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HAMILTON-JACOBI-BELLMAN EQUATIONS FOR THE OPTIMAL CONTROL
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Abstract. This article is devoted to the optimal control of state equations with memory of the form:

ẋ(t) = F

(
x(t), u(t),

∫ +∞

0

A(s)x(t− s)ds

)
, t > 0,

with initial conditions x(0) = x, x(−s) = z(s), s > 0.

Denoting by yx,z,u the solution of the previous Cauchy problem and:

v(x, z) := inf
u∈V

{∫ +∞

0

e−λsL(yx,z,u(s), u(s))ds

}

where V is a class of admissible controls, we prove that v is the only viscosity solution of an Hamilton-
Jacobi-Bellman equation of the form:

λv(x, z) + H(x, z,∇xv(x, z)) + 〈Dzv(x, z), ż〉 = 0

in the sense of the theory of viscosity solutions in infinite-dimensions of Crandall and Lions.
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1. Introduction

The optimal control of dynamics with memory is an issue that naturally arises in many different applied set-
tings both in engineering and decision sciences. It is typically the case when studying the optimal performances
of a system in which the response to a given input occurs not instantaneously but only after a certain elapse of
time. To cite some recent related contributions, in a stochastic framework, we refer to Elsanosi et al. [14], for
applications to mathematical finance, and to Gozzi and Marinelli [18] for applications to advertising modelling.
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In the deterministic case, we refer to Boucekkine et al. [5] for a generalization of Ramsey’s economic growth
model with memory effects and, in the field of biosciences modelling, we refer to the survey of Baker et al. [1].

Motivated by economic problems, Fabbri et al. [16], Faggian and Gozzi [17] studied specific models using
the dynamic programming approach. In these papers, the delay appears also in the control variable (a case we
do not treat here) but the state equation is linear. Fabbri in [15] also considered the optimal control of a linear
delay equation, proved that the value function is a viscosity solution of an HJB equation in infinite dimensions
and gave a verification theorem. Compared with the recent literature mentioned previously, the present paper
addresses, in a rather self-contained way, the dynamic principle approach and its viscosity counterpart for a
class of control problems with memory and a nonlinear state equation. Using a notion of viscosity solution that
slightly differs from the original one of Crandall and Lions (but is, we believe, easier to handle in the framework
of equations with memory) we prove a comparison result and thus fully characterize the value function for such
problems.

The aim of the present article is to study, by dynamic programming arguments, the optimal control of
(deterministic) state equations with memory. For the sake of simplicity, we will restrict the analysis to (finite-
dimensional) dynamics of the form:

ẋ(t) = F

(
x(t), u(t),

∫ +∞

0

A(s)x(t − s)ds
)
, t > 0,

with initial conditions x(0) = x and x(−s) = z(s), s > 0. We will also focus on the discounted infinite horizon
problem:

v(x, z) := inf
u∈V

{∫ +∞

0

e−λsL(yx,z,u(s), u(s))ds
}

(1.1)

where V is some admissible class of controls. Of course, there are other forms of memory effects than the one
we treat here: systems with lags or with deviating arguments for instance (see for instance [7,21,22] and the
references therein).

As is obvious from (1.1), the value function depends not only on the current state of the system x but also on
the whole past of the trajectory i.e. z (note that we have not required z(0) = x in (1.1)). Hence the state space
for problem (1.1) is infinite-dimensional (we refer to the classical books [2,19] for a general theory and more
examples regarding the control of infinite-dimensional systems). Note that if we had imposed an additional
continuity condition ensuring x = z(0), then the value function would have been a function of the past z only.
There are several reasons why we have not adopted this point of view and have preferred to write everywhere x
and z as if they were independent variables. The main one, is that it enables to understand the tight connections
between the control problem (1.1) and the Hamilton-Jacobi-Bellman equation:

λv(x, z) +H(x, z,∇xv(x, z)) + 〈Dzv(x, z), ż〉 = 0 if z(0) = x. (1.2)

The previous equation presents several difficulties. The first one is of course its infinite-dimensional nature. The
second one comes from the presence of the time derivative of z, ż in the equation and the third one from the
restriction x = z(0). In a series of articles [8–13], Crandall and Lions developed a general theory of viscosity
solutions in infinite dimensions. This theory is of course of particular interest for the optimal control of infinite-
dimensional systems. In such problems, the Hamilton-Jacobi equation frequently contains an unbounded linear
term (as in (1.2)) and in [11–13], Crandall and Lions showed how to overcome this additional difficulty. The
main contribution of the present paper is to show, in a rather simple and self-contained way, how the theory
of viscosity solutions in infinite dimensions of Crandall and Lions can be applied to fully characterize the value
function (1.1) as the unique solution of (1.2). For the sake of simplicity, we will work in a Hilbertian framework
i.e. in the state space E := R

d × L2(R+,R
d) and defining:

E0 := {(z(0), z), z ∈ H1(R+,R
d)},
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v will be said to be a viscosity subsolution of (1.2) if for every (x0, z0) ∈ R
d ×L2 and every φ ∈ C1(Rd ×L2,R)

such that v − φ has a local maximum (in the sense of the strong topology of R
d × L2) at (x0, z0), one has:

λv(x0, z0) +H(x0, z0,∇xφ(x0, z0)) + liminf(x,z)∈E0→(x0,z0) 〈Dzφ(x, z), ż〉 ≤ 0.

Supersolutions of (1.2) are defined in a similar way. Now, a convenient way to study (1.2) is to rewrite it as an
Hamilton-Jacobi equation with an unbounded linear term as in Crandall and Lions [11–13]. Namely, defining
α = (x, z), the equation reads as:

λv(α) +H(α,∇xv(α)) − x · ∇xv(α) + 〈T ∗(α), Dv(α)〉 = 0, α ∈ D(T ∗), (1.3)

where T is the linear unbounded operator on E with domain D(T ) = R
d ×H1 defined by

T (y, w) := (y − w(0),−ẇ), ∀(y, w) ∈ D(T ). (1.4)

So that its adjoint, T ∗ has domain D(T ∗) = E0 and is given by

T ∗(x, z) := (z(0), ż) = (x, ż), ∀(x, z) ∈ D(T ∗) = E0. (1.5)

Section 2 is devoted to some preliminaries on the Cauchy problem and continuity properties of the value
function. Section 3 concerns the dynamic programming principle. In Section 4, we identify the Hamilton-Jacobi-
Bellman equation of the problem and establish that the value function is a viscosity solution of this equation.
In Section 5, we prove a comparison result. Finally, in Section 6, we end the paper by some concluding remarks.

2. Assumptions and preliminaries

2.1. On the Cauchy problem

Let K be a compact metric space, we define the set of admissible controls V as the set of measurable functions
on (0,+∞) with values in K. For z ∈ L2 := L2((0,+∞),Rd), x ∈ R

d and u ∈ V an admissible control, we
consider the following controlled equation

ẋ(t) = F

(
x(t), u(t),

∫ +∞

0

A(s)x(t − s)ds
)
, t > 0, (2.1)

together with the boundary conditions:

x(0) = x, x(−s) = z(s), s > 0. (2.2)

In the paper, d and k are given positive integers and we will always assume the following on the data A and F :
• (H1) F ∈ C0(Rd ×K × R

k,Rd) and there exists a constant C1 ≥ 0 such that:

|F (x, u, α) − F (y, u, β)| ≤ C1(|x− y| + |α− β|), (2.3)

for every (x, y, α, β, u) ∈ R
d × R

d × R
k × R

k × V ;
• (H2) A ∈ L2((0,+∞),Mk×d) ∩L1((0,+∞),Mk×d) (Mk×d standing for the space of real matrices with
k rows and d columns).

In the sequel, we shall sometimes use a stronger assumption than (H2). Namely:
(H2’) A ∈ H1((0,+∞),Mk×d) ∩ L1((0,+∞),Mk×d).

At this point, let us mention that we will always identify L2 with its dual and therefore we won’t identify
H1 and (H1)′.
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Before studying the optimal control of equations with memory of type (2.1), let us establish the existence,
uniqueness and continuous dependence with respect to initial conditions for the Cauchy problem (2.1)–(2.2). The
results of this section (Props. 2.1 and 2.2) are fairly standard but we give proofs for the sake of completeness and
to keep the present paper self-contained. Conditions (H1) and (H2) of course ensure existence and uniqueness
of a solution to the Cauchy problem (2.1)–(2.2):

Proposition 2.1. Assume that (H1) and (H2) hold. For every (x, z, u) ∈ R
d × L2 × V , the Cauchy problem

(2.1)–(2.2) admits a unique solution.

Proof. For θ > 0, define
Eθ := {y ∈ C0(R+,R

d), sup
t≥0

e−θt|y(t)| < +∞}
and equip Eθ with the norm:

‖y‖θ := sup
t≥0

e−θt|y(t)|.
Of course, (Eθ, ‖.‖θ) is a Banach space. For y ∈ Eθ, let us define:

Ty(t) := x+
∫ t

0

F (y(s), u(s), Gy(s))ds, ∀t ≥ 0

where

Gy(s) :=
∫ s

0

A(τ)y(s − τ)dτ +
∫ +∞

s

A(τ)z(τ − s)dτ.

Until the end of the proof, C will denote a positive constant (only depending on F and A) which may vary from
one line to another. Let y ∈ Eθ, with assumption (H1) on F , we first get:

|Ty(t)| ≤ |x| + C

(
t+

eθt

θ
‖y‖θ +

∫ t

0

|Gy(s)|ds
)
. (2.4)

Now, with (H2) we also have

|Gy(s)| ≤
(∫ s

0

|A(τ)||y(s − τ)|dτ + ‖A‖L2‖z‖L2

)

≤ ‖A‖L2

(
‖y‖θ

(∫ s

0

e2θ(s−τ)dτ
)1/2

+ ‖z‖L2

)

≤ C

(
1 +

eθs‖y‖θ√
2θ

)
·

Together with (2.4), we then have

|Ty(t)|e−θt ≤ |x|e−θt + C

(
te−θt + ‖y‖θ

(
1
θ

+
1√

2θ3/2

))

which proves that T (Eθ) ⊂ Eθ. For y1 and y2 in Eθ and t ≥ 0, on the one hand, we have:

|Ty1(t) − Ty2(t)| ≤ C

(
eθt

θ
‖y1 − y2‖θ +

∫ t

0

|Gy1(s) −Gy2(s)|ds
)

on the other hand:

|Gy1(s) −Gy2(s)| ≤
Ceθs

√
2θ

‖y1 − y2‖θ
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so that:

‖Ty1 − Ty2‖θ ≤ C‖y1 − y2‖θ

(
1
θ

+
1√

2θ3/2

)
·

For θ large enough (θ ≥ 2C + 1, say), T is a contraction of Eθ hence admits a unique fixed-point. This clearly
proves the desired result. �

From now on, for every (x, z, u) ∈ R
d × L2 × V , we denote by yx,z,u the solution of the Cauchy problem

(2.1)–(2.2). The continuous dependence with respect to (x, z) of trajectories of (2.1)–(2.2) is given by:

Proposition 2.2. Assume that (H1) and (H2) hold. Let u ∈ V , (x0, z0) and (x, z) be in R
d × L2 and define

y0 := yx0,z0,u, y := yx,z,u, then we have

|y(t) − y0(t)| ≤ Ceθt(|x − x0| + ‖z − z0‖L2), ∀t ≥ 0

for some constants C and θ depending only on F and A.

Proof. In this proof, C will denote a positive constant that only depends on F and A but which may vary from
one line to another. Defining for s ≥ 0

β(s) :=
∫ s

0

A(s− τ)y(τ)dτ +
∫ +∞

0

A(s+ τ)z(τ)dτ,

β0(s) :=
∫ s

0

A(s− τ)y0(τ)dτ +
∫ +∞

0

A(s+ τ)z0(τ)dτ,

γ(s) := sup
[0,s]

|y − y0|, Γ(s) :=
∫ s

0

γ,

we first have:

|y(s) − y0(s)| ≤ |x− x0| + C

(∫ s

0

(|y − y0| + |β − β0|)
)
.

Since we also have
|β(τ) − β0(τ)| ≤ C (γ(τ)‖A‖L1 + ‖A‖L2‖z − z0‖L2)

for t ≥ 0, we then get:
Γ′(t) ≤ |x− x0| + C (Γ(t) + ‖z − z0‖L2t)

which, together with Gronwall’s Lemma gives the desired result. �

Remark 2.1. Let us remark that when one further assumes that (H’2) holds (i.e. A is further assumed to
be H1), then the estimate of Proposition 2.2 also holds true when one replaces ‖z − z0‖L2 by ‖z − z0‖(H1)′ .

2.2. The optimal control problem

For (x, z) ∈ R
d × L2, we consider the optimal control problem

v(x, z) := inf
u∈V

∫ +∞

0

e−λsL(yx,z,u(s), u(s))ds, (2.5)

where (H3): λ > 0 and L : R
d ×K → R is assumed to be bounded, continuous and to satisfy

|L(x, u) − L(y, u)| ≤ C2|x− y|, ∀(x, y, u) ∈ R
d × R

d ×K (2.6)

for some C2 ≥ 0. Throughout the paper, we will assume that (H1), (H2) and (H3) hold.
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2.3. Continuity properties of the value function

As a consequence of Proposition 2.2, we deduce that v is bounded and uniformly continuous on R
d × L2,

which we denote v ∈ BUC(Rd ×L2,R). More precisely, adapting classical arguments (see e.g. Barles [4]) to our
context, we have:

Proposition 2.3. Assume that (H1), (H2) and (H3) hold, then v ∈ BUC(Rd × L2,R) and more precisely,
defining θ as in Proposition 2.2, one has:

(1) v is Lipschitz continuous on R
d × L2 if λ > θ;

(2) v ∈ C0,λ/θ(Rd × L2,R) if λ < θ;
(3) v ∈ C0,α(Rd × L2,R) for every α ∈ (0, 1) if λ = θ.

Proof. Let us define
δ := |x− x0| + ‖z − z0‖L2.

Let ε > 0 and uε be such that

∫ +∞

0

e−λsL(yx,z,uε(s), uε(s))ds ≤ v(x, z) + ε

setting yε := yx,z,uε , yε
0 := yx0,z0,uε we then have:

v(x0, z0) − v(x, z) ≤
∫ +∞

0

e−λs (L(yε
0(s), uε(s)) − L(yε(s), uε(s))) ds+ ε.

Using Proposition 2.2 and assumption (H3) on L, we then get, for some C ≥ 0 and all T ≥ 0:

v(x0, z0) − v(x, z) ≤ C

(∫ T

0

δe(θ−λ)sds+ e−λT

)
. (2.7)

If λ > θ, we then have:

v(x0, z0) − v(x, z) ≤ Cδ

λ− θ

which proves the first claim.
If λ < θ and if δ < 1 (which may be assumed to prove that v is Hölder) taking e−λT := δλ/θ in (2.7) then

yields

v(x0, z0) − v(x, z) ≤ C

(
1 +

1
θ − λ

)
δλ/θ

which proves the second claim.
Finally, if λ = θ (and again assuming δ < 1), taking e−λT = δ in (2.7) yields:

v(x0, z0) − v(x, z) ≤ C

(−δ log(δ)
λ

+ δ

)

which proves the last claim. �

Remark 2.2. Again, if A is further assumed to be H1 (i.e. when (H’2) holds) then the uniform continuity
of v also holds true for the norm (x, z) �→ |x| + ‖z‖(H1)′ i.e. when in the previous proof δ is replaced by
δ := |x− x0| + ‖z − z0‖(H1)′ . This fact will be useful later on when proving the comparison result.
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In the sequel, we shall denote by C0(Rd ×L2
w,R) the class of real-valued functions defined on R

d ×L2 which
are sequentially continuous for the weak topology of R

d × L2, we then have the following:

Proposition 2.4. Assume that (H1), (H2) and (H3) hold, then v ∈ C0(Rd × L2
w,R).

Proof. Let (αn)n := (zn, xn)n be a weakly convergent sequence in R
d × L2 and let us denote by α := (x, z) ∈

R
d × L2 its weak limit. Let u ∈ V be some admissible control and simply denote yn := yαn,u and y :=

yα,u the trajectories of (2.1) associated respectively to the initial conditions αn and α. If we prove that yn

converges uniformly on compact subsets to y as n tends to +∞ then the desired result will easily follow from
our assumptions on L. Let us define

δn(t) :=
∫ +∞

0

A(t+ s)zn(s)ds, δ(t) :=
∫ +∞

0

A(t+ s)z(s)ds.

Since A ∈ L2 by (H2), we have:
|δn(t)| ≤ ‖A‖L2‖zn‖L2 ≤ C.

Thanks to (H2) again, δn converges pointwise to δ. Rewriting the state equation as:

ẏ(t) = F

(
y(t), u(t), δ(t) +

∫ t

0

A(t− s)y(s)ds
)
,

ẏn(t) = F

(
yn(t), u(t), δn(t) +

∫ t

0

A(t− s)yn(s)ds
)

we get:

|ẏn − ẏ|(t) ≤ C

(
|yn − y|(t) + |δn − δ|(t) +

∫ t

0

|A(t− s)(yn − y)(s)|ds
)

(2.8)

(where again in this proof C denotes a nonnegative constant depending only on F and A but possibly changing
from one line to another). Defining

γn(t) := sup
[0,t]

|yn − y|, Γn(t) :=
∫ t

0

γn,

inequality (2.8) yields for all s ∈ [0, t]:

|ẏn − ẏ|(s) ≤ C
(|yn − y|(s) + |δn − δ|(s) + ‖A‖L1(0,t)γn(s)

)
.

Integrating the previous yields:

|yn − y|(s) ≤ |xn − x| + C

(
Γn(t) +

∫ t

0

|δn − δ|
)
, ∀s ∈ [0, t].

Hence

γn(t) = Γ̇n(t) ≤ |xn − x| + C

(
Γn(t) +

∫ t

0

|δn − δ|
)
. (2.9)

On the one hand, dominated convergence implies that

lim
n

∫ t

0

|δn − δ| = 0, ∀t ∈ [0,+∞)

on the other hand, (2.9) and Gronwall’s Lemma imply that Γn(t) tends to 0 as n tends to +∞. With (2.9), this
proves that γn(t) tends to 0 as n tends to +∞ and the desired result follows. Let us remark that, with (2.8),
this of course also implies that (yn)n converges to y in W 1,∞

loc (R+,R
d). �
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3. Dynamic programming principle

Our aim now is to prove that the value function v obeys the following dynamic programming principle:

Proposition 3.1. Let (x, z) ∈ R
d × L2 and t ≥ 0, we then have:

v(x, z) = inf
u∈V

{∫ t

0

e−λsL(yx,z,u(s), u(s))ds+ e−λtv(yx,z,u(t), yx,z,u(t− .))
}

(3.1)

(yx,z,u(t− .)(s) := yx,z,u(t− s) for all s > 0).

Proof. Let ε > 0 and uε ∈ V be such that

∫ +∞

0

e−λsL(yx,z,uε(s), uε(s))ds ≤ v(x, z) + ε

we then have

v(x, z) + ε ≥
∫ t

0

e−λsL(yx,z,uε(s), uε(s))ds+ e−λt

∫ +∞

0

e−λτL(yx,z,uε(t+ τ), uε(t+ τ))dτ.

Using the fact that yx,z,uε(t + .) is the trajectory associated to the initial conditions (yx,z,uε(t), yx,z,uε(t − .))
and the control uε(t+ .), we deduce:

v(x, z) + ε ≥
∫ t

0

e−λsL(yx,z,uε(s), uε(s))ds + e−λtv(yx,z,uε(t), yx,z,uε(t− .))

≥ inf
u∈V

{∫ t

0

e−λsL(yx,z,u(s), u(s))ds+ e−λtv(yx,z,u(t), yx,z,u(t− .))
}
·

To prove the converse inequality, let u ∈ V ,

xt := yx,z,u(t), zt := yx,z,u(t− .),

ε > 0 and ωε ∈ V be such that:

∫ +∞

0

e−λsL(yxt,zt,ωε(s), ωε(s))ds ≤ v(xt, zt) + ε

defining

uε(s) :=
{
u(s) if s ∈ [0, t]
ωε(s− t) if s > t

we have

yx,z,uε(s) :=
{
yx,z,u(s) if s ∈ [0, t]
yxt,zt,ωε(s− t) if s > t

hence

v(x, z) ≤
∫ t

0

e−λsL(yx,z,u(s), u(s))ds+
∫ +∞

t

e−λsL(yxt,zt,ωε(s− t), ωε(s− t))ds

≤
∫ t

0

e−λsL(yx,z,u(s), u(s))ds+ e−λt(v(xt, zt) + ε)

since u and ε > 0 are arbitrary, we get the desired result. �
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4. Viscosity solutions and Hamilton-Jacobi-Bellman equations

4.1. Preliminaries

Let us define
E0 := {(z(0), z), z ∈ H1((0,+∞),Rd)} (4.1)

and remark that E0 is a dense subspace of our initial state space E := R
d × L2. With the uniform continuity

of v on R
d × L2, this implies that v is fully determined by its restriction to E0. In fact, we will derive from

the dynamic programming principle a PDE satisfied by v (a priori only on E0) and by a comparison result we
will see that in fact this equation (satisfied in some appropriate viscosity sense) fully characterizes the value
function v. Let us define

F(x, z, u) := F

(
x, u,

∫ +∞

0

A(s)z(s)ds
)
, ∀(x, z, u) ∈ R

d × L2 ×K. (4.2)

Before going further, we need the following classical lemma (see for instance [6], Lem. IV.4):

Lemma 4.1. Let δ > 0 and z ∈ L2((−δ,+∞),Rd) for t ∈ [0, δ], define zt(s) := z(s − t) for s ≥ 0, then zt

converges to z in L2(R+,R
d) as t goes to 0+.

We will also need the following

Lemma 4.2. Let (x, z) ∈ E0, u ∈ V and for t > 0 define:

xt := yx,z,u(t), zt(τ) := yx,z,u(t− τ), ∀τ > 0,

then t �→ (xt, zt) is locally Lipschitz in t (uniformly in the control u ∈ V ) for the R
d × L2 norm. Moreover, for

all t ≥ 0

lim
s→0+

zt+s − zt

s
= −żt inL2, (4.3)

and, for every t which is a Lebesgue point of t �→ F(xt, zt, u(t))

lim
s→0+

xt+s − xt

s
= F(xt, zt, u(t)). (4.4)

Proof. The lipschitzianity of t �→ xt and the proof of (4.4) are straightforward. To shorten notation, we define
y := yx,z,u and remark that for every t ≥ 0, y ∈ H1((−∞, t),Rd) and that y ∈ W 1,∞

loc ((0,+∞),Rd) so that (4.3)
will imply the local lipschitzianity of t �→ zt. To prove (4.3), let us introduce for s > 0 and τ ≥ 0:

Δs(τ) :=
zt+s(τ) − zt(τ)

s
+ żt(τ)

which can be rewritten as:

Δs(τ) =
y(t+ s− τ) − y(t− τ)

s
− ẏ(t− τ)

=
1
s

∫ s

0

(ẏ(t− τ + α) − ẏ(t− τ)) dα

Jensen’s inequality first yields:

Δs(τ)2 ≤ 1
s

∫ s

0

(ẏ(t− τ + α) − ẏ(t− τ))2 dα
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using Fubini’s theorem, we then get:

‖Δs‖2
L2 ≤ 1

s

∫ s

0

(∫
R+

(ẏ(t− τ + α) − ẏ(t− τ))2 dτ

)
dα.

By the same arguments as in Lemma 4.1 and since y ∈ H1((−∞, t),Rd), for every t ≥ 0, we deduce that for
every ε > 0, there exists sε > 0 such that for all α ∈ [0, sε], one has:(∫

R+

(ẏ(t− τ + α) − ẏ(t− τ))2 dτ

)
≤ ε

which proves that Δs converges to 0 in L2 as s goes to 0. �
Remark 4.1. It follows from Lemma 4.2 that if ψ ∈ C1(R × R

d × L2,R) then the function t �→ ψ(t, xt, zt) is
locally Lipschitz in t (in fact, uniformly in the control u ∈ V ) and for all t ≥ 0, one has:

ψ(t, xt, zt) = ψ(0, x0, z0) +
∫ t

0

(∂tψ(s, xs, zs) + ∇xψ(s, xs, zs) · F(xs, zs, u(s)) − 〈Dzψ(s, xs, zs), żs〉) ds.

4.2. Formal derivation of the equation

To formally derive the Hamilton-Jacobi-Bellman equation of our problem, let us assume for a moment that
v is of class C1 on R

d × L2. Let (x, z) ∈ E0, u ∈ K be some admissible constant control, and set

(xt, zt) := (yx,z,u(t), yx,z,u(t− .)),

by the dynamic programming principle, we first have:

v(x, z) ≤
∫ t

0

e−λsL(xs, u)ds+ e−λtv(xt, zt)

so that
L(x, u) + lim

t→0+

1
t

(
e−λtv(xt, zt) − v(x, z)

) ≥ 0

together with Lemma 4.2, this reads as

L(x, u) + ∇xv(x, z) · F(x, z, u) − λv(x, z) − 〈Dzv(x, z), ż〉 ≥ 0

and since u is arbitrary, this yields

λv(x, z) + 〈Dzv(x, z), ż〉 + sup
u∈K

{
− L(x, u) −∇xv(x, z) · F(x, z, u)

}
≤ 0.

We then define the Hamiltonian:

H(x, z, p) := sup
u∈K

{−L(x, u)− p · F(x, z, u)}, ∀(x, z, p) ∈ R
d × L2 × R

d. (4.5)

Let u ∈ V , and simply denote (xt,u, zt,u) := (yx,z,u(t), yx,z,u(t− .)). Using Remark 4.1 following Lemma 4.2,
with ψ(t, x, z) := e−λtv(x, z), we have:

e−λtv(xt,u, zt,u) = v(x, z) −
∫ t

0

e−λsλv(xs,u, zs,u)ds+
∫ t

0

e−λs (∇xv(xs,u, zs,u) · F(xs,u, zs,u, u(s))

−〈Dzv(xs,u, zs,u), żs,u〉) ds
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so that the dynamic programming principle yields:

0 = inf
u∈V

{∫ t

0

e−λs(L(xs,u, u(s)) − λv(xs,u, zs,u) + ∇xv(xs,u, zs,u) · F(xs,u, zs,u, u(s))

− 〈Dzv(xs,u, zs,u), żs,u〉)ds
}

≥ inf
u∈V

{∫ t

0

e−λs(−H(xs,u, zs,u,∇xv(xs,u, zs,u)) − λv(xs,u, zs,u)

− 〈Dzv(xs,u, zs,u), żs,u〉)ds
}
·

It is natural to expect the integrand above to converge as t→ 0+, uniformly in u to

−H(x, z,∇xv(x, z)) − λv(x, z) − 〈Dzv(x, z), ż〉

so that:
λv(x, z) + 〈Dzv(x, z), ż〉 +H(x, z,∇xv(x, z)) ≥ 0.

Thus, at least formally, the Hamilton-Jacobi-Bellman equation satisfied by the value function v can be
written as:

λv(x, z) +H(x, z,∇xv(x, z)) + 〈Dzv(x, z), ż〉 = 0 on E0 (4.6)
with H defined by (4.5).

The next lemma whose easy proof is left to the reader gives the regularity properties of H :

Lemma 4.3. Let H be the Hamiltonian defined by (4.5). Assume that (H1), (H2) and (H3) hold, then there
exists a nonnegative constant C such that:

|H(x, z, p) −H(y, w, p)| ≤ C (|x− y| + ‖z − w‖L2) (1 + |p|), (4.7)

and
|H(x, z, p) −H(x, z, q)| ≤ C|p− q|(1 + |x| + ‖z‖L2), (4.8)

for every (x, z, y, w, p, q) ∈ (Rd×L2)2×R
d×R

d. If, in addition (H’2) is satisfied, then (4.7) can be improved by:

|H(x, z, p) −H(y, w, p)| ≤ C
(|x− y| + ‖z − w‖(H1)′

)
(1 + |p|), (4.9)

for every (x, z, y, w, p) ∈ (Rd × L2)2 × R
d.

4.3. Definition of viscosity solutions

The formal manipulations above actually suggest that the natural definition of viscosity solutions in the
present context should read as:

Definition 4.1. Let w ∈ BUC(Rd × L2,R) ∩ C0(Rd × L2
w,R), then w is said to be:

(1) A viscosity subsolution of (4.6) on R
d ×L2 if for every (x0, z0) ∈ R

d ×L2 and every φ ∈ C1(Rd ×L2,R)
such that w − φ has a local maximum (in the sense of the strong topology of R

d × L2) at (x0, z0), one
has:

λw(x0, z0) +H(x0, z0,∇xφ(x0, z0)) + liminf(x,z)∈E0→(x0,z0) 〈Dzφ(x, z), ż〉 ≤ 0,

where the convergence (x, z) ∈ E0 → (x0, z0) has to be understood in the strong R
d × L2 sense;
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(2) A viscosity supersolution of (4.6) on R
d×L2 if for every (x0, z0) ∈ R

d×L2 and every φ ∈ C1(Rd×L2,R)
such that w − φ has a local minimum (in the sense of the strong topology of R

d × L2) at (x0, z0), one
has:

λw(x0, z0) +H(x0, z0,∇xφ(x0, z0)) + limsup(x,z)∈E0→(x0,z0) 〈Dzφ(x, z), ż〉 ≥ 0,

where the convergence (x, z) ∈ E0 → (x0, z0) has to be understood in the strong R
d × L2 sense;

(3) A viscosity solution of (4.6) on R
d × L2 if it is both a viscosity subsolution of (4.6) and a viscosity

supersolution of (4.6) on R
d × L2.

Let us mention that the previous definition is not exactly the classical one of Crandall and Lions: here we
allow a larger class of test-functions and use liminf and limsup to handle the unbounded term in the equation
whereas Crandall and Lions use a smaller class of test-functions for which the evaluation of the unbounded term
evaluated at the gradient directly makes sense. The reason for the present choice is that it will simplify the proof
of the comparison principle without making the proof of the fact that the value function is a viscosity solution
difficult. In principle, if one considers too large classes of test-functions, existence becomes harder to prove (and
may even be a real problem), but as we will see in the next paragraph, existence here will be guaranteed by the
fact that the value function is a viscosity solution.

4.4. The value function is a viscosity solution

Proposition 4.1. Assume that (H1), (H2) and (H3) hold. The value function v defined by (2.5) is a viscosity
solution of (4.6) on R

d × L2.

Proof. Step 1. v is a viscosity subsolution.
Let α0 := (x0, z0) ∈ R

d × L2 and φ ∈ C1(Rd × L2,R) such that v(x0, z0) = φ(x0, z0) and φ ≥ v on the ball
Br := B((x0, z0), r) of R

d × L2. Let u ∈ K be some constant control. There exists ε0 > 0 such that for all
ε ∈ (0, ε0), there is some αε := (xε, zε) ∈ E0 such that

φ(αε) − ε2 ≤ v(αε) ≤ φ(αε), lim
ε
αε = α0 in R

d × L2

and such that αε,s = (xε,s, zε,s) = (yαε,u(s), yαε,u(s − .)) belongs to Br for all s ∈ [0, ε]. Note that by
construction, αε,s belongs to E0 for every s ∈ [0, ε]. The dynamic programming principle first yields

φ(αε) − ε2 ≤
∫ ε

0

e−λsL(xε,s, u)ds+ e−λεφ(αε,ε). (4.10)

Thanks to the smoothness of φ, Lemma 4.2 and Remark 4.1, we can write:

e−λεφ(αε,ε) = φ(αε) +
∫ ε

0

e−λs(∇xφ(αε,s) · F(αε,s, u) − λφ(αε,s))ds−
∫ ε

0

e−λs 〈Dzφ(αε,s), żε,s〉ds.

Since αε converges to α0, one easily deduces from Lemma 4.1 that

sup
s∈[0,ε]

‖αε,s − α0‖Rd×L2 → 0 as ε→ 0+.

Denoting by ψ(s, α) := e−λs((∇xφ(α) · F(α, u) − λφ(α)), we then have

sup
s∈[0,ε]

|ψ(s, αε,s) − ψ(0, αε)| → 0 as ε→ 0+.
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We thus get:

e−λεφ(αε,ε) = φ(αε) + ε(∇xφ(αε) · F(αε, u) − λφ(αε) −
∫ ε

0

e−λs 〈Dzφ(αε,s), żε,s〉ds) + o(ε).

Using (4.10), dividing by ε and taking the liminf as ε→ 0+, we then get:

0 ≥ liminfε→0+

(
−1
ε

∫ ε

0

e−λsL(xε,s, u)ds−∇xφ(αε) · F(αε, u) + λφ(αε)
)

+ liminfε→0+
1
ε

∫ ε

0

e−λs 〈Dzφ(αε,s), żε,s〉ds.

Since we have:

liminfε→0+
1
ε

∫ ε

0

e−λs 〈Dzφ(αε,s), żε,s〉ds ≥ liminf(x,z)∈E0→α0 〈Dzφ(x, z), ż〉,

we then obtain:

0 ≥ −L(x0, u) −∇xφ(α0) · F(α0, u) + λv(α0) + liminf(x,z)∈E0→α0 〈Dzφ(x, z), ż〉 ·

Since u ∈ K is arbitrary in the previous inequality, taking the supremum with respect to u and using the very
definition of H given in (4.5), we thus deduce:

λv(α0) +H(α0,∇xφ(α0)) + liminf(x,z)∈E0→α0 〈Dzφ(x, z), ż〉 ≤ 0,

which proves that v is a viscosity subsolution of (4.6) on R
d × L2.

Step 2. v is a viscosity supersolution.

Now let φ ∈ C1(Rd × L2,R) be such that v(α0) = φ(α0) and v ≥ φ on the ball Br := B(α0, r) of R
d × L2.

There exists ε0 > 0 such that for all ε ∈ (0, ε0), there is some αε := (xε, zε) ∈ E0 such that

φ(αε) + ε2 ≥ v(αε) ≥ φ(αε), lim
ε
αε = α0 in R

d × L2

and such that for every u ∈ V , αε,s,u = (xε,s,u, zε,s,u) = (yαε,u(s), yαε,u(s − .)) belongs to Br for all s ∈ [0, ε].
The dynamic programming principle then gives:

φ(αε) + ε2 ≥ inf
u∈V

{∫ ε

0

e−λsL(xε,s,u, u(s))ds+ e−λεφ(αε,ε,u)
}
· (4.11)

With Lemma 4.2 and Remark 4.1, we can rewrite

e−λεφ(αε,ε,u) = φ(αε)−
∫ ε

0

e−λsλφ(αε,s,u)ds+
∫ ε

0

e−λs (∇xφ(αε,s,u) · F(αε,s,u, u(s)) − 〈Dzφ(αε,s,u), żε,s,u〉) ds.

Using (4.11), we then get:

ε2 ≥ inf
u∈V

{∫ ε

0

e−λs(L(xε,s,u, u(s)) − λφ(αε,s,u) + ∇xφ(αε,s,u) · F(αε,s,u, u(s)) − 〈Dzφ(αε,s,u), żε,s,u〉)ds
}
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and then

ε2 ≥ inf
u∈V

{∫ ε

0

e−λs(−H(αε,s,u,∇xφ(αε,s,u)) − λφ(αε,s,u) − 〈Dzφ(αε,s,u), żε,s,u〉)ds
}
· (4.12)

From the continuity of ∇xφ and H , we deduce the (uniform in u) convergence as ε → 0+ and s ∈ [0, ε], of
∇xφ(αε,s,u), and H(αε,s,u,∇xφ(αε,s,u)) respectively to ∇xφ(α0) and H(α0,∇xφ(α0)). Using the fact that

lim sup
ε→0+

sup
u∈V

{
1
ε

∫ ε

0

〈Dzφ(αε,s,u), żε,s,u〉ds

}
≤ lim sup

(x,z)∈E0→α0

〈Dzφ(x, z), ż〉

dividing by −ε inequality (4.12) and taking the limsup as ε→ 0+, we thus get:

λv(α0) +H(α0,∇xφ(α0)) + limsup(x,z)∈E0→α0
〈Dzφ(x, z), ż〉 ≥ 0

which proves that v is a viscosity supersolution of (4.6) on R
d × L2. �

5. Comparison and uniqueness

5.1. Preliminaries

Our aim now is to prove that v is the unique viscosity subsolution of the Hamilton-Jacobi-Bellman equation:

λv(x, z) +H(x, z,∇xv(x, z)) + 〈Dzv(x, z), ż〉 = 0.

This will of course follow from a comparison result stating that if v1 and v2 (in a suitable class of continuous
functions) are respectively a viscosity subsolution and a viscosity supersolution of the equation then v1 ≤ v2
on E := R

d × L2. As usual, the comparison result is proved, by introducing a doubling of variables and by
considering perturbed problems of the form:

sup
{
v1(α1) − v2(α2) − Pθ(α1, α2) : (α1, α2) ∈ (Rd × L2)2

}
where Pθ is some perturbation function (depending on small parameters θ). This perturbation includes a
penalization of the doubling of variables and coercive terms that ensure the existence of maxima say αθ

1 and αθ
2.

Then one uses the fact that v1 is a viscosity subsolution by taking φ := Pθ(., αθ
2) as test-function.

To overcome the difficulties due to the fact that the term 〈Dzφ(α), ż〉 is only defined for z ∈ H1 and that the
equation is only justified when in addition z(0) = x, one has to be careful on the choice of the perturbation Pθ.
For general infinite-dimensional Hamilton-Jacobi equations with an unbounded linear term, these difficulties
were solved in a general way by Crandall and Lions in [11–13]. One of the key arguments of Crandall and Lions
in [11] is to use a suitable norm to penalize the doubling of variables. In our context this, roughly speaking,
amounts to use a kind of (H1)′ norm instead of the L2 norm in the doubling of variables. As usual, the
comparison proof will very much rely on the use of quadratic test-functions of the form:

φ(α) = Φ1(x) + Φ2(α) + Φ3(z) := a|x|2 + b 〈B(α− α0), α− α0〉 + c‖z‖2

where a and b and c are constants and B is a bounded positive self-adjoint operator of R
d × L2. Let us first

note that in our case the term 〈Φ′
3(z), ż〉 = 2c 〈z, ż〉 can be dealt easily since, if z ∈ H1, one has:

〈z, ż〉 = −1
2
|z(0)|2
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and since in the definition of viscosity solutions, we have imposed the convergence of the initial value z(0), it is
easy to figure out that this term won’t be a big problem in the proof. The difficulty of dealing with the second
term 〈DzΦ2(α), ż〉 can be solved by properly choosing B as in Crandall and Lions [12] who emphasized the
good properties B should enjoy for the comparison proof to work. We now proceed to the explicit construction
of such a B in our context.

Let us endow E := R
d × L2 with its standard Hilbertian structure, i.e. with the norm:

‖α‖2 := |x|2 + ‖z‖2
L2, ∀α = (x, z) ∈ E

and the corresponding inner product 〈., .〉. Let T be the linear unbounded operator on E with domain
D(T ) = R

d ×H1 and defined by

T (y, w) := (y − w(0),−ẇ), ∀(y, w) ∈ D(T ). (5.1)

Its adjoint T ∗ has domain D(T ∗) = E0 = {(x, z) ∈ E : z ∈ H1, z(0) = x} and is given by

T ∗(x, z) := (z(0), ż) = (x, ż), ∀(x, z) ∈ D(T ∗) = E0. (5.2)

The unbounded operator I + T ∗T therefore has domain

D(T ∗T ) = {(y, w) ∈ E : w ∈ H2, y = w(0) − ẇ(0)}

and is given by
(I + T ∗T )(y, w) := (2y − w(0),−ẅ + w), ∀(y, w) ∈ D(T ∗T ). (5.3)

Now, let us set B := (I + T ∗T )−1. For α = (x, z) ∈ E, (y, w) := B(α) is defined as follows: firstly, w ∈ H2 is
the solution of { −ẅ + w = z in (0,+∞)

−2ẇ(0) + w(0) = x,
(5.4)

secondly, y is defined by

y =
x+ w(0)

2
= w(0) − ẇ(0). (5.5)

In the sequel we shall also denote B = (B1, B2) where B2(x, z) = w is defined by (5.4) and B1(x, z) = y is given
by (5.4) and (5.5). Setting:

‖α‖2
B := 〈B(α), α〉 , ∀α = (x, z) ∈ E,

and defining w := B2(α) by (5.4), an elementary computation shows that

‖α‖2
B =

|x|2
2

+
|w(0)|2

2
+ ‖w‖2

H1 . (5.6)

Now, using the fact that ‖z‖2
(H1)′ = ‖w + ϕ‖2

H1 where

{ −ϕ̈+ ϕ = 0 in (0,+∞)
ϕ̇(0) = x−w(0)

2 ,

we then have for some constant m ≥ 0:

‖z‖2
(H1)′ ≤ 2(‖w‖2

H1 + ‖ϕ‖2
H1) ≤ 2‖w‖2

H1 +m(|x|2 + |w(0)|2)

and thus one deduces from (5.6) that there is some constant C > 0, such that

‖(x, z)‖2
B ≥ C

(
|x|2 + ‖z‖2

(H1)′

)
, ∀(x, z) ∈ E. (5.7)
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Obviously, by constructionB is a self-adjoint, nonnegative compact operator on E and TB is a bounded operator
on E. For α = (x, z) ∈ E0 = D(T ∗) and w := B2(α), some computations lead to:

〈TB(α), α〉 = 〈B(α), T ∗(α)〉 =
3
8
|x− w(0)|2 +

x · w(0)
2

≥ 1
8
|x− w(0)|2,

and since TB is continuous and E0 is dense in E this proves

〈TB(α), α〉 ≥ 0, ∀α ∈ E. (5.8)

Let us also remark that for α ∈ E and β := B(α) one has:

‖α‖2
B = 〈α, β〉 = 〈(I + T ∗T )(β), β〉 ≥ ‖β‖2,

so that
‖B(α)‖ ≤ ‖α‖B, ∀α ∈ E. (5.9)

In the sequel we will denote by BUC(EB,R) the space of bounded and uniformly continuous functions on E
equipped with the norm ‖.‖B. Let us remark that because of (5.7), bounded functions which are uniformly
continuous on E equipped with the usual norm of R

d × (H1)′ belong to BUC(EB,R). In particular if A is H1

then the value function v defined by (2.5) belongs to BUC(EB,R).
We end this paragraph by remarking that equation (4.6) now can (at least formally) be rewritten as

λv(α) +H(α,∇xv(α)) − x · ∇xv(α) + 〈T ∗(α), Dv(α)〉 = 0, α ∈ D(T ∗). (5.10)

As in Crandall and Lions [12], we will take advantage of this structure (where 〈T ∗(α), Dv(α)〉 has to be un-
derstood as 〈α, T (Dv(α))〉) by imposing restrictions on test-functions (typically of the form ‖α− α0‖2

B) rather
than on α.

5.2. Comparison theorem

The comparison result for (4.6) then reads as:

Theorem 5.1. Assume that (H1), (H’2) and (H3) hold. Let v1 and v2 be in BUC(EB,R) ∩ C0(Ew,R)
respectively a viscosity subsolution and a viscosity supersolution of (4.6) on R

d × L2 then v1 ≤ v2 on R
d × L2.

Proof. Let us define M := supE(v1 − v2), B := (I + T ∗T )−1 and

‖α‖2
B := 〈B(α), α〉 , ∀α = (x, z) ∈ E

as before. For all ε > 0, δ > 0 and α1 := (x1, z1), α2 := (x2, z2), in R
d × L2, let us set θ := (ε, δ) and

Φθ(α1, α2) := v1(α1) − v2(α2) − 1
2ε

‖α1 − α2‖2
B − δ

2
(‖α1‖2 + ‖α2‖2

)
.

Let us also define:
Mε,δ = Mθ = sup {Φθ(α1, α2), (α1, α2) ∈ E × E} ·

The weak continuity and boundedness properties of v1, v2 ensure that the supremum Mθ is attained at some
points αθ

i = (xθ
i , z

θ
i ) for i = 1, 2.

Let us set
Φ1(α) :=

1
2ε

‖α− αθ
2‖2

B +
δ

2
‖α‖2, ∀α ∈ E,

we then have:

DΦ1(α) =
(

1
ε
B1(α− αθ

2) + δx,
1
ε
B2(α− αθ

2) + δz

)
, ∀α = (x, z) ∈ E.
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Since αθ
1 is a maximum of v1−Φ1 on E and since v1 is a viscosity subsolution of (4.6), we get from Definition 4.1:

λv1(αθ
1) +H(αθ

1, qθ + δxθ
1) + liminfα=(x,z)∈E0→αθ

1

〈
1
ε
B2(α− αθ

2) + δz, ż

〉
≤ 0, (5.11)

where
qθ :=

1
ε
B1(αθ

1 − αθ
2). (5.12)

We then remark that
〈z, ż〉 = −1

2
|z(0)|2 → −1

2
|xθ

1|2 as α ∈ E0 → αθ
1.

Next, we write: 〈
B2(α − αθ

2), ż
〉

=
〈
B(α− αθ

2), T
∗(α)

〉− B1(α− αθ
2) · x

=
〈
TB(α− αθ

2), α
〉 −B1(α− αθ

2) · x

and since TB and B1 are continuous, we get:〈
B2(α − αθ

2), ż
〉→ 〈

TB(αθ
1 − αθ

2), α
θ
1

〉−B1(αθ
1 − αθ

2) · xθ
1 as α ∈ E0 → αθ

1.

Hence (5.11) can be rewritten as:

λv1(αθ
1) +H(αθ

1, qθ + δxθ
1) − qθ · xθ

1 −
δ

2
|xθ

1|2 +
1
ε

〈
TB(αθ

1 − αθ
2), α

θ
1

〉 ≤ 0. (5.13)

Using in a similar way the fact that v2 is a viscosity supersolution, we arrive at:

λv2(αθ
2) +H(αθ

2, qθ − δxθ
2) − qθ · xθ

2 +
δ

2
|xθ

2|2 −
1
ε

〈
TB(αθ

2 − αθ
1), α

θ
2

〉 ≥ 0. (5.14)

Subtracting (5.13) and (5.14) then yields:

λ(v1(αθ
1) − v2(αθ

2)) +H(αθ
1, qθ + δxθ

1) −H(αθ
2, qθ − δxθ

2)

+ qθ · (xθ
2 − xθ

1) −
δ

2
(|xθ

1|2 + |xθ
1|2) +

1
ε

〈
TB(αθ

1 − αθ
2), α

θ
1 − αθ

2

〉 ≤ 0.

Now, thanks to (5.8), the last term is nonnegative, which gives:

λ(v1(αθ
1) − v2(αθ

2)) +H(αθ
1, qθ + δxθ

1) −H(αθ
2, qθ − δxθ

2) + qθ · (xθ
2 − xθ

1) ≤
δ

2
(|xθ

1|2 + |xθ
1|2). (5.15)

Thanks to the fact that v1 and v2 belong to BUC(EB,R), by standard arguments, following exactly the proof
of Lemma 2.9 in [4] (see also [3]), one easily obtains:

lim
θ→(0+,0+)

(
δ‖αθ

i ‖2, ε−1‖αθ
1 − αθ

2‖2
B,Mθ, v1(αθ

1) − v2(αθ
2)
)

= (0, 0,M,M). (5.16)

On the one hand, using (5.6) and (5.16), we have:

|xθ
1 − xθ

2| ≤
√

2‖αθ
1 − αθ

2‖B = o(
√
ε)

on the other hand, using (5.9), we have

|qθ| ≤ 1
ε
‖B(αθ

1 − αθ
2)‖ ≤ 1

ε
‖αθ

1 − αθ
2‖B = o

(
1√
ε

)
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so that
lim

θ→(0+,0+)
qθ · (xθ

2 − xθ
1) = 0.

Lemma 4.3 and (5.7) then imply that there is a nonnegative constant C such that:

|H(α, p) −H(β, p)| ≤ C‖α− β‖B(1 + |p|), ∀(α, β, p) ∈ E2 × R
d, (5.17)

and
|H(α, p) −H(α, q)| ≤ C|p− q|(1 + ‖α‖), ∀(α, p, q) ∈ E × R

d × R
d. (5.18)

We thus deduce

H(αθ
1, qθ + δxθ

1) −H(αθ
2, qθ − δxθ

2) = H(αθ
1, qθ + δxθ

1) −H(αθ
2, qθ + δxθ

1)

+H(αθ
2, qθ + δxθ

1) −H(αθ
2, qθ − δxθ

2)

≤ C
(‖αθ

1 − αθ
2‖B(1 + |qθ| + δ(|xθ

1| + |xθ
2|))
)

+ C
(
(1 + ‖αθ

2‖)δ(|xθ
1| + |xθ

2|)
)

= o(
√
ε)o
(

1√
ε

)
+ o

(
1√
δ

)
o(
√
δ) → 0 as θ → (0+, 0+).

Putting everything together and passing to the limit in (5.15) then yields λM ≤ 0 so that the proof is
complete. �

We have already noticed that if A is H1 then v defined by (2.5) actually belongs to BUC(EB,R). We thus
deduce the following

Theorem 5.2. Assume that (H1), (H’2) and (H3) hold, then the value function v defined by (2.5) is the only
BUC(EB,R) ∩ C0(Ew,R) viscosity solution of (4.6) on R

d × L2.

6. Variants and concluding remarks

6.1. Finite-dimensional reduction

For the sake of simplicity, let us assume in this paragraph that d = k = 1 and that A is an exponential
weight:

A(s) = e−δs, ∀s > 0 with δ > 0. (6.1)
Defining the optimal control problem and its value function v as in (2.5), it is easy to see that, under the special
exponential form of A, v actually depends on z only through the scalar parameter y(z) :=

∫∞
0 e−δsz(s)ds. More

precisely, setting:

v(x, z) = w(x, y(z)), ∀(x, z) ∈ E and y(z) :=
∫ +∞

0

e−δsz(s)ds (6.2)

it is easy to check that v solves the infinite-dimensional Hamilton-Jacobi equation (4.6) if and only if v is given
by (6.2) and w solves the two-dimensional equation:

λw(x, y) +H0(x, y, ∂xw(x, y)) − ∂yw(x, y)(δy + x) = 0, (6.3)

where
H0(x, y, p) := sup

u∈K
{−L(x, u)− p · F (x, u, y)}, ∀(x, y, p) ∈ R

3.

This finite-dimensional reduction of the problem of course heavily relies on the exponential form (6.1). We refer
to [20] for the extension of such finite-dimensional reduction in a stochastic setting. Finally, let us mention that
the reduction to a finite-dimensional dynamics is also possible in the case where A is constant and z ∈ L1.
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6.2. The evolutionary problem

In the present article, we have focused on the stationary case. If we consider, the finite horizon optimal
control problem

v(t, x, z) := inf
u∈V

{∫ T

t

L(s, yt,x,z,u(s), u(s))ds+ g(yt,x,z,u(T ))

}
(6.4)

where yt,x,z,u denotes the solution of the Cauchy problem

ẋ(s) = F

(
s, x(s), u(s),

∫ +∞

0

A(τ)x(s − τ)dτ
)
, t > 0,

with initial conditions x(t) = x, x(t− s) = z(s), s > 0,

this leads to the following evolution equation for v:

∂tv(t, x, z) + inf
u∈K

{L(t, x, u) + ∇xv(t, x, z) · F(t, x, z, u)} − 〈Dzv(t, x, z), ż〉 = 0,

together with the boundary condition

v(T, x, z) = g(x), ∀(x, z) ∈ E.

Acknowledgements. The authors are grateful to an anonymous referee for his numerous and valuable suggestions that led
to an improved presentation.
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