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A NOTE ON CONVERGENCE OF LOW ENERGY CRITICAL POINTS
OF NONLINEAR ELASTICITY FUNCTIONALS,

FOR THIN SHELLS OF ARBITRARY GEOMETRY

Marta Lewicka
1

Abstract. We prove that the critical points of the 3d nonlinear elasticity functional on shells of small
thickness h and around the mid-surface S of arbitrary geometry, converge as h → 0 to the critical
points of the von Kármán functional on S, recently proposed in [Lewicka et al., Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (to appear)]. This result extends the statement in [Müller and Pakzad, Comm. Part.
Differ. Equ. 33 (2008) 1018–1032], derived for the case of plates when S ⊂ R

2. The convergence holds
provided the elastic energies of the 3d deformations scale like h4 and the external body forces scale
like h3.
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1. Introduction and statement of the main results

Since the beginning of research in nonlinear elasticity, a major topic has been the derivation of lower dimen-
sional theories, appropriately approximating the three dimensional theory on structures which are thin in one or
more directions (such as beams, rods, plates or shells). Recently, the application of variational methods, notably
the Γ-convergence [3], lead to many significant and rigorous results in this setting [5–8]. Roughly speaking, a
Γ-limit approach guarantees the convergence of minimizers of a sequence of functionals, to the minimizers of
the limit. However, it does not usually imply convergence of the possibly non-minimizing critical points (the
equilibria) and hence other tools must be applied to study this problem.

In this note, following works [12,14,15] in which beams, rods and plates were analyzed, we study critical
points of the 3d nonlinear elasticity functional on a thin shell of arbitrary geometry, in the von Kármán scaling
regime. A Γ-convergence result in this framework was recently derived in [10] (see also [9]), providing the
natural from the minimization point of view generalization of the von Kármán functional [5] to shells. In
analogy with the analysis done in [15] for plates, we now proceed to prove convergence of the weak solutions to
the static equilibrium equations of nonlinear elasticity (1.13) (the Euler-Lagrange equations associated to the
elasticity functional), which in the present setting are the critical points of the 3d energy (1.1), to the critical
points of the functional (1.7) obtained in [10]. In case of plates, the Euler-Lagrange equations of (1.7) reduce
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to the von Kármán system of 4th order PDEs written in terms of the minimizing out-of-plate displacement and
the Airy stress potential [11,17].

We now introduce the basic framework for our results. We consider a 2-dimensional surface S embedded
in R

3, which is compact, connected, oriented, of class C1,1, and with boundary ∂S being the union of finitely
many (possibly none) Lipschitz curves. A family {Sh}h>0 of shells of small thickness h around S is given
through:

Sh = {z = x+ t�n(x); x ∈ S, −h/2 < t < h/2}, 0 < h < h0.

By �n(x) we denote the unit normal to S and by TxS the tangent space. With a slight abuse of notation, we
shall treat TxS as a 2d subspace of R

3, so that both 2d and 3d operators can be applied on vectors τ ∈ TxS.
By Π(x) = ∇�n(x) we denote the shape operator on S (the negative second fundamental form). Recall that Π
is symmetric and Π(x)τ ∈ TxS for all τ ∈ TxS. Again, we shall view Π as a linear operator from TxS to R

3, or
a linear operator from TxS to TxS, or otherwise as a symmetric bilinear form, or as its matrix representation,
whichever is more convenient.

The projection onto S along �n is denoted by π, so that:

π(z) = x ∀z = x+ t�n(x) ∈ Sh.

We assume that h < h0, with h0 sufficiently small to have π defined on each Sh.
To a deformation u ∈ W 1,2(Sh,R3) we associate its elastic energy (scaled per unit thickness):

Ih(u) =
1
h

�
Sh

W (∇u). (1.1)

The stored energy density W : R
3×3 −→ [0,∞] is assumed to be C2 in a neighborhood of SO(3), and to satisfy

the following normalization, frame indifference and nondegeneracy conditions:

∀F ∈ R
3×3 ∀R ∈ SO(3) W (R) = 0, W (RF ) = W (F ),

W (F ) ≥ c dist2(F, SO(3)) (1.2)

(with a uniform constant c > 0). Our objective is to describe the limiting behavior, as h → 0, of critical
points uh to the following total energy functionals:

Jh(u) = Ih(u) − 1
h

�
Sh

fhu, (1.3)

subject to external forces fh, where we assume that:

fh(x + t�n) = h
√
ehf(x) det(Id + tΠ)−1, f ∈ L2(S,R3) and

�
S

f = 0.

Above, eh is a given sequence of positive numbers obeying a prescribed scaling law. It can be shown [5,10] that
if fh scale like hα, then the minimizers uh of (1.3) satisfy Ih(uh) ∼ hβ with β = α if 0 ≤ α ≤ 2 and β = 2α− 2
if α > 2. Throughout this paper we shall assume that β ≥ 4, or more generally:

lim
h→0

eh/h4 = κ < +∞, (1.4)

which for S ⊂ R
2 corresponds to the von Kármán and the purely linear theories of plates, derived rigorously

in [5].

In our recent paper [10], the Γ-limit of 1/ehJh has been identified in the scaling range corresponding to (1.4),
and for arbitrary surfaces S. It turns out that the elastic energy scaling Ih(uh) ≤ Ceh implies that on S
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the deformations uh
|S must be close to some rigid motion Q̄x+ c, and that the first order term in the expansion

of Q̄T (uh
|S − c) − id with respect to h, is an element V of the class V of infinitesimal isometries on S [16].

The space V consists of vector fields V ∈ W 2,2(S,R3) for whom there exists a matrix field A ∈ W 1,2(S,R3×3)
so that:

∂τV (x) = A(x)τ and A(x)T = −A(x) ∀a.e. x ∈ S ∀τ ∈ TxS. (1.5)

Equivalently, the change of metric on S induced by the deformation id + hV is at most of order h2, for each
V ∈ V .

When in (1.4) κ = 0, the limiting total energy is given by:

J(V, Q̄) =
1
24

�
S

Q2 (x, (∇(A�n) −AΠ)tan) dx−
�

S

f · Q̄V dx, ∀V ∈ V , Q̄ ∈ SO(3). (1.6)

The first term above measures the first order change in the second fundamental form Π of S, produced by V .
The subscript “tan” refers to the tangential minor of a given matrix field; given F ∈ L2(S,R3×3) we put:
Ftan(x) = [(F (x)τ)η]τη∈TxS .

The quadratic forms Q2(x, ·) are given as follows:

Q2(x, Ftan) = min{Q3(F̃ ); (F̃ − F )tan = 0}, Q3(F ) = D2W (Id)(F, F ).

The form Q3 is defined for all F ∈ R
3×3, while Q2(x, ·) for a given x ∈ S, is defined on tangential minors Ftan

of such matrices (as explained above). Both forms depend only on the symmetric parts of their arguments and
are positive definite on the space of symmetric matrices [4]. In the weak formulation of the Euler-Lagrange
equations of (1.6) one naturally encounters the linear operators L3 and L2(x, ·), defined on and valued in the
matrix spaces R

3×3 and R
2×2 (identified here with the space of bilinear forms on TxS), respectively, given by:

∀F ∈ R
3×3 Q3(F ) = L3F : F and Q2(x, Ftan) = L2(x, Ftan) : Ftan.

Recall that, for two square matrices F1 and F2, of the same dimension, their inner product is F1 : F2 = tr(FT
1 F2).

For κ > 0, the Γ-limit (which is the generalization of the von Kármán functional [5] to shells), contains also
a stretching term, measuring the total second order change in the metric of S:

JvK(V,Btan, Q̄) =
κ

2

�
S

Q2

(
x,Btan − 1

2
(A2)tan

)
+

1
24

�
S

Q2 (x, (∇(A�n) −AΠ)tan) −
�

S

f · Q̄V. (1.7)

It involves a symmetric matrix field Btan on S belonging to the finite strain space B. Given a vector field
w ∈W 1,2(S,R3), by sym ∇w we mean the bilinear form on TxS, given by: ((sym ∇w(x))τ)η = 1

2 [(∂τV (x))η +
(∂ηV (x))τ ] for all τ, η ∈ TxS. Then we define [10]:

B = clL2(S)

{
sym∇wh; wh ∈W 1,2(S,R3)

}
.

The two terms in (1.7) correspond, in appearing order, to the stretching and bending energies of a sequence of
deformations vh = id + εV + ε2wh of S (where ε =

√
eh/h) which is induced by:

(i) a first order displacement V ∈ V ;
(ii) the second order displacements wh satisfying limh→0 sym∇wh = Btan.

In view of the fundamental theorem of calculus of variations, the crucial property of (1.7) is the one-to-one
correspondence between the minimizing sequences uh of the total energies Jh(uh), and their approximations
(modulo rigid motions Q̄x + c) given by vh as above with (V,Btan, Q̄) minimizing the Γ-limit JvK of 1/ehJh

(or (V, Q̄) minimizing J when κ = 0).
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The purpose of this paper is to show that under the following extra assumption of [15]:

∀F ∈ R
3×3 |DW (F )| ≤ C(|F | + 1) (1.8)

also the equilibria (possibly non-minimizing) of (1.1) converge to the equilibria of (1.7) or (1.3).

Theorem 1.1. Assume (1.2) and (1.8). Let uh ∈ W 1,2(Sh,R3) be a sequence of deformations, satisfying:

(a) the following equilibrium equations hold, for each h:

∀φh ∈W 1,2(Sh,R3)
�

Sh

DW (∇uh) : ∇φh =
�

Sh

fhφh; (1.9)

(b) Ih(uh) ≤ Ceh, where eh is the scaling with (1.4).

Then there exist a sequence Qh ∈ SO(3), converging (up to a subsequence) to some Q̄ ∈ SO(3), and ch ∈ R
3

such that for the normalized rescaled deformations:

yh(x+ t�n) = (Qh)Tuh(x+ h/h0t�n) − ch

defined on the common domain Sh0 , we have:

(i) yh converge in W 1,2(Sh0) to π.
(ii) The scaled average displacements:

V h(x) =
h√
eh

� h0/2

−h0/2

yh(x+ t�n) − x dt (1.10)

converge (up to a subsequence) in W 1,2(S) to some V ∈ V.
(iii) h/

√
eh sym ∇V h converge (up to a subsequence) in L2(S) to some Btan ∈ B.

(iv) The triple (V,Btan, Q̄) satisfies the Euler-Lagrange equations of the functional JvK . That is, for all
Ṽ ∈ V with Ã = ∇Ṽ given as in the formula (1.5), and all B̃tan ∈ B, there holds:

�
S

L2

(
x,Btan − 1

2
(A2)tan

)
: B̃tan = 0, (1.11)

− κ

�
S

L2

(
x,Btan − 1

2
(A2)tan

)
: (AÃ)tan

+
1
12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (∇(Ã�n) − ÃΠ)tan =
�

S

f · Q̄Ṽ . (1.12)

When κ = 0 then the couple (V, Q̄) satisfies (1.12) for all Ṽ ∈ V, which is the Euler-Lagrange equations
of the functional (1.6).

We prove Theorem 1.1 in Section 2. In Section 3 we derive the third Euler-Lagrange equation (after the first
two (1.11) and (1.12)), corresponding to variation in Q̄ ∈ SO(3). We first notice that the limiting Q̄ necessarily
satisfies the constraint of the average torque τ(Q̄) =

�
S f × Q̄x dx being 0. The main difficulty arises now

from the fact that the variations must be taken inside SO(3) in a way that this constraint remains satisfied.
Assuming that such variations exist, we establish the limit equation under the nondegeneracy condition that
Qh approach Q̄ along a direction U ∈ TQ̄SO(3) for which ∂Uτ(Q̄) �= 0.
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Remark 1.2. Integrating by parts we see that (1.9) is the weak formulation of the following fundamental
balance law [1]:

div [DW (∇uh)] + fh = 0 in Sh, DW (∇uh)�n = 0 on ∂Sh, (1.13)
where the operator div above is understood as acting on rows of the matrix field DW (∇uh).

The definition of an equilibrium of the 3d energy Jh may be understood in two different manners, corre-
sponding to passing with the scaling ε of a variation φ to 0 outside or inside the integral sign. Namely, for a
fixed h > 0, we may either require (1.9) or require that:

∀φh ∈ W 1,2(Sh,R3) lim
ε→0

1
ε

(
Jh(uh + εφh) − Jh(uh)

)
= 0. (1.14)

Whether (1.14) and (1.9) are equivalent, even for local minimizers (without assuming extra regularity, e.g. their
Lipschitz continuity) is an open problem of nonlinear elasticity, listed by Ball as Problem 5 in [1]. However,
condition (1.8) readily implies that:

lim
ε→0

�
Sh

1
ε
[W (∇uh + ε∇φh) −W (∇uh)] =

�
Sh

DW (∇uh) : ∇φh,

because of the pointwise convergence of the integrands and of their boundedness by an L1 function independent
of ε:

1
ε
|W (∇uh + ε∇φh) −W (∇uh)| ≤

� 1

0

|DW (∇uh + εs∇φh)| · |∇φh| ds ≤ C
(|∇uh| + |∇φh| + 1

) |∇φh|.

Hence in presence of (1.8), the equilibrium conditions (1.14) and (1.9) are equivalent.

Remark 1.3. Notice that, in view of (1.2) resulting in DW (F ) = 0 for all F ∈ SO(3), condition (1.8) is
equivalent to:

∀F ∈ R
3×3 |DW (F )| ≤ C dist(F, SO(3)).

Using the last assumption in (1.2), the above implies that: |DW (F )| ≤ CW (F )1/2 for all F ∈ R
3×3. Hence,

roughly speaking, W has a quadratic growth and we see that (1.8) is actually very restrictive. Independently,
Mora and Scardia [13] have recently proved a complementary result where the requirement (1.8) is relaxed,
while the equilibrium condition of (1.3) is understood in a different manner, related to Ball’s inner variations
and the Cauchy stress balance law [1].

2. Convergence of weak solutions to the Euler-Lagrange equations

(equilibria) of the 3d energies

We first gather the relevant information from [10]:

Lemma 2.1 [10]. Let uh ∈W 1,2(Sh,R3) be a sequence of deformations of shells Sh. Assume (1.4) and let the
scaled energies Ih(uh)/eh be uniformly bounded. Then there exists a sequence of matrix fields Rh ∈W 1,2(S,R3)
with Rh(x) ∈ SO(3) for a.e. x ∈ S, such that:

‖∇uh −Rhπ‖L2(Sh) ≤ Ch1/2
√
eh and ‖∇Rh‖L2(S) ≤ Ch−1

√
eh

and there exists a sequence of matrices Qh ∈ SO(3) such that:

(i) ‖(Qh)TRh − Id‖W 1,2(S) ≤ C
√
eh/h.

(ii) h/
√
eh((Qh)TRh − Id) converges (up to a subsequence) to a skew-symmetric matrix field A, weakly

in W 1,2(S).
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Moreover, there exists a sequence ch ∈ R
3 such that for the normalized rescaled deformations:

yh(x+ t�n) = (Qh)Tuh(x+ h/h0t�n) − ch

defined on the common domain Sh0 , the following holds.

(iii) yh converge in W 1,2(Sh0) to π.
(iv) The scaled average displacements V h, defined in (1.10) converge (up to a subsequence) in W 1,2(S) to

some V ∈ V, whose gradient is given by A, as in (1.5).
(v) h/

√
eh sym ∇V h converge (up to a subsequence) in L2(S) to some Btan ∈ B.

The statements in Theorem 1.1 (i), (ii), (iii) are contained in the lemma above. It therefore suffices to use
the extra assumptions (1.9) and (1.8) to recover equations (1.11) and (1.12) as h→ 0.

We start by rewriting the equilibrium equation (1.9) in a more convenient form. Clearly, every variation
φh ∈ W 1,2(Sh,R3) can be by a change of variables expressed as:

φh(x+ t�n) = ψ(x+ th0/h�n), (2.1)

for the corresponding ψ ∈W 1,2(Sh0 ,R3). Then, (1.9) becomes:

h2
√
eh

�
S

f(x)
� h0/2

−h0/2

ψ(x+ t�n) dt dx

= h

�
S

� h0/2

−h0/2

det(Id + th/h0Π)DW (∇uh(x + th/h0�n)) : ∇φh(x+ th/h0�n) dt dx. (2.2)

Notice also that:

∇φh(x+ th/h0�n) = ∇ψ(x + t�n)P (x+ t�n), (2.3)

where the matrix field P ∈ L∞(Sh0 ,R3×3) has the following non-zero entries:

P (x+ t�n)tan = (Id + th/h0Π(x))−1(Id + tΠ(x)), �nTP (x+ t�n)�n = h0/h.

In view of Lemma 2.1, define the matrix fields Eh, Gh ∈ L2(Sh0 ,R3×3):

Eh =
1√
eh
DW (Id +

√
ehGh), Gh(x+ t�n) =

1√
eh

(
(Rh)T∇uh(x+ th/h0�n) − Id

)
.

With this notation, recalling the frame invariance of W in (1.2) we get, for every F ∈ R
3×3:

1√
eh
DW (∇uh(x+ th/h0�n)) : F =

1√
eh
DW (Rh(Id +

√
ehGh)) : F

=
1√
eh
DW (Id +

√
ehGh) : (Rh)F = RhEh : F.
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In particular, (2.2) becomes, after exchanging ψ to (Qh)Tψ, using (2.3) and dividing both sides by
√
eh:

h2

�
S

f(x)
� h0/2

−h0/2

Qhψ dtdx

= h

�
S

� h0/2

−h0/2

det(Id + th/h0Π)
[
(Qh)TRh(x)Eh(x+ t�n)

]
: ∇φh(x+ th/h0�n) dtdx

= h

�
S

� h0/2

−h0/2

det(Id + th/h0Π)
[
(Qh)TRhEh

]
TS

:
[
(∇tanψ)(Id + th/h0Π)−1(Id + tΠ)

]
dtdx

+ h0

�
S

� h0/2

−h0/2

det(Id + th/h0Π) ((Qh)TRhEh�n) ∂�nψ(x + t�n) dtdx, (2.4)

where ∇tan denotes gradient in the tangent directions of TxS. The subscript TS stands for taking the 3 × 2
minor of the matrix under consideration, for example: ∇tanψ = [∇ψ]TS . Also, with a slight abuse of notation,
Id stands for the identity map on R

3 or TxS, whichever is appropriate.

Lemma 2.2. The sequence Gh converges (up to a subsequence), weakly in L2(Sh0 ,R3×3) to a L2(Sh0) matrix
field G, whose symmetrized tangential minor has the form:

symG(x+ t�n)tan =
√
κ

(
Btan − 1

2
(A2)tan

)
+

t

h0
(∇(A�n) −AΠ)tan. (2.5)

Moreover, if (1.8) holds, then:
(i) Eh converges (up to a subsequence) weakly in L2(Sh0 ,R3×3) to the matrix field E = L3G.
(ii) The sequence (Qh)TRh(x)Eh(x+ t�n) converges (up to a subsequence) to E, weakly in L2(Sh0 ,R3×3).

Proof. The convergence of Gh and the formula (2.5) follow from Lemma 3.6 and Lemma 4.1 in [10]. Convergence
in (i) is a consequence of Proposition 2.3 in [15], where the crucial role was played by the following equivalent
form of the assumption (1.8):

∀F ∈ R
3×3 |DW (Id + F )| ≤ C|F |.

Finally, (ii) is an immediate consequence of (i) in view of Lemma 2.1 (i) and the boundedness of (Qh)TRh

in L∞(Sh0). �

Lemma 2.3. The matrix field E ∈ L2(Sh0 ,R3×3), defined in Lemma 2.2 (i) satisfies the following properties,
a.e. in Sh0 :

(i) E�n = 0.
(ii) ET = E, that is: E is symmetric.
(iii) Etan(x+ t�n) = L2(x,Gtan(x+ t�n)).

Proof. To prove (i), one needs to pass h→ 0 in (2.4) and use Lemma 2.2 (ii) to obtain:

�
S

� h0/2

−h0/2

(
E(x + t�n)�n

)
∂�nψ(x+ t�n) dtdx = 0. (2.6)

Now, any vector field φ ∈ L2(Sh0 ,R3) has the form φ = ∂�nψ, where ψ(x+ t�n) =
� t

−h0/2
φ(x+ s�n) ds. Therefore

(i) follows from (2.6).
By frame indifference (1.2) and the fact that W is minimized at Id, it follows that DW (F ) = 0 for all

F ∈ SO(3). It implies that for all H ∈ so(3) there holds L3H = 0, and so E : H = L3G : H = L3H : G = 0,
proving (ii). Here so(3) stands for the space of 3 × 3 skew-symmetric matrices.

The assertion (iii) follows from E = L3G and the reasoning exactly as in the proof of Proposition 3.2 [15]. �
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A more precise information, with respect to that in Lemma 2.3 (ii) is given by:

Lemma 2.4. There holds:
(i) ‖ skew Eh‖L1(Sh0 ) ≤ C

√
eh.

(ii) lim
h→0

1
h
‖ skew Eh‖Lp(Sh0) = 0, for some exponent p ∈ (1, 2).

Proof. By frame indifference (1.2) one has: 0 = DW (F ) : HF = DW (F )FT : H , for all F ∈ R
3×3 and all

H ∈ so(3) (since HF is a tangent vector to SO(3)F at F ). We further obtain that DW (F )FT is a symmetric
matrix. Apply this statement pointwise to the matrix field F = Id +

√
ehGh:

0 =
1√
eh

(
DW (Id +

√
ehGh) (Id +

√
eh(Gh)T ) − (Id +

√
ehGh) DWT (Id +

√
ehGh)

)
= Eh − (Eh)T +

√
eh

(
Eh(Gh)T −Gh(Eh)T

)
.

Hence the claim in (i) is proved, as by Lemma 2.2:

‖sym (Eh(Gh)T )‖L1(Sh0 ) ≤ C‖Eh‖L2(Sh0 )‖Gh‖L2(Sh0 ) ≤ C.

Now, (ii) follows from (i) in view of the boundedness of Eh in L2(Sh0), (1.4), and through an interpolation
inequality:

1
h
‖ skew Eh‖Lp(Sh0 ) ≤

1
h
‖ skew Eh‖θ

L1‖ skew Eh‖1−θ
L2 ≤ C/h

√
eh

θ
= C

(√
eh/h2

)θ

h2θ−1,

where 1/p = θ + (1 − θ)/2 and θ ∈ (0, 1). Clearly, the above converges to 0, when θ > 1/2. �

Introduce now the two matrix fields Ē, Ê ∈ L2(S,R3) given by the 0th and 1st moments of E:

Ē(x) =
� h0/2

−h0/2

E(x+ t�n) dt, Ê(x) =
� h0/2

−h0/2

tE(x+ t�n) dt.

It easily follows by Lemma 2.3 (iii), Lemma 2.2 and the fact that L2(x, ·) depends only on the symmetric part
of its argument, that:

Ētan(x) =
� h0/2

−h0/2

L2(x,Gtan(x+ t�n)) dt =
√
κL2

(
x,Btan − 1

2
(A2)tan

)
, (2.7)

Êtan(x) =
� h0/2

−h0/2

L2(x, tGtan(x+ t�n)) dt =
h0

12
L2 (x, (∇(A�n) −AΠ)tan) . (2.8)

We will now use the fundamental balance (2.4) and the above formulas to recover the Euler-Lagrange equa-
tions (1.11), (1.12) in the limit as h→ 0.

Proof of the first Euler-Lagrange equation (1.11). Use the variation of the form: ψ(x + t�n) = φ(x) in (2.4),
divide both sides by h and pass to the limit to obtain:

0 = lim
h→0

�
S

� h0/2

−h0/2

det(Id + th/h0Π)
[
(Qh)TRhEh

]
TS

:
[∇tanφ(x)(Id + th/h0Π)−1

]
dtdx

=
�

S

� h0/2

−h0/2

ETS : ∇tanψ(x) dtdx =
√
κ

�
S

L2

(
x,Btan − 1

2
(A2)tan

)
: [∇φ(x)]tan dx

=
√
κ

�
S

L2

(
x,Btan − 1

2
(A2)tan

)
: [sym ∇φ(x)]tan dx (2.9)
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where we have used Lemma 2.2 (i), Lemma 2.3 and (2.7). Therefore, by density of {sym ∇φ} in the space B, (1.11)
follows immediately. �
Proof of the second Euler-Lagrange equation (1.12). Let Ṽ ∈ V and denote by Ã the skew-symmetric matrix
field representing ∇Ṽ , as in (1.5).

1. We now apply (2.4) to a variation of the form: ψ(x + t�n) = tÃ�n(x). For simplicity, write η = Ã�n ∈
W 1,2(S,R3). Upon dividing (2.4) by h and passing to the limit, we obtain:

0 = lim
h→0

[�
S

� h0/2

−h0/2

det(Id + th/h0Π)
[
(Qh)TRhtEh

]
TS

:
[∇tanη(x)(Id + th/h0Π)−1

]
dtdx

+
h0

h

�
S

� h0/2

−h0/2

((Qh)TRhEh�n) η(x) dtdx

+
�

S

� h0/2

−h0/2

(t trace Π + t2h/h0 detΠ)((Qh)TRhEh�n) η(x) dtdx

]
, (2.10)

where we used the identity:

det(Id + th/h0Π) = 1 + th/h0trace Π + t2h2/h2
0 detΠ.

The first term in (2.10), in view of Lemma 2.2 (ii), Lemma 2.3 and (2.8), converges to:

�
S

� h0/2

−h0/2

tETS : ∇tanη(x) dtdx =
�

S

Êtan : (∇η(x))tan dtdx

=
h0

12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (∇η(x))tan dx.

In turn, the third term in (2.10) converges to 0. This is because (Qh)TRhEh�n converge weakly in L2(Sh0 ,R3)
to E�n = 0, by Lemma 2.2 (ii) and Lemma 2.3 (i). Summarizing, (2.10) yields:

lim
h→0

1
h

�
S

� h0/2

−h0/2

((Qh)TRhEh�n) Ã�n dtdx = − 1
12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (∇(Ã�n))tan dx. (2.11)

2. Now, apply (2.4) to the variation ψ(x+ t�n) = Ṽ (x), and pass to the limit after dividing both sides of (2.4)
by h2:

�
S

f(x) · Q̄Ṽ (x) dx = lim
h→0

�
S

f(x) ·QhṼ (x) dx

= lim
h→0

[ �
S

� h0/2

−h0/2

[
1
h

((Qh)TRh − Id)Eh

]
TS

:
[
Ã(x)TS(Id + th/h0adj Π)

]
dtdx

+
�

S

� h0/2

−h0/2

1
h
Eh

TS :
[
Ã(x)TS(Id + th/h0adj Π)

]
dtdx

]

:= lim
h→0

[Ih + IIh], (2.12)

where we used the definition of the adjoint matrix:

det(Id + th/h0Π) (Id + th/h0Π)−1 = adj (Id + th/h0Π) = Id + th/h0adj Π.
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Notice that, by Lemma 2.1 (ii) and (1.4), the matrix field:

1/h((Qh)TRh − Id) = (
√
eh/h2)h/

√
eh((Qh)TRh − Id)

converges to
√
κA, weakly in W 1,2(S) and hence strongly in L2(S). Hence, by the weak convergence of Eh to E

and the uniform convergence of (Id + th/h0adj Π) to Id, the first term of (2.12) converges to:

lim
h→0

Ih =
√
κ

�
S

� h0/2

−h0/2

(AE)TS : ÃTS =
√
κ

�
S

(AĒ)TS : ÃTS =
√
κ

�
S

(AĒ) : Ã

= −√
κ

�
S

Ē : (AÃ) = −√
κ

�
S

Ētan : (AÃ)tan

= −κ
�

S

L2

(
x,Btan − 1

2
(A2)tan

)
: (AÃ)tan dx, (2.13)

where we also have used Lemma 2.3 and (2.7).

3. Towards finding the limit of IIh in (2.12), consider first the contribution of the tangential minors. By
Lemma 2.4 (ii) and since Ã ∈ Lp(Sh0) for all p ≥ 1, one observes that:

lim
h→0

1
h

�
S

� h0/2

−h0/2

skew Eh
tan : Ãtan = 0. (2.14)

Hence:

lim
h→0

�
S

� h0/2

−h0/2

1
h
Eh

tan :
[
Ã(x)tan(Id + th/h0 adj Π)

]
dtdx

=
1
h0

lim
h→0

�
S

� h0/2

−h0/2

tEh
tan :

[
Ãtan adj Π

]
=

1
h0

lim
h→0

�
S

Êtan :
[
Ãtan adj Π

]

= − 1
h0

lim
h→0

�
S

Êtan : (ÃtanΠ)T = − 1
12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (ÃΠ)tan dx, (2.15)

where we have used (2.8) and Lemma 2.3 (ii), combined with the following formula, which can be easily checked
for Ãtan ∈ so(2):

Ãtan adj Π = −(ÃtanΠ)T .

Further, by (2.11):

lim
h→0

�
S

� h0/2

−h0/2

1
h

(
(Eh)T�n

)(
(Ã)T�n

)
dtdx = − lim

h→0

1
h

�
S

� h0/2

−h0/2

((Qh)TRhEh�n)(Ã�n)

+ lim
h→0

�
S

� h0/2

−h0/2

[
1
h

((Qh)TRh − Id)(Eh�n)
]

(Ã�n)

+ 2 lim
h→0

�
S

� h0/2

−h0/2

[
1
h

( skew Eh)�n
]

(Ã�n)

=
1
12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (∇(Ã�n))tan dx. (2.16)

Indeed, 1/h((Qh)TRh − Id) converges to κA weakly in L4(S) while Ã�n ∈ L4(S) and Ēh�n converges to 0 weakly
in L2(S). Therefore the second term in (2.16) converges to 0. The last limiting term there vanishes as well, by
Lemma 2.4 (ii) as in (2.14).
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Finally, we have:

lim
h→0

1
h0

�
S

� h0/2

−h0/2

(
�nT tEh

)
tan

(adj Π)
(
(Ã)T�n

)
tan

dtdx = 0, (2.17)

because (Êh)T�n converges to 0 weakly in L2(S) by Lemmas 2.2 (i) and 2.3.
Adding now (2.15), (2.16) and (2.17) we obtain:

lim
h→0

IIh =
1
12

�
S

L2 (x, (∇(A�n) −AΠ)tan) : (∇(Ã�n) − ÃΠ)tan dx. (2.18)

Together with (2.12) and (2.13), the formula (2.18) implies (1.12). �

3. The limiting rotations Q̄

In this section we will derive the third Euler-Lagrange equation (after the first two (1.11) and (1.12)),
corresponding to variation in Q̄ ∈ SO(3), and under certain nondegeneracy condition. We first notice that the
limiting Q̄ necessarily satisfies the constraint of the average torque:

τ(Q̄) =
�

S

f × Q̄x dx = 0. (3.1)

The main difficulty arises now from the fact that the variations must be taken inside SO(3) in a way that this
constraint remains satisfied. Assuming that such variations exist, we establish the limit equation under the
additional condition that Qh approach Q̄ along a direction U ∈ TQ̄SO(3) for which ∂Uτ(Q̄) �= 0.

In what follows, the crucial role is played by the function g(Q) =
�

S f · Qx dx defined on SO(3). Let
K ∈ R

3×3 be such that: g(Q) = K : Q, for all Q ∈ SO(3).

Lemma 3.1. Assume the hypothesis of Theorem 1.1. Then the limit Q̄ ∈ SO(3) of Qh must satisfy:
�

S

f · Q̄Fx dx = 0 ∀F ∈ so(3), (3.2)

or equivalently (3.1). Another equivalent formulation of (3.2) is: skew(Q̄TK) = 0.

Proof. First, for any given H ∈ so(3), consider the variation φh = Huh in the equilibrium equation (1.9).
Recalling that DW (∇uh)(∇uh)T is symmetric (see the proof of Lem. 2.4) we obtain:

�
Sh

fh ·Huh =
�

Sh

DW (∇uh) : H∇uh =
�

Sh

(
DW (∇uh)(∇uh)T

)
: H = 0. (3.3)

Similarly, taking φh = 1
ε (exp(εH)uh − uh) in (1.14), by frame indifference of W we get:

�
Sh

fh ·Huh = lim
ε→0

1
ε

�
Sh

fh · (exp(εH)uh − uh) = h lim
ε→0

1
ε

(
Jh(exp(εH)uh) − Jh(uh)

)
= 0.

Now, for any sequence of skew-symmetric matrices Fh we have:
�

S

f ·QhFhV h =
1
heh

�
Sh

fh ·QhFh
(
(Qh)Tuh − ch − id

)

=
1
heh

�
Sh

fh · (QhFh(Qh)T
)
uh − 1

heh

�
Sh

fh dz ·QhFhch − 1
heh

�
Sh

fh ·QhFhz dz

= − h√
eh

�
S

f ·QhFhx dx, (3.4)
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where the first two terms in the second line above vanish by taking H = QhFh(Qh)T ∈ so(3) in (3.3), and by
the normalization of fh. Passing to the limit with h→ 0 in (3.4), where Fh = F , we see that: − �

S
f · Q̄FV =

limh→0 h/
√
eh

�
S f ·QhFx dx. This implies (3.2).

Clearly, (3.2) is also equivalent to 0 = K : Q̄F = Q̄TK : F for all F ∈ so(3), which means exactly that Q̄TK
is a symmetric matrix.

To prove the other equivalent formulation of (3.2), notice that:
�

S

f · Q̄Fx =
�

S

Q̄T f · Fx = −cF ·
�

S

Q̄T f × x = −cF
�

S

f × Q̄x,

where cF ∈ R
3 is such that Fx = cF × x for all x ∈ R

3. Since there is a one to one correspondence between
vectors cF and skew matrices F , the proof is achieved. �

Define now the set of the rotation equilibria:

M = {Q̄ ∈ SO(3); skew (Q̄TK) = 0}.
Our goal is to derive the third Euler-Lagrange equation, with respect to the variations of Q̄ in M. For Q̄ ∈ M,
let F ∈ so(3) be such that:

Q̄F = lim
n→∞

Q̄n − Q̄

‖Q̄n − Q̄‖ ,
for some Q̄n ∈ M converging to Q̄. Clearly, the above implies that:

skew (FQ̄TK) = 0. (3.5)

Lemma 3.2. Under the hypothesis of Theorem 1.1, assume moreover that:

lim
h→0

Qh − Q̄

‖Qh − Q̄‖ = Q̄H, with skew(HQ̄TK) �= 0.

Then for every F ∈ so(3) satisfying (3.5) there holds:
�

S

f · Q̄FV dx = 0.

Proof. We will find a sequence Fh ∈ so(3), converging to F and such that, for all h:
�

S

f ·QhFhx dx = 0. (3.6)

In view of (3.4) this will prove the lemma. Existence of such approximating sequence Fh is guaranteed by the
assumed nondegeneracy condition: skew (HQ̄TK) �= 0.

Firstly, notice that for Qh ∈ M one can take Fh = F . Otherwise, define:

Fh = F − (Qh)TK : F
|skew ((Qh)TK)|2 skew ((Qh)TK).

Then: �
S

f ·QhFhx dx = K : QhFh = (Qh)TK : Fh

= (Qh)TK : F − (Qh)TK : F
|skew ((Qh)TK)|2 (Qh)TK : skew

(
(Qh)TK

)
= 0,
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and moreover:

lim
h→0

|Fh − F | = lim
h→0

|(Qh)TK : F |
|skew ((Qh)TK)| = lim

h→0

|(Qh)TK : F − Q̄TK : F |
|skew ((Qh)TK − Q̄TK)|

= lim
h→0

∣∣∣∣∣
(

Qh − Q̄

‖Qh − Q̄‖
)T

K : F

∣∣∣∣∣ /
∣∣∣∣∣skew

(
Qh − Q̄

‖Qh − Q̄‖
)T

K

∣∣∣∣∣ =
|HT Q̄TK : F |

|skew (HT Q̄TK)| = 0.

The last expression above equals to 0 because of the nullity of its numerator:

HT Q̄TK : F = Q̄TK : HF = Q̄TK : (HF )T = Q̄TK : FH = −FQ̄TK : H = 0,

where we have used that Q̄TK is symmetric and (3.5). �
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