identification between (4) and (5) shows how to assign the
capacities on T in order to get the équivalence:

and, after having computed the yt values:

ai=zJi + ni a n d bt = 0 if Yj + T t ^

at = 0 and &.= —y. —n. if y. + rc.

\ at = 0 and bt = 0 if

In view of this, we conclude that the column génération subproblem (4)
can be solved as a maximum network flow problem on a capacitated network
having N+2 nodes. The computational complexity is thus O (AT3) by using
the algorithms described by Dinic (1970) and Karzanov (1974) or the simpli-
fied version given by Tarjan (1984).

Let us mention here that the polynomial solvability of the column généra-
tion subproblem also implies the polynomial solvability of the (large scale)
linear relaxation (S PP), and that this property holds for a wide class of
combinatorial problems (including the Graph Partitioning Problem) as shown
in Minoux(1986).

4. PRELIMINARY COMPUTATIONAL RESULTS

We present here some preliminary computational expérience obtained with
the column génération procedure when applied to large scale set partitioning
problems arising from a number of example graphs with sizes ranging from
12 nodes and 19 edges, to 40 nodes and 90 edges (note that for the largest
problem treated, the total number of implicit columns in the set partitioning
model already reaches 240, a very large number indeed). In all the examples
treated, the unweighted version was considered (all edge weights equal to
unity).

The tests were carried out with the following implementation of the method:

(1) only one column is generated [by solving the quadratic pseudoboolean
subproblem (4)] each time the column génération procedure is called for, i. e.
each time a maximum network flow computation is performed.

Though multiple pricing (which consists of generating more than one néga-
tive reduced cost column each time the column génération subproblem is
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solved) could easily be implemented in our context, this possibility was not
used at this early stage.

(2) Each time one extra column with strictly négative reduced cost is
generated, a complete reoptimization process (possibly implying several consé-
cutive pivot steps) is applied to the augmented restricted problem bef ore the
next call to the column génération procedure.

(3) The starting restricted problem is formed by N+p columns selected as
follows:

(à) N columns consisting of the N unit vectors corresponding to all the
node subsets with one element, the associated cost coefficients being 0;

(b) p columns corresponding to the particular subsets

S1 = {1,2, . . . , * } ; S2={fc + 1, fc + 2, . . . , 2 / c }

where k = [N/p]. Of course the cost coefficients of the subsets Su . . . , Sp

above are computed according to formula (1) of section 2 (also note that the
p-Ui subset Sp usually contains more than k éléments, except if N is a multiple

Of/7).

For each of the 24 test problems treated, Table I indicates:

— the problem number;
— the size (number of nodes, number of edges) of the corresponding

graph;

— the number p of subsets in the required partition;

— the cost function value z of the best available solution (it is thus an
upper bound to the optimal integer value) ;

— the cost function value z* corresponding to the optimum continuous
solution to the large scale set partitioning problem: this is, of course, a lower
bound to the optimum value of an integer solution;

— a mention about the integrality/nonintegrality of the generalized LP
solution;

— the total number of columns generated in the course of the generalized
linear programming procedure (i. e. the total number of maximum network
flow computations) ;

— the value 8=\(z — z*)/z\9 i.e. the percentage différence between z and
z*, an upper bound to the integrality gap.
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Figures 2 to 5 provide details about the structure of the graphs correspond-
ing to the first four examples in Table I, together with an indication of the
best known solution to each problem.

The results displayed on Table I suggest the following observations.
(1) In spite of the fact that, in our experiments, the starting restricted

problem was derived from a feasible integer solution usually rather far from
the optimum, the total number of generated columns is seen to stay very low
and seems to increase rather slowly with problem size. Even though the use
of multiple pricing (alluded to above) might further reduce the total number

Figure 2. — Example 1 with 12 nodes and 19 edges. A solution for/? = 4 classes has value 14
(5 edges between distinct classes) the associated partition being: {1, 2, 13}, {3, 4, 7, 9}, {5, 8,
12}, {6, 10, 11}.

Figure 3. — Example 2 with 15 nodes and 26 edges. A solution for p = 4 classes has value z — 18
(8 edges between distinct classes) a possible partition being: {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10,
11}, {12, 13, 14, 15}.
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Figure 4. — Example 3 with 15 nodes and 28 edges. A solution for/? = 3 classes has value z — 22
(6 edges between distinct classes) the associated partition being = {1}, {7}, {2, 3, 4, 5, 6, 8, 9,
10, 11, 12, 13, 14, 15}.

Figure 5. — Example 4 with 28 nodes and 58 edges. A solution for/? = 6 classes has value z = 44
(14 edges between distinct classes) the associated partition being: {1}, {5}, {17}, {8}, {28}, {2,
3, 4, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27}.
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of maximum network flow computations, these results already clearly
demonstrate the efficiency of the column génération procedure at obtaining
the relaxed LP lower bound.

(2) A significant proportion of zero 5 values was only observed for very
small sized problems, typically less than 10 nodes. (example 1 with 12 nodes
was the largest one for which this occured in our experiments). For all the
other problems treated, the corresponding optimal generalized LP solutions
were always fractional, the values of S (a measure of the integrality gap)
typically ranging from 5 to 10%.

This tends to suggest that the sharp bounds which are usually necessary
to have Branch and Bound procedures work efficiently cannot be expected
from the generalized linear programming approach to the Graph Partitioning
Problem. This contrasts, for instance, with the results obtained with the
same technique on the optimum weighted edge coloring problem (a matrix
décomposition problem arising in the context of optimal traffic assignment
in Satellite Communications) studied in Minoux (1984): in this case, the lower
bounds were observed to be very sharp, which subsequently made possible
an efficient implementation of a Branch and Bound procedure for getting
exact optimal integer solutions (see Ribeiro, Minoux and Penna 1986).
Though both problems are known to be iVP-hard, the large values of the
integrality gaps obtained for the Graph Partitioning Problem indeed tend to
suggest that this problem is intrinsically much harder than the optimum
weighted edge coloring problem mentioned above.

5. CONCLUSIONS AND DIRECTIONS FOR FUTURE WORK

We have presented a computationally efficient technique based on gene-
ralized linear programming and the solution of maximum network flow
subproblems for deriving lower bounds to the gênerai weighted Graph Parti-
tioning Problem with an arbitrary number p of classes. Clearly, using ideas
similar to those presented in Ribeiro, Minoux and Penna (1986), this lower
bounding scheme could be, at least "formally", combined with Branch and
Bound Techniques to produce an exact solution algorithm. Preliminary com-
putational expérience suggests, however, that such an algorithm is likely to
be more "conceptual" than practical.

In spite of this, the basic ideas suggested here indoubtedly deserve further
investigations, and we think that this generalized linear programming
approach could be a well-suited tooi for dealing with some meaningful
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variants of the pure graph partitioning problem. A typical example of such a
variant is when the partitions which are to be determined are required to be
"balanced" i. e. that all the subsets in a partition all have about the same
cardinality. One practical way of ensuring this is to impose, on each subset
of the partition looked for, a cardinality constraint of the form qmin S cardina-
lity of the subset ^ gmax, where both qmin and qmax are integers close to N/p
(of course, qmin and qm&x must satisfy: p x qmin^N and p x qmax^N).

One of the interesting features of the generalized linear programming
approach is its flexibility with respect to such additional constraints involving
individual subsets in the partition. In the particular case of cardinality
constraints mentioned above, the column génération subproblem now be-
cornes a constrained maximum network flow problem which (though NP-
hard) can be handled through lagrangean relaxation and branch and bound
techniques. ïmplementation of an extension of the generalized linear program-
ming approach to this variant of the Graph Partitioning Problem is currently
being studied.
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