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A CONCISE SURVEY
OF EFFICIENTLY SOLVABLE SPECIAL CASES

OF THE PERMUTATION FLOW-SHOP PROBLEM (*}

by G L. MONMA (*) and A. H. G. RINNOOYKÀN (2)

Abstract. — One ofthe earliest results in scheduling theory is an algorithm by S, M. Johnson for
scheduling jobs in a two-machine flow-shop to minimize the time at which all jobs are completed.
Subsequently, many researchers have efflciently solved special cases of this problem for more than
two machines. A concise survey ofsuch resuks ispresented with simple proofs based on the ideas of
critical paths, nonbottleneck machines, and machine dominance. This covers most previously known
special cases and leads to a few new ones as weü

Keywords: Fiow-shop.

Résumé. — Bien que la minimisation de la durée totale d^un problème « flow-shop »àm machines
pose en général de nombreuses difficultés, un certain nombre de cas particuliers qui ont pu être
résolus de manière efficace ont été étudiés dans la littérature. Nous en faisons ici la synthèse pour
montrer comment la plupart d'entre eux peuvent être obtenus par application systématique d'un petit
nombre de principes simples,

Mot clé : ordonnancement.

1. INTRODUCTION

The permutation flow-shop problem can be fonnulated as follows. Each of
n jobs Ju . . . , Jn has to be processed on m machines Mu . . . , Mm in that
order. The processing of job J* on machine Mj requires an uninterrupted
period of processing time pij. Each machine can process at most one job at a
time. The objective is to find & permutation schedule (i. e., a single ordering in
which to process the jobs on all of the machines) such that the time required
to complete all jobs is minimized* A permutation schedule will be represented
by a permutation 7c=(it(l), . . . , n(n)), where n(ï) is the index of the i-th job
in the processing order.

For m = 2, an optimal scheduîe can be found in ö(nlogn) time by an
algorithm due to S, M, Johnson [12]. However, for m^3 it is unlikely that an
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106 G L. MONMÀ, A. H. G. RINNCX)Y KAN

efficient (i. e.5 polynomial-time) algorithm exists, since this problem is known
to be iVP-complete f 10, 18]. Because of this, mucfa research has been done to
fiad efficiently solvable special cases of the permutation flow-shop problem.
In this paper we provide a concise and self-contained survey of these results
including proofs of correctness. In Section 2, we review the connection between
the length of a permutation schedule and the weight of a critical path in an
associated directed graph. Subsequently, in Sections 3 and 4, we show how
this notion can be combined with the concept of machine dominance to lead
to very simple proofs for nearly all special cases which have been derived so
f ar. Although similar attempts have been made bef ore [3, 41, 42], we have
made a special effort to demonstrate that the vast majority of the results in the
extensive literature on this subject can be generated by systematic application
of a few very simple ideas.

Z CRITICAL FATHS AND THE TW0-MACHINE PROBLEM

It is convenient to represent a permutation schedule ^-(^(1), . . . ? n(n)) by
a directed graphs as follows. We define a vertex (n(i),j) with an associated
weight Pnioj for each element n(i) of the permutation and each machine Mj.
Also, we define arcs directed from each vertex (n(i\ j) towards (n(i + l\ j)
and towards (n(i\ j +1). This graphs is depicted in figure 1 for the case where
m=4 and n=5.

(7TH>, 4) »(7T(2i,4) *-{7T(3>,4) •'{TT (4), 4 ï

Figure 1. - Graph for a Permutation Scbedule n,

Given this graph3 the completion time Cn#)j of job Jnii) on machine Mj in
the permutation schedule % is equal to the maximum-weight directed path
from (?t(l), 1) to (n(i)> j) in the graph. Cna)j is defined recursively by:

where CK«»J ^nd CKC£),O are taken to be zero.
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PERMUTATION FLOW-SHOP PROBLEM 1Q7

Therefore, the time at which all jobs in n are completed is given by
CmwOO —CMB),m. Any path from (n(l)> 1) to (n{ri), m) which attains this
maximum weight is called a critical path and contains m -f n — 1 vertices.

The notion of critical paths was introduced by Johnson [12] and was used
extensively by Szwarc [41, 42] to obtain results for certain special cases of the
permutation flow-shop problem. In particular, it can be used to find an
efficient solution method for the case where m — 2,

The efficient solution of the two-machine flow-shop problem is one of the
oldest results in machine scheduling theory. An optimal permutation can be
found in O (n log n) time by applying Johnson's Rule [12]: a permutation is
optimal if job J* précèdes Ji whenever Johnsorfs Condition:

min { p M ) pia } <min {pha, Pui},

is satisfied. A simple proof is provided below. An optimal permutation always
exists since Johnson*s Condition can be seen to be transitive. We note that an
optimal permutation ordered by Johnson's Rule has the property that an
optimal permutation for any subset of the jobs is given by the order of these
jobs in the original permutation, Also, the worst possible permutation is
obtained by reversing the order obtained by Johnson's Rule.

The critical-path approach leads to a simple proof of Johnson's result [19].
Consider the graph representing a permutation with job Ji immediately
preceding job Jh as shown in figure 2 (a). Interchanging these jobs, as shown
in figure 2(b% does not increase the completion time of the schedule if the
weight of no critical path is increased, i. e., if:

max { phti +pUi +pït29 phyX + / }

This is easüy seen to imply Johnson's Condition.

i f i> • (h,^) —

i i(o)

> ( i , 2 ) * (h,2)

(h,D • (1,1)

i I
•-— » (h,2) • ( i , 2 ) •

Figure 2. - Critical Paths for Two Machines.
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108 c - L- MONMA, A. H. G. RINNOOY KAN

3. EXTENSION OF JOHNSON'S RULE

Johnson's Rule can be extended to obtain an optimal permutation for more
than two machines in a straightforward way under rather restrictive conditions.
Specifically, we shall prove below that if a permutation exists such that job Jh

précèdes J( whenever min { phj, piik } <min {phtk, Pu } for some j ,
k (1 ̂ j-^k^m), this permutation must be optimal. Such a permutation clearly
will exist if and only if for every pair of jobs Jh and J,- either
min { phj9 piik } 5̂ min { phtky pitj} for l^j<k^m or the reverse inequality
always holds. This case has been studied by several authors [2, 6, 20, 31].

To prove the above mentioned resuit it suffices to show that in any
permutation n, with job Jt immediately preceding job Jh and

min { phth pitk } <min { phtk, pu } for l^j<k^m, (1)

the interchange of these jobs does not increase the length of any critical path.
To see why this is true, compare the subgraphs G (h, i) and G (î, h) in figure 3.
ït suffices to show [19] that a critical path from (h, j) to (i, k) in G (h, i) is of
no greater weight than a critical path from (i, j) to (h, k) in G (i, h) for ail

G(h,

(h 1)

i
(h,21 —

i
•
i(h.m-1) —

,«)

- ti 1)

i
i

i
-&•{'!,m-1)

6 ( i , h )

i
( i , 2 ) •

ï
i

( i . m - ' l ) •

I
(h,2)

I
i

' t h , m - 1 )

II 11
î h . m l • ( i , m ) ( i , m ) • ( h , m )

Figure 3. - Critical Paths for Extended Johnson*s Rulè.

l g j ^ m . Reversing the arrows in G(i, h) to yield the graph G'(i, h) does
not change the weight of critical paths and yields the représentations G (h, i)
and G' (i, h) shown in figure 4. This représentation corresponds to a
permutation flow-shop problem with two machines and m jobs. By Johnson's
Rule and the inequalities in (1), the permutation (1, 2, . . . , m) of these jobs
in G (h, i) yields the shortest critical paths between ail pairs (h, j) and (i, Je),
while the permutation (m, m-\y . . . , 1) in G' (i, h) yields the longest.

R.A.Ï.R.O. Recherche opérationnelle/Opérations Research



PERMUTATION FLOW-SHOP PROBLEM 109

, , , ,

l l I l

G ( h , i l

( h , m ) — • ( h , m - 1 ï — • • • • — * t h , 2 ) • ( h t 1 î

I I II

G ( i , h )

Figure 4. - Revised Critical Paths
for Extended Johnson's Raie.

It is often easy to verify that the approach described above applies in a
particular case. For example, the case studied by Chin and Tsai [8] requires
that for some k with l ^ f c g m - 1 , Phj=Phj+i for l^jék-l and
k + l^j^m — 1. This problem satisfies the above condition, and an optimal
schedule is easily obtained by applying Johnson's Rule to the processing times
on Mk and Mk+1.

A second example is a three-machine problem studied by Szwarc [38]. Hère
a permutation n is assumed to exist satisfying:

Pn{l)tl=Pn(2hi= • • • =Pn(n),U

and

The permutation n is again optimal by virtue of our previous argument.
We note that (1) requires a condition on ail pairs of machines. One may

attempt to reduce this condition to only consécutive pairs of machines by
supposing that for every pair of jobs Jh and Jt either

min {phj,Pu+i } ̂ min {phj+uPu} for l<Lj£m-l

or that the reverse inequality always holds. This case was studied f or m = 3 by
Burns and Rooker [5] and Szwarc [39] ; see [3] for the pitfalls surrounding
such a simplification.

vol. 17, n° 2, mai 1983
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4. NONBOTTLENECK MACHINES AND MACHINE DOMINANCE

We shall now show how further extensions of Johnson's resuit have been
obtained by relaxing the requirement that at most one job at a time can be
processed on each machine. For example, machine Mj may be capable of
processing any number of jobs simultaneously ; such a machine is called a
nonbottleneck machine. Three important properties of nonbottleneck machines
are collected in the following lemma. Their proof is straightforward.

LEMMA 1: (i) If Mj and Mj+i are nonbottleneck machines, they can be
replacée by a single nonbottleneck machine with processing time for each job J{

equaltopij+PiJ+1.

(ii) If Mi is a nonbottleneck machine, it can be replaced by the constraint that
each job Jt does not start processing on M2 bef or e its release date ri=piy i.

(iii) If Mm is a nonbottleneck machine, it can be replaced by defïning a tail
<li =Pi,m for each job Jt and taking Cn (OJW = Cn iihm_ i + qn (i).

Lemma 1 provides a mean of removing certain nonbottleneck machines
from the problem. This transformation may simplify matters considerably as
demonstrated by Theorem 2.

THEOREM 2 [13, 22]: An optimal permutation for the three-machine problem
where M2 is a nonbottleneck machine can be obtained by applying Johnson's
Rule to the two-machine problem with processing times p'ui=Pi,i+Pia <md
Pui—Pui+Pi^*

Proof: For any permutation n for the three-machine problem,

\ Yt Pn (0. 1 + A (A), 2 + S A (O. 3 >
l ^ i lmk J

r k n } "

- max 1 X Pi (o, I + Z P J (i ), 2 > - Z P* (0. 2*
i^„(.=1 i=h ) i=1

Since the last term is séquence independent, this complètes the proof. •
The proof of Theorem 2 indicates that the crucial property of a

nonbottleneck machine Mj is that for every permutation n at least one critical
path contains exactly one vertex of type (n (i), j). If we can establish conditions
under which this property holds, then machine Mj can be treated as though
it were a nonbottleneck machine and the resulting problem may be efficiently
solvable.

R.A.I.R.O. Recherche opérationnelle/Opérations Research



PERMUTATION FLOW-SHOP PROBLEM 111

We are now in a position to introducé the concept of machine dominance
which will be used to identify machines that can be treated as nonbottleneck
machines. The first type of dominance arises when all the processing times on
one machine are at least as large as all the processing times on another
machine. We say that a machine Mj dominâtes Mk, denoted by Mj>Mk,
whenever:

min {pij} ^ max {pitk}. (2)

THEOREM 3: If Mj + 1>Mj or Mj~x>Mj then M} can be treated as a
nonbottleneck machine.

Proof: We shall prove the theorem for the case Mj+1>Mj by showing that
for any permutation n, some critical path contains only one vertex of the form
(71 (z),7) for l ^ i ^ n . The proof is similar for MJ-^MJ. Consider a critical
path containing the subpath CPj shown in figure 5 (à), i. e., more than one
vertex associated with Mj is on the critical path. Consider replacing the
subpath CPj by the subpath CPj+l shown in figure 5(b). The net change in
the weight of the original critical path,

Î 2 - 1 l 2

is nonnegative since Mj+1>Mj. Therefore, this yields a new critical path of
the desired form. •

We note that the dominance condition (2) can be generalized to cover the
case where there exists an integer q such that the sum of every q processing
times on Mj is at least as great as the sum of every q processing times on Mk.
For fixed q and m = 3, algorithms have been obtained [3] whose running times
are O (nq).

The type of dominance defined by (2) requires that all job processing times
on one machine dominate all job processing times on another machine. A
second type of dominance can be defined using only information about
individual jobs. We say that machines Mj-x and Mj+1jointly dominate M} if:

for 1 ^ ï ^ n . (3)

THEOREM 4: lfMs-x and Mj+ljointly dominate Mh then Mj can be treated
as a nonbottleneck machine.

Proof: We shall prove the theorem, as before, by showing that for any
permutation n, some critical path contains only one vertex of the form (n (î), j)

vol. 17, n° 2, mai 1983
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for i^i^n. Consider a critical path containing the subpath CPj shown in
figure 5 (a). We claim that replacing CPj by the longer of the subpaths CPj+1

and CPj-! shown in figure 5 yields a new critical path of the desired f orm. To
see this define w (CP) to be the weight of the vertices on the subpath CP and
note that:

E P*V),j+l— E P'(i),j

where the iast inequaiity follows from (3). Hence,

W(CPJ+1), W{CPj-t) }. D

A final type of dominance generalizes (2). We say that Mj~x and MJ + 1

convexly dominate Mj if there is a A-, O^A,^ 1, such that:

Pgj S hPhj-1 + (1 - X)Pij+u (4)

for all jobs g, /i and i.

THEOREM 5: IfMj- x and Mj+ x convexly dominate Mjy then Mj can be treated
as a nonbottleneck machine.

Proof: It follows from convex dominance that:

so that

X(phJ-x-phJ) + (1-X) (pu+1 -pij)è0,

for all jobs h and i. By again referring to figure 5 we can show that

yielding the desired result. •

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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" * • ( 7 T ( i 2 ) , j )

l

j + 1
I

(a) CP'j

M j ^ (73

Mj {7T{\A)t j )

\

( b ) c p j + 1

M i .j - 1

M J + 1 ( 7T ( i 2 ) t j )

(c) CPj-i

Figure 5. - Critica! Paths for Theorem 5.

Lemma 1 can be combined with Theorems 2-5 in many ways to obtain
efficient algorithms for a host of polynomially solvable special cases of the
permutation flow-shop problem. In this connection the following observations
are useful.

(i) By Lemma 1 and Theorem 3, if Mt<M2< . . . <Mkthen Mu . . . ,M k - i
can be replaced by a release date rt for each job Jt on Mk as in Lemma 1.
Furthermore, since these release dates satisfy the inequality ri^rh+phyk for all
jobs Ji and J*, it follows that whenever a job has been scheduled first, all other
jobs are available to be processed as soon as the chosen job complètes
processing. Thus, the release dates can be eliminated by considering n problems
each with (n—l) jobs and (m — fe-f 1) machines, corresponding to all possible
choices of jobs to be scheduled first.

vol. 17, n° 2, mai 1983
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(ii) Similarly, if Mk>Mk+l> . . . >Mm , then Mk+l9 . . -, Mm can be
replaced by a tail qi for each job Jt on Mk as indicated in Lemma 1. Since these
tails satisfy the inequality qi^qh+Ph* for all jobs Jt and Jh, they can be
removed from the problem by considering all possible choices of jobs to be
scheduled last.

These simple observations account for many special cases of the permutation
flow-shop problem that have appeared in the literature. A summary appears
in Table 1.

TABLE

Summary of Special Cases Based on Machine Dominance

Référence

C37] m =

m =

m *

m =

M j

MJ

3

3

3

3

•>

S p e c i a l

. Mx <- I

, M^ <• î

, M^ •> P

, M-. and

Vi x

Mj+1 2

Cases

42 •> M3

4p or NL <• M̂

42 or NL •> M2

M̂  J o i n t l y domi

< j < m - 2 , o r

<_ j £ m - 1

Mj •> M J + 1 2 < j < m - 1 , o r

M j ° M j + 1 X - j I m " 2

Mj •> M J + 1 1 < j < k - 1 , . a n d

Mj <* M^+ 1 1 < j <_ k - 1 , a n d

M j #> M j + 1 k + X - J - m " X

We note that start lags and sto/? /ags between machines Mj and M^+i can
be viewed as arising out of processing that has to be done on an intermediate
nonbottleneck machine [33]. Thus, the efficiently solvable cases that arise in
this context may be viewed as further examples of the above
approach [13, 21, 22, 29].

We conclude our survey by showing how the ideas presented thus far apply
to so-called ordered flow-shop problems [35, 36]. The jobs of a flow-shop are
said to be ordered if there exists a permutation n of the jobs such

R.A.I.R.O. Recherche opérationnelle/Opérations Research



PERMUTATION FLOW-SHOP PROBLEM 115

that Pn(i)j^Pn(2)j^ ••• ^Pn(n)j for l^j^m. Similarly, the machines of a
flow-shop are said to be ordered if there exists a permutation a of the
machines such that:

for g g
A job Jh is said to be larger than a job J, when phJ-^Pu for 1 gjf rg m. Similarly,
a machine Mj is said to be larger than a machine Mk when
Pij^pitk for l ^ i g n .

First consider a flow-shop where the jobs are ordered and, in addition, each
job requires the most processing on machines Mx and Mm (i. e,,
min {pitu Pum } ^max { pitj : 2^j^m — 1 } for l^ i^n) . Using the techni-
ques of this section it is then easy to show that machines M2, . . . , Mm_i can
be treated as nonbottleneck machines [40]. Hence, the problem is solved by
applying Lemma 1 and Theorem 2.

A more complicated example arises when the jobs and machines are
ordered, and each job requires the most processing on Mi. We shall prove that
a permutation n is optimal whenever the jobs are ordered from the largest to
the smallest [35].

Let us say that a critical path CP for a permutation n turns down at job Jn (l)

if it contains the vertices (n(i— 1), j \ (n(i),j) and (rc(i), j + 1) for some j ,
l è / ^ w —1> and that it turns right at machine M7 if it contains the vertices
(TI(i), ; - 1 ) , (n(i), j) and (n(i+1), j) for some i, 1 ̂ i ^ n - 1 .

We claim that for any permutation n there is a critical path CP which turns
down at job Jnii} only if Jn(I) is larger than any job following it, and which
turns right at machine Mj only if Mj is larger than any machine following it.
To see this, consider a critical path CP for n which turns down for the first
time at job J„ ih) and turns to the right for the first time at machine Mj as
shown in figure 6. Let job /„(,-) be the largest job among Jnihh . . . , Jn{n) and
let machine Mk be the largest machine among Mjy . . . , Mm. Then CP\ shown
in figure 6, is easily seen to be a critical path as well and, moreover, it is of
the proper form with respect to the first turn down and the first turn right.
Repeating this process complètes the proof of the claim.

We now use the claim to prove that ordering the jobs from largest to
smallest is optimal. It suffices to show that any permutation n, if Jn(i+i) is
larger than Jn ̂  then interchanging these adjacent jobs to obtain n' does not
increase the overall completion time.

Consider an arbitrary critical path CP' for rc' satisfying the above claim.
CP' must be of the form shown in figure 7 (a). The corresponding critical path

vol. 17, n° 2, mai 1983
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7T(h) w{\) vin)

M,
CP CP'

Figure 6. - Critica] Path for an Ordered Flow Shop.

CP for n shown in figure 7(b) is at least as long. Therefore, interchanging n(i)
and 7i (i +1) does not increase the overall completion time. This complètes the
proof.

5. CONCLUDEVG REMARKS

We have demonstrated that many efficiently solvable special cases of the
permutation flow-shop problem can indeed be obtained by systematic
application of a few simple ideas.

The two machine flow-shop problem has also been solved efficiently subject
to precedence constraints on the jobs of a certain type [14, 15, 24, 25, 26, 34].
This approach capitalizes on the f act that Johnson's Rule can be viewed as the
outcome of a simple interchange argument that can be adapted to account for
these precedence constraints. Hence, these precedence constraints can be
included whenever some form of Johnson5 s Rule can be shown to yield the
optimal schedule, so that various extensions to m-machine problems are
possible [16, 23, 30].

In conclusion, we note that the above ideas can also be used to generate
approximation algorithms [9], e. g. by treating a machine as though it were a
nonbottleneck one, even if this is not strictly justified. In the context of

R.A.I.R.O. Recherche opérationnelle/Opérations Research
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ta) Tr(i-M) 7r(i)

CP'
M, •(TT(i+1),j)

7T(i)

Figure 7. - Adjacent Interchange
for an Ordered FIow Shop.

branch-and-bound procedures [17], such an approach yields powerful lower
bounds ; in addition, as the set of unscheduled jobs is shrinking, it becomes
increasingly likely that one of the dominance conditions can be applied to
reduce the size of the problem.
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