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WATER QUALITY CONTROL :
NONLINEAR PROGRAMMING ALGORITHM

by G. GRAVES ( !), D. PINGRY (2), A. WHINSTON (3)

Résumé. — This paper présents some ofthe more practical aspects of nonlinear program-
ming along with an application ofthis technique to a river basin water quality controtproblem*

Section II constructs a nonlinear river basin model which is of the form :
Minimize : Total cost of abatement structures
Subject to : Water quality goals satisfied.
The water quality measure used is dissolved oxygen. The treatment alternatives allowed

are régional and on-site treatment plants, by pass piping and flow augmentation. Results of
an application of this model to the West Fork White River in Indiana are presented.

Section III is a discussion of the nonlinear algorithm which is used to solve the nonlinear
problem formulated in Section IL The algorithm described is stepwise in nature. Starting
with some point y* in the domain of the function a direction Ay* is determined by solving a
parametric linear programming problem* A scalar k is then calculated to obtain a new
point yi+l, = y * + k&yK Discussion is focused on the détermination of k and of k, the
parameter of the linear programming problem. The problems of storage space, variable
priority classes and calculation of partial derivitives are also considered.

L INTRODUCTION

The purpose of this paper is to present some of the more practical aspects
of nonlinear programming in connection with an application ofthis technique
to water pollution control.

N. B. — The development of the river simulation model in this paper owes much
to the pOCAL computer program ofthe Environmental Protection Agency. This program
was originally developed by J. L. Worley of E. P. A. and was applied on the West Fork
White River by the Evansville Office of E. P. A. We are especially grateful to Max Noecker
and Stanley Smith of the Evansville office who kindly made their data and expérience
available for our use. Discussions with out colleague J. Hamelink of the Forestry départ -
ment were helpful. The authors are responsible for all possible errors. The research has
been sponsored by the Office of Water Resources Research under contract 14-31-0001-3080.
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(2) Department of Economies Virginia Polytechnic Institute and State University

Blacksburg, Virginia.
(3) Krannert Graduate School of Industrial Administration Purdue University
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50 G. GRAVES ET AL.

In Section II a description of the pollution problem is given and a formu-
lation as a nonlinear programming problem is presented. Section III présents
the theory of the nonlinear programming algorithm with details on its computer
implementation.

EL WATER QUALÏTY BASIN MODEL

This section présents a short discussion of water quality relationships
followed by the formulation of a river basin quality model. This model is
then solved using the algorithm described in Section III. Problems encountered
in this application are examined.

The most prevalent measure of water quality in the literature of water
pollution control, is the level of dissolved oxygen concentration. We note that
the dissolved oxygen level is often described relative to saturation level of
oxygen in a river and is called the dissolved oxygen deficit or DOD. The level
of dissolved oxygen concentration, or DO, is dependent on all the sources and
sinks of oxygen in the river basin. Typical oxygen sources, as listed in
O'Connor [14], are atmospheric reaeration and photosynthetic production.
The typical sinks are respiration of bacteria and algae, benthal deposits, and
chemical oxidation. When effluent, such as common sewage, is dumped into
a river it is decomposed by bacteria. These bacteria require oxygen. The total
oxygen required to reduce the organic material of the effluent to stable com-
pounds is called ultimate biochemical oxygen demand or BOD. A model used to
describe the relationship between DOD, atmospheric reaeration and bacterial
respiration was formulated by Streeter-Phelps in 1925, [16]. Assume

and

(2) ^Kxb-K2d

where,

b = biochemical oxygen demand (mg/1)
d = dissolved oxygen deficit (mg/l)
t = time (days)
Kx = deoxygenation rate (days"1)
K2 = reaeration rate (days"1).
Equations (1) and (2) integrate to yield

(3) b == tfiCx

and
(4) rf=A6°[C1 —C2] + d°C2
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WATER QUALITY CONTROL 51

where,

b° == biochemical oxygen demand when t = 0
rfo = dissolved oxygen deficit when / — 0

and

Cx = exp (—^iO
C 2 - e x p ( — K2t)
K ^

In the context of a river basin, if the velocity of river flow is assumed to
be constant over a range, then time can be interpreted as

>

where, v is the velocity of flow and a is the distance from the initial point of
concern.

For the purpose of this paper is has also been assumed that the reaeration
rate and velocity of flow rate are functions of the volumetric flow. It is also
assumed that the reaeration and deoxygenation rates are a function of the
température. The following équations were used :

(6) KX=(KÏW20

(7) K2 = a F p 0 / - 2 0

(8) v - YF°

These équations are consistant with the approach of others in this area.
(See [12] and [18].)

Using the water quality relationships briefly described above, a programming
model of the following form can be constructed :

Minimize : Total cost of abatement structures.

Subject to : Water quality goals satisfied.

The constraints of this model are constructed by dividing the river into
sections and constraining the water quality, interpreted as the dissolved oxygen
deficit level, to be met at the end of each section. A new section begins where
one of the following occurs :

1. Effluent flow enters the river.

2. Incrémental flow enters the river. (Ground water, tributary flow, etc.)

3. The flow in the main channel is augmented or diverted.

n° octobre 1972, V-2.



52 ; GRAVES ET AL.

4. The parameters describing the particular river change.
The river sections are numbered sequentially starting
with the headwaters section ànd including possible tri-
butaries of a maximum length of one section. See Figure 1.

Explicitly the model is as follows (*) :

g-3

g-2

g \

g + 1

g-1

Minimize :

(9) TC=CL+CR+ C*

Figure 1
Typical River

Sections

ai)
(12)

(13)

and

(14)

(15) (2)

Subject to :

(16) dg -

where,

(17)

(18)

(19)

and
If section g is

(20)

(21)

(22)

W11C1C,

g i l mi

C^ = l.S65agi(fgt)
598

eh = 1.865 ami<j>miy
59*

C £ , = 1.865 agm(tgmy59*

C = £ 49.22 £>mi)
3/4[8.0(rra - . 5)3 + 1]

m i

g

- ^AtClff ~~ C2g]+ dgClg < dg g = ^

lfl ~^ Jr\ ltf 0/ Ifl"̂  fl /

C29 = exp(— agF^-°gag/yg)

the headwaters section or a tributary

F-±F.
* 9 Lu ± 9J

%= %W.ilF.

3

d° = V j - F ./F"âf Z J ugjrgjfrg

g m

[1) See Appendix A for définitions of notations.
2) The cost functions were obtained from [4] and [12],
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WATER QUALITY CONTROL 5 3

if section g is neither a tributary nor directly preceded by a tributary

(23) Fg=

(24)

(25) d? = [ £ dgJFgJ + d^

if section g is directly preceded by a tributary

(26) Fg

(27)

(28)

Furthermore,

(29)

(30)

»

à

:-fi

i

b9JF9J

*gJFg.

m

hfi-

(31) ^ 2 ^ 2 = Ç^ml/Ç^mi

We note that these quality constraints are sequentially dependent, the
quality in each section being a function of the quality in the last section.
However, the possibility of tributary, augmentation, incrémental and effluent
flows entering at downstream points complicates the relationship between the
constraints.

The variables of the programming model above are :
fgi Flow from polluter / to section g.
pmi Flow from polluter i to treatment plant m.
tgm Flow from treatment plant into section g.
rm Percent removal of BOD at treatment plant m.
Fff3 Flow augmentation flow in section g,

n« octobre 1972, V-2.



54 G. GRAVES ET AL.

These variables allow for the possibility of three possible treatment tech-
niques :

1. By-pass piping.
2. Régional and on-site treatment plants.
3. Flow augmentation.

The particular pattern of piping flows détermines the régional and on-site
plants operating. In addition to the quality constraints given above, flow
conservation constraints are needed around the polluters and treatment plants.
These constraints are as follows :

(32)

(33)

i—fi = 0

The major problem of adapting this model for solution by the nonlinear
algorithm presented in Section III is the calculation of the partial derivative
of the constraints and objective function. These calculations are necessary
to set up a local L. P. problem to détermine a direction of search. If all the
constraints were of a different functional form the computer coding necessary
for partial derivative évaluation would be imense for any large-scale problem.
However, as in most large-scale problems, the constraints of the water-quality
model can be classified into a relatively few functionally homogeneous grou-
pings.

The function grouping for the water-quality model are represented in the
tableau below.

Quality Constraints

Flow Conservation (polluter)

Flow Conservation
(treatment plants)

Objective Function

f*

A u

A 2 i

A31

A41

Pmi

A 1 2

A22

A32

A 4 2

' . »

A 1 3

A 2 3

A33

A43

A 1 4

A 2 4

A 3 4

A44

^ 3

A15

A 2 5

A35

A45
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WATER QUALITY CONTROL 55

Each Ay represents a matrix of partial derivatives between the constraints
and the appropriate variables. For example, if the quality constraints were
labeled Ql9....9QN ̂ e n ^ e sub-matrix AX1 would be

Au -

ni

ÔQN

Note that the Tableau A where
A„ . . . . A

15

A4 • • A 4 5 j

is comparable to Tableau (1) in Section III. Each block in A can be treated
as a unit for the computer coding of the problem. Some of the blocks require
little calculation. For example, the blocks such as A2i, A22?

 etc. are simply
linear functions with coeficients of 1 requiring only that a 1 be placed in the
appropriate place. On the other hand other blocks such as A14 and A15

require considérable sorting and calculation. As an example of the complexity
of these calculations, Appendix B gives the necessary équations for the calcula-
tion of A14 and A15. The éléments of A are generated a column at a time
and only the collumns associated with the basis variables of the L. P. problem
are stored. The other columns are generated and updated as needed as explained
in Section III.

We notice that even with the simplification of the problem from the treat-
ment of the homogenous function blocks, that there are still 20 different
blocks to deal with. This means 20 different partial derivative forms must be
pre-calculated and programmed. In the water-quality case the « not quite
sequential nature » of the constraints further complicates the problem.

Because of the vast number of variables in the water quality problem the
following solution technique was adopted to search the feasible set. A number
of piping patterns which seemed reasonable from our knowledge of the problem
were read in as the initial solution and the percent removal variables of the
appropriate treatment plants and fiow augmentation were given a high priority
level. This technique saved considérable computer time and still allowed the
feasible set to be adequately searched.

The programming model as proposed has been applied to the West Fork
White River in Indiana. The West Fork White River has its source near the

n° octobre 1972, V-2.



56 G. GRAVES ET AL.

Indiana-Ohio border and flows southwesterly for 371 miles through the state
of Indiana. At this point it joins the East Fork White River and flows to the
Ohio.

Map I

West Fork White River , Location of Polluters

Mortinsville

The major city on the West Fork is Indianapolis, a city of over 600,00U
which is 234 miles from the mouth. Two other cities, Anderson and Muncie,
are upstream from Indianapolis. The concentration of population and industry
around these three cities cause the major portion of the pollution problem
in the West Fork White.

For the purpose of this paper we have chosen a length of the West Fork
White which runs from the headwaters above Muncie to Spencer below

Revue Française d''Automatique, Informatique et Recherche Opérationnelle
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WATER QUALITY CONTROL 59

Indianapolis. The section described is 172.8 miles long and is divided into 62
sections based on information about polluters, incrémental flow, and river
parameters. The sections range in length from .1 miles to 6.2 miles. The section
parameters necessary for the implementation of the model are given in Table 1.
The incrémental flows, both in and out are given in Table 2. There are thirteen
major polluters considered on the main stream. These are listed in Table 3.

For the purpose of this application we assume that all polluters are already
treating on site at a level of 80 percent removal (secondary treatment). The
basin solution in this case will contain only advanced (tertiary) waste treatment
necessary to achieve required standards. The quality standards assumed will
be 5 mg/l for every section.

The îeast-cost solution for teritary treatment for the West Fork White
River is to build a régional plant for pollutes 40 and 46 at section 46 treating
at the .95 level. The rest of the polluters, except for 6 and 16, remain treating
on site at 80 percent removal. The polluters 6 and 16 must treat on site at levels

k

1
2
4
5
7
9
10
14
15
19
20
22
27
28
30
32
33
34
35
39
42
44
46
48
50
52
53
55
57
58
59
61
62

Flow (cfs)

52.000000
6.100000

-21.200000
1.000000
30.300000
4.000000
6.400000
3.000000
72.000000
44.000000
-35.000000
23.000000
16.100000
13.000000
14.000000

-214.000000
28.000000
21.000000
5.800000
5.000000
1.000000
8.000000
8.000000
9.000000
10.000000
21.000000
33.700000
6.000000
14.000000
35.000000
38.000000
71.000000
25.000000

B.O.D. (mgA)

2.920000
2.630000
-0.000000
214.000000
9.800000
23.200000
13.200000
5.500000
7.700000
7.180000
-0.000000
12.100000
6.900000
5.000000
5.000000
-0.000000
5.000000
10.620000
12.400000
9.300000
1.000000
13.900000
5.000000
5.000000
23.200000
16.700000
8.000000
13.700000
5.000000
5.000000
5.000000
5.000000
5.000000

D.O. (mg/l)

2.3000CO
6.700000
-0.000000
1.000000
3.700000
5.600000
2.400000
5.200000
5.400000
5.800000
-0.000000
5.600000
6.400000
6.500000
5.900000
-0.000000
7.900000
6.200000
6.600000
7.500000
6.000000
6.000000
3.900000
6.000000
1.000000
1.600000
8.300000
2.100000
6.000000
8.000000
6.000000
7.000000
7.000000

TABLE 2. — INCRÉMENTAL FLOW DATA

n° octobre 1972, V-2.



6 0 G. GRAVES ET AL.

of respectively 93 and 86. They are not close enough together to use a régional
plant since the piping costs would exceed any gains from économies of scale.
The cost of the basin solution is $ 2,013,296. Of this amount, $ 1,587,054 is
for the régional plant at 46, $ 208,577 is for the pipeline from polluter 40 to
the régional plant and the rest is divided between polluters 6 and 16 in amounts
of $ 158,068 and $ 59,597 respectively.

k

4

6

11

16

26

35

36

37

40

41

42

46

56

Flow (cfs)

.27

20.83

.30

24.40

.78

13.20

.93

13.00

195.00

10.00

61.0

185.00

.93

B.O.D. (mg/fc)

40.000000

322.000000

298.000000

200.000000

270.000000

20.500000

10.000000

20.000000

450.000000

20.000000

30.440000

450.000000

300.000000

D.O. (mg/fc)

4.000000

3.000000

0.000000

2.000000

2.000000

6.500000

8.300000

2.300000

2.600000

2.000000

4.000000

3.900000

0.000000

TABLE 3. — POLLUTER DATA

m . NONLINEAR ALGORTTHM

The algorithm employed for solving the nonlinear programming problem
of this paper is a gênerai purpose algorithm which solves problems of the
form :
( 3 4 ) Subject to gl(y) < 0 i = 1, m — 1

Minimize gm(y)

where y is a vector in 2jnand gl(y), i — 1, m, are continuous functions with
continuous partial derivatives defined on some open set. The vector y is assumed
to be bounded from above and below.

(35) BL ^ y < UB,

The vectors BL and UB are also members of En.

Revue Française d* Automatique, Informatique et Recherche Opérationnelle



WATER QUALITY CONTROL 61

The method to be discussed here was originally described by Graves in [7].
The method can also be used as a second order procedure as presented in [6].
This paper will be limited to the discussion of the algorithm as it was used to
solve the large scale water pollution problem described in Section II.

The algorithm to be described is stepwise in nature. Starting with some
point y in the domain of the function, a direction Ay and a scalar k are deter-
mined. A new point y + 1 is calculated.

(36) /+ 1=y +
The vector Ayj is also a vector in En.

The object of making the step to yj+1 is to either reduce the value of the
objective function, if y is a feasible solution to the nonlinear programming
problem, or obtain a « more feasible » solution to the nonlinear problem,
if y is an infeasible solution. The phrase « more feasible » is interpreted in
terms of the algorithm to mean « reduce the value of SUPG », where SUPG
is defined to be :

SUPG = g V )

where w is the index of the most infeasible constraint. If y is a feasible solution
to (34) then SUPG = 0.

The completion of the détermination of Ay and &, and the calculation of
y + 1 will complete what will be known in the paper as the y + lth nonlinear
itération. Each nonlinear itération will consist of several local linear program-
ming problems to détermine Ay. The solution of each one of these linear
programming problems will complete what will be known as a linear itération.

For the purpose of our exposition the nonlinear itération will be divided
into two major parts. The first is the détermination of Ay as a solution to a
parametric linear programming problem. The second is the détermination of k.

Since we have assumed that the fonctions g\yj), i — 1, ws are continuous,
and have continuous partial derivatives on some open set D, the following
approximation theorem can be used :

be the gradient of #£(y) at the point y , where y is a member of a closed bounded
sübset E of the open set D.

Then,

*V + Ay) =
n° octobre 1972, V-2.



62 G. GRAVES ET AL.

where

é = 0
uniformly for yj e E.

The direction of improvement for nonlinear itération j + 1 is obtained
from the function above by estimating the term i^(Ay), and solving the asso-
ciated local linear programming problem.

Subject to : VgWAy* < — g*(yO — kriJ'
(37)

Minimize : Vgnt(yi)TAyi

The riJ term is the estimated error for the i'* équation during the y + lth

nonlinear itération. The value of riJ is determined during the nonlinear itération
using the following équation :

(38) r" = gty-1 + A/-1) -W1) - VsVW"1

where k is implicitly assumed to be one. The absolute value of riJ is used for
the linear programming problem.

The parameter k will be adjusted in the course of the nonlinear itération.
The value of k is greater than, or equal to zero, and is estimated from the
length of the previous step. The role of k in the linear and nonlinear problem
will be discussed in detail later in this section, as will the estimating procedures
used to obtain k.

The linear programming problem (37) can be treated as a parametric
programming problem with k as the modifying parameter and can be written
in tableau form as illustrated in Tableau (1).

The vectors AyJ and v are nx\. The members of vector AyJ are the primai
variables, and the members of vector v are the slack variables of the dual
problem. The vector of the dual variables is

X = [Xls , Xm-lJ

and the vector of the primai slack variables is

Op is the value of the primai objective function and Od is the value of the dual
objective function. The labels (VBV)p and (VBV)d are respectively the values
of the current basic primai variables and the basic dual variables. The labels
(BV)p and (BV)d are the basic variables associated with the given values.

Revue Française d'Automatique, Informatique et Recherche Opérationnelle



WATER QUALITY CONTROL 63

TABLEAU 1

- * m - l

(VBV)d

(BV)â

A /

VgW

WW

— v

{VBV)p

—gm~1(yJ) — krm-1J

— * V ) —*»*'

- < D d

In order to generate a typical tableau of the linear programming problem,
Tableau 1 can be rearranged such that the first n3 columns are associated
with the entering primai variables, and the first n3 rows are associated with
the leaving slack varibles. This is done in Tableau 2.

TABLEAU 2

(-*)l

("*)2

(VBV)t

(BV)d

(A/)

Bi
B2

B3

(-v)i

(A^Ó2

Ci
C 2

c3

(-v)2

(VBV)p

di

d2

d3

(BV)p

OOi

(^)2

Bj is a n3xw3 matrix, where «3 ^ min (m — 1, n).

The «3 variables are brought into the basis by block pivoting on the matnx
Bx as shown in Tableau 3.

n° octobre 1972, V-2.



64 G. GRAVES ET AL.

TABLEAU 3

(~V)i

(-*)2

(VBV)à

(BV)d

W i

D - l
•°1

-B2B;1

-B3B;1

(AA

Ci

c2

c3

(-v)a

d2-B2B:idx

di~BiB:idl

(.BV)p

(AA
«a

The cxirrent values of the primai variables as displayed in Tableau 3 are

UAA
The current values of the dual variables are :

X —-z

= L 0
Let

rei
' - c2

Lc3

= \B2

Note that the matrix C was not updated by the pivoting opération. This
was done to reflect the internai opération of the algorithm in its computer
application. The matrix is not stored as such, but is generated as needed during
the course of algorithm, and updated by the use of the updated B matrix.
Since at the present point all of the members of the vector Ayj associated with C
are zero, it is not necessary to know the values of the updated C.

A typical column in C is r _ , . .
dg (y3)

Revue Française d*Automatique, Informatique et Recherche Opérationnelle



WATER QUALITY CONTROL 65

If it is determined to introducé Aŷ  into the basis, then it is necessary to update
C*. In order to illustrate this procedure let

c[

c\
cï

where C\, C% and C3 correspond to Cu C2 and C3 in Tableau 2. The updated
version of Cl is

Since at any point in the algorithm the values of

are stored, the column Cl can easily be updated. This feature of the program
reduces the necessary storage requirements, which is especially important in
large scaîe problems.

From the duality theorem of linear programming there are three possible
termination conditions to the local linear programming problem (42).

(A) There exists a finite value V and feasible vectors

yj* and x* such that

B3AyJ* = d±x* = v

The vectors yj* and x* are the optimal solution to (37).
(B) The constraints for the primai problem are infeasible and the dual

problem is unbounded or the constraints of the dual problem are inconsistent.
(C) The primai problem is unbounded and the dual problem is infeasible.

The initial solution in the domain of the Sanctions g\yJ), i = 1, m, y\ is
not required to be a feasible solution to the nonlinear problem stated in (34).
As was discussed above, if yj is not a feasible solution to (34), then SUPG > 0.
If y is a feasible solution to (34), then SUPG = 0. The goal of each nonlinear
itération is either to reduce the value of the objective function g^y1), or move
closer to feasibility, which is interpreted to mean reduce the value of SUPG.

The case of nonlinear infeasibility will usually imply that the local linear
problem (37) will be infeasible for any AyJ in the e région around y*. In this
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case Vg(y)TAy is chosen as the objective fonction and a linear programming
problem such as (39) will be constructed.

Subject to : Vftffby* < — g'ty) — krpj

(39)
Minimize : V

where
H = { i \Vg\yfAy ^ — gty) — krij for some Ayj}

Since this problem is consistent and bounded it can only terminate in
condition (A). However, it is still possible that the entire linear problem (37)
is infeasible, or in other words terminâtes in condition (Z?). In this case the
honlinear problem will also be infeasible at the new point, y*+1

f ignoring errors.
Mathematically this would mean that

> — g\y) — krij for some i, i = 1, m — 1.

However, if a gain has been made in SUPG, then the algorithm proceeds
through the nonlinear itération with the détermination of k. Of course, if
the gain is large enough feasibility may be reached and the local linear problem
would terminate in condition (A).

If the local linear programming problem (37) terminâtes with condition (B)
bolding and no gain has been made in SUPG, then it is assumed that the
nonlinear problem is inconsistent and the algorithm terminâtes unless k can
be adjusted as will be discussed later.

The other possible termination condition (A) implies that a feasible solution
to the entire linear problem (37) has been obtained, and ignoring errors,
y*"1 is a feasible solution to the nonlinear problem. The algorithm at this
point will check for a gain in gm(y). If at the new y+1 = y* + Ay\ there is
no gain in gm(y), then we assume that the local minimum has been reached.
If there is a gain in gm(y), then another nonlinear step is taken. A graphical
interprétation of these décision rules is shown in Figure 2, and Figure 3 which
will be explained in detail.

At this point it is necessary to explain in some detail the rôle that the
parameter k plays in the final détermination of Ay*. In order to see the rôle k
plays more clearly, it is necessary to write mathematical expressions for the
statements, « gain in gm(y), » and « gain in SUPG ». If the local linear problem
terminâtes in condition (4), then

(40) V

or

(41) VftyfLy* - ^ ( - xdsfy!) + k E' ( - xt)r
iJ

i = l i = l
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In order for a gain to be made in the nonlinear objective function, the
following inequality must hold :

(42)

Using équations (41) and (42), the condition for a gain in gm(y) is

(43) £ (— xtâtâ + k £ (— x,)riJ < — e
1=1 j = l

At this point, the dual variables are less than, or equal to zero. Ther*'"
are assumed greater than or equal to zero, and since the nonlinear problem
is feasible gl(yj) < 0. This information implies that :

(44) l V
and

(45) fc^ ( - * , > " > o
£ = 1

From (43) and (45), it is clear that as k approaches zero, the gain in gm(y*)
would be greater. Therefore, if the linear problem terminaties in condition ÇA),
and there is no gain in gm(y), then k can be adjusted downwards, which effec-
tively is relaxing the linear constraints. As k goes to zero, condition (43)
becomes

(46) £ (-xi)g
i(yj)<-e

The same sort of condition can be derived in the case when the linear
programming problem terminâtes in condition (B). Condition (47) is for a
gain in SUPG.

(47) £ ( - xjg>(y*) < - s p € H
p

Using these results, the criteria that the algorithm uses for nonlinear
optimality and nonlinear infeasibility can be written as follows :

Optimality :

If k is adjusted as low as possible, the linear program terminâtes in condi-
tion (A) and

Z
then y is assumed to be the optimal solution to the nonlinear problem.
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Infeasibility :
If k is adjusted as low as possible, the linear program terminâtes in condi-

tion (B), and

then the contraints of the nonlinear problem are assumed to be inconsistent.
Using the criteria described above for optimality and infeasibility, the steps

actually taken in the computer program will be described in séquence using
Figure 2, and Figure 3.

Before the steps of the actual program are discussed one additional feature
of this algorithm must be mentioned. It is possible to divide the n variables
in the nonlinear problem into IPRN priority classes. For example, assume
that IPRN = 2. This implies that every variable is either in priority class
one or two. All of the variables in priority class one would be used to try and
obtain a gain in SUPG or gm(y). The second priority class variables would not
be considered unless no gain could be made using the priority one variables
with k adjusted to zero. The number of priority classes is unlimited.

The procedure followed by the algorithm in a dynamic sense is as follows :
1. The variables, ày\ associated with the matrix C, which are currently

not in the basis of the linear programming problem, are scanned for
possible entry. All of the variables will be out of the basis at the outset
of each nonlinear itération. The scanning is accomplished by updating
the element in each column of C associated with the current linear
objective function. If priority classes are used, then only those variables
in C which have a priority level less than or equal to the current level,
IPRC, are checked. See Box 1 in Figure 2.

2. The variable associated with the updated element of highest absolute
value is selected to enter the linear tableau. This criteria is used because
this variable locally affects the objective function more than the other
variables. See Box 2 in Figure 2.

3. The element with the largest absolute value is tested to see if it is signi-
ficantly different from zero. If it is, the algorithm proceeds to step 4
and the solution of the linear programming problem. If not, it is assumed
that the addition of the variable associated with the largest element
would not affect the objective function significantly, since the appropriate
coefficient is so small. In this case, k is adjusted downwards, or if
k = 0, the number of priority classes considered is expanded. If the
current priority class is the last one available, then the algorithm will
terminate. The termination will mean one of two things; the nonlinear
problem is infeasible since no gain can be made in SUPG = gw(y) > 0,
or the local minimum to the nonlinear problem has been attained and
no gain can be made in gm{y). See Figure 3.
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O

©

©

0

©

©

Update the Linear Objective Function Row of Al l

Variables in C with IPR < IPRC.

Find Element in Updated Row with

Largest Absolute Value.

Test Element Selected to See

If It I? Significantly Different from

Zero. If |EL| < e Go to Box 10 Figure 3.

Update Entire Column Associated

With Element SeTected in Box 2.

Remove Excess Columns From Tableau.

Add New Column to Tableau.

Solve LP Problem with Updated

Column Added to Tableau

Termination Condition (A)

(Linear Feasibility)

Check for Gain in g (y)

0 Termination Condition (B)

(Linear Infeasibility)

©[Check for Gain in SUPG

Figure 2
Sélection of Variable and Solution to LP Problem

4. After selecting the variable column to be added to the linear programming
problem, the entire column in C associated with the selected variable
is updated. At this point, the linear programming tableau is augmented
by this new column and if a gain was made in the linear objective function
on the previous linear itération, the variables rejected from the basis
are removed from the linear tableau. See Box 4 Figure 2.

5. The linear programming algorithm now takes over and solves the local
problem set up in the previous steps. The linear programming problem
will terminate in one of the three terminal conditions discussed above.
If terminal condition (A) is reached, linear feasibility, then the objective
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Adjust E Döwnwards.

Go To Box 1 Figure 1 .

k > 0

k = 0

Add a Priority Class

IPRC * IPRC + 1

IPRN < IPRC

(IPRN > ÎPRC Go to Box 1 Figure 1.)

supf; > o

IPRN < IPRC

TEST SUPG > 0

SUPG = 0

is Optimal Solution to Nonlinear Problem

Nonlinear Problem is Infeasible

Figure 3
Adjustment of k and Priority Classes

function gm(y) is tested to see if a gain greater than some tolérance level
was made. If terminal condition (2?) is attained, then the algorithm
tests for a sufficient gain in SUPG. If either of these gains are success-
fully made, the algorithm leaves the linear programming subproblem.
If the gains are not made, then the algorithm returns to selecting variables
to enter the linear tableau. If terminal condition (C) is reached, the
algorithm again returns to selecting variables in order to bound the
primai problem. See Boxes 5-9 in Figure 2.

The first step after the successful conclusion of the local linear problem
is to select the « best » value of k. This calculation is called the post-optimal
adjustment and proceeds in two different manners, depending on the value
of SUPG.

If the value of SUPG is zero, or we have nonlinear feasibility, then the
value of the objective function is written as a function of fc, and this function
is solved for the value of k, which will minimize gm(y).
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In the case where SUPG < 0, or we have nonlinear infeasibility, k is
approximated by choosing a trial value such that G is zero, where G is defined
to be

(48) G = (àys'1)T(àyJ"1) — (Ay)r(Ay)

The value of (AyJ~ *)r(Ay ~x) is stored from nonlinear itération j — 1. The
value of (Ay)r(Ay) can be written as a function of k. We know that

(49) A / =

or

(50) Ay =

where

(51)

and

(52)

Using (50), (51) and (52) G can be written as a quadratic function in k
which can be solved for k.

In either case, SUPG = 0, or SUPG > 0, the value of k must be tested
to see that it does not violate bounds which are implied by the bounds on y*
Since the value of y + 1 must satisfy équation (36), and we know that Ay is
a function of k from équation (50), équation (35) can be written

(53) BL^ y — Bï lgp(y5) — kBÏ lrpj ^ UB

Solving for k and assuming PT > 0 :

pT iJ _ TTR *J

(54) -

or if PT > 0

(55) ^ ^

If the value of k determined in the post optimal adjustment violâtes the
greatest lower bound on k9 or results, in the case of SUPG = 0, in no gain
in gm(y), the value of k is adjusted downwards. The control of the problem
is then passed back to the linear programming part of the algorithm.
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The first part of the nonlinear itération is now completed. Note that each
adjustment in k will change the optimal value of AyJ\ Therefore, the détermina-
tion of Ayj is not complete until the post-optimal adjustment is finished.

It is at this point the new estimâtes of the error terms riJ are calculated.
This is done by evaîuating the fonctions g\yj + A;/), i = 1, m — 1, and using
équation (38). The new values or r° are used for the rest of the j + l — th
nonlinear itération and the absolute values are used for the local linear problems
in nonlinear itération j + 2.

The next step in the algorithm is to calculate the range of values for k
which will maintain a feasible solution or give the best gain in SUPG. After
a range of values is determined, the optimal value of k is chosen from the
range determined.

The range is calculated by using the following équation :

(56) gl(y) = g\yj) + gWWk + k2rij < D (SUPG)

If SUPG = 0 then équation (56) just says that the new values of g\y),
i = 1, m — 1, must be feasible. If SUPG > 0, then D is initially set equal to zero.
The quadratic functions in k are then solved.

g*(yi) — D SUPG + VgXy^&y'k + k2rij = 0, i = 1, m — 1

This will give the value or values of k where the constraints gl{y) will go
infeasible. If the lower bound on k is greater than the upper bound, then the
value of D is increased and the quadratic problem is again solved. If as D
approaches one5 the upper bound continues to be lower, than the lower bound,
then we say that the interval détermination failed and no k can be found which
will improve SUPG. In this case the algorithm terminâtes.

If SUPG = 0, the algorithm détermines the interval which wili maintain
the feasibility of y. After the interval is determined, the best value of k is
found by evaluating the function gm(y + k&y1) for different k's in the range
given. The gain in the objective function is checked to see if it exceeds some
preset tolérance level. If not, than it is assumed that we are within the lenght
of that tolérance level of a local optimal solution and the algorithm terminâtes.

If a gain in SUPG is made, or a réduction in gm(y), the algorithm takes
another nonlinear itération. This procedure is repeated until either a local
minimum or infeasibility is encountered.

The programming code of the algorithm described above is made up of
sixteen subroutines as illustrated in Figure 4. The roles of some of the major
subroutines are explained as follows :

A. NONLIN : A single pass through NONLIN complètes a nonlinear
itération. The rôle of NONLIN is to call in order the linear programming
subroutines and the subroutines which adjust the values of k and k.
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B. SETUP : A spécifie problem will require the reading in of data, the
calculation of certain parameters and other necessary housekeeping.
SETUP fulfills this role and will be unique for any given problem.

C. FCNGEN : It is necessary at certain points in the algorithm to evaluate
the functions g\y) for some spécifie y, FCNGEN provides this infor-
mation and is also unique for any given problem.

D. LINP : The subroutines which solve the local linear programming
problems are controlled by the subroutine LINP.

E. RCK : The sélection of the variables to enter the basis is done by
RCK. This is done by updating the appropriate element of the column
in C associated with the variable being checked.

F. COLGEN : lt is necessary to evaluate the column of C associated
with a variable entering the basis for the current value of y. This is
done in COLGEN.

G. POAD : The post-optimal adjustment is done in POAD.

H. INCON : The parameter k is adjusted downwards when required in
INCON.

I. INVDET : The bounds on k are calculated in INVDET.
J. GENMIN : After the bounds on k have been calculated, if SUPG = 0,

then GENMIN is called to find the optimal value of k.

SETUP FCNGEN

\f r
LINP -

POAD

1
INCON

O*

(NONLIN)

J FCNGEN [

RCK

Nb

ÎNVDET GENMIN

FCNGEN

LINPRG

BOUND TRAM

INCHC INCHR

Figure 4

Nonlinear Programming Algorithr
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APPENDIX A

Water-Quality Model Notation
Partial Derivative Blocks

ag Length of section g
agi Length of pipe from polluter i to section g
ami Length of pipe from polluter i to treatment plant m
agm Length of pipe from treatment plant m to section g
b B O D of effluent from polluter i
bg B O D of river a t headwaters of section g
bgi B O D of incrémental flow entering section g
bg2 B O D of effluent flow entering section g
bg3 B O D of augmentation flow entering section g
Ct Cost per flow uni t of augmentation flow from reservoir 1
CQ\ Cost of pipe from polluter i to section g
C„i Cost of pipe from polluter i to treatment plant m
Cgm Cost of pipe from treatment plant m to section g
Cp Cost of treatment plants
CR Cost of Reservoirs
di D O D of effluent from polluter i
dQ D O D at end of section g
d* D O D goal in section g
dg D O D at headwaters of section g
dgl D O D of incrémental flow entering section g
dg2 D O D of effluent flow entering section g
dg3 D O D of augmentation flow entering section g
fgi Flow from polluter i to section i
Fgl Incrémental flow entering section g
Fg2 Effluent flow entering section g
Fg3 Augmentat ion flow entering section g
Klg Rate of deoxygenat in section g
Kfg Rate of deoxygenation a t 20° C in section g
K2g Rate of reaeration in section g
p m i Flow from polluter / to treatment plant m
rm Percent removal of B O D at treatment plant m
tgm F low from treatment plant m to section g
T Température
vg Velocity of flow in river section g
OL9 Estimated parameter
Pô Estimated parameter
y g Estimated parameter
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Gg Estimated parameter
0 t Estimated parameter
62 Estimated parameter

APPENDIX B

Typical Element of Block A14

ddg _K$b° dd9

The particular form of the partial derivative dépends on the relation
between g and w. The crucial questions are whether or not the effluent from
treatment plant m is being dumped upstream, downstream or in section g and
whether or not g is a tributary.

Let z = Min{g | tgm > 0} and Z - {g \ tm > 0 and g # z}.

Case (a)

orifg > z and g $ Z and g is a tributary

Case (b)

If g =
then

—?- = O

Case (c)

If g > z, g$Z, and g and g— 1 are not tributaries
then
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Case (d)
If g > z9 g $ Z, g is not a tributary, and g— 1 is a tributary

then
db°g

drm Brm

(e)
lï g > z, gÇ.Z, and g and #— 1 are not tributaries

then
_ db

Case (c) ^ 3rm

Case (c) + 3rm

case (è)

Case (b)

Case (f)
If g > zy g e Z, g is not a tributary, and g— 1 is a tributary

then
. Bbî£̂ wff

Case

Case

Case (é)

Case (b)

Typical Element of Block A15

-I hA0\C, C [Clg —

3Clg 3Cl g 3C2g

e/̂ iÎ3

where,

'10

3C2ff " V1
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The values of

depend on the relation between g and /.

fa)

If g < l or if g > l and g is a tributary, then

If g = /, then

(c)

If g > l, g is not a tributary, and g-1 is not a tributary, then

(d)

If g > /, and g is not a tributary, and g— 1 is a tributary, then
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