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ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS

Marc Dambrine1 and Djalil Kateb2

Abstract. The level set method has become widely used in shape optimization where it allows a
popular implementation of the steepest descent method. Once coupled with a ersatz material approx-
imation [Allaire et al., J. Comput. Phys. 194 (2004) 363–393], a single mesh is only used leading to
very efficient and cheap numerical schemes in optimization of structures. However, it has some limi-
tations and cannot be applied in every situation. This work aims at exploring such a limitation. We
estimate the systematic error committed by using the ersatz material approximation and, on a model
case, explain that they amplifies instabilities by a second order analysis of the objective function.
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Introduction

Shape optimization consists in finding the shape of a domain which minimizes an objective function or a
criterion. Classical objectives in mechanical engineering are for example, to maximize the torsional rigidity
of a body or to minimize its compliance. Such criteria depend on the computation of a state function. In
such cases, it usually solves a second-order elliptic partial differential equation that contains the physics under
consideration.

Since the pioneering work of Hadamard, a shape calculus has been developed leading to shape derivatives and
to subsequent optimization methods. Among the numerous difficulties one has to face during the design of such
algorithms, the problem of the eventual change of the number of connected components of the current domain
found a satisfactory answer thanks to the level set method introduced by Osher and Sethian [20]. The idea is
to define a domain of Rd as the set of points where a real valued function defined on Rd takes its nonpositive
values. The geometry can then be discretized as a function on a regular grid and not thanks to control points.
The flow of the shape gradient then formally leads to an Hamilton-Jacobi equation for the evolution of the
domain coupled with the state function. Recently, Cardaliaguet and Ley have performed in [7,8] a first step in
the theoretical justification of this approach on a specific example. However, the level set grid has no particular
reason to be useful for the computation of the state function.

In the context of mechanical structure optimization, the boundary value conditions on the part of the struc-
ture subject to optimization are usually traction free conditions. In [4], Allaire et al. suggest to take advantage
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of this particular boundary condition to use the level set grid for the numerical computation of the state. The er-
satz material approximation consists in filling the outside of the domain by a material of weaker conductivity
and replace the state function by the solution of the bimaterial equation stated in the whole level set grid. The
physical motivation is that the ersatz material behaves almost like an insulating layer leading to a reasonable
approximation of the state that should be computed. This approximation gives very good results for all the
usual criteria used in structure optimization and is now a reference method.

However, shape optimization problems are usually unstable. Homogenization is a well known example of
unstable shape problem connected to a lack of existence of minimizers. Nevertheless, even in the case where a
smooth minimizer exists, the question of stability of such a shape is difficult. In the recent years, the analysis
of order two conditions has been studied: A positive second order shape derivative at a critical shape does
not imply stability. To sum up, two distinct behaviours of the numerical procedures of optimization have been
encountered.

The first example under analysis was the Dirichlet energy. In [13], Descloux showed that the two norms
discrepancy phenomenon appears in an electromagnetic shaping problem: the shape hessian at a critical shape
is coercive but only in strictly weaker norm than the norm of differentiability. In [10], Dambrine and Pierre
have proved that weak information was sufficient to insure stability at the continuous level. This first result
was extended in [15] for a numerical scheme.

The second example comes from an inverse problem in electrical impedance tomography reformulated as a
question of shape optimization. In [1,2,14], more situations have been studied. The shape hessian at the global
minimum is compact and the optimization procedures are severely ill-posed. Hence, appropriate strategies of
regularization are required. Since the sequence of eigenvalues of the hessian tend towards zero, there exists a
strong link between the number of degrees of freedom used to parameterize the shape and the numerical precision
required for the computation of the state. Indeed, the number of shape parameters impose a threshold. Then,
if the precision of the computed solution for the state is less than the threshold, the errors committed on the
approximated criterion can destroy the well-posedness of the optimization problem.

In this paper, we present a model problem where the parameter of control is the shape of a structure which
presents the worst behaviour. We are concerned by a shape optimization problem suggested by the design of
micromechanisms introduced in [5] and studied in [3,11]. The criterion under consideration has been observed
to lead to numerical instabilities (see the comments on the gripping mechanism in [11]). However, we remain for
simplicity in the scalar case. The first goal of the paper is to explain rigorously these instabilities by studying
the second shape derivative of the criteria in a continuous setting. In particular, in our toy problem, the hessian
at the absolute minimizer vanishes. As a consequence of this flatness of the objective to minimize, the ersatz
material approximation is prohibited. Indeed, the systematic errors committed on the computation of the state
generate instabilities. The second objective of this manuscript is to convince the reader of the interest of second
order shape derivatives to understand the behaviour of numerical algorithms of minimization.

The paper is organized as follows. In Section 1, we present the model problem and state the results of
this work. Section 2 is devoted to the computation of shape derivatives while the instabilities are discussed in
Section 3. The technical results of shape calculus that we need are postponed into an appendix.

1. Setting of the problem and main results

The shape optimization problem. Let D be a smooth domain of Rd, d ≥ 2. We suppose that the
boundary ∂D of D has three particular disjoint parts Γc,Γd and Γo as illustrated in Figure 1. Concerning the
admissible shapes Ω ∈ Uad, smooth C2,α subdomain of D, we will suppose that

Γc ∪ Γd ∪ Γo ⊂ ∂Ω.

Since those parts of ∂Ω are fixed, the part subject to optimization is the remainder

Γm = ∂Ω \ (Γc ∪ Γd ∪ Γo).
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Figure 1. Geometrical settings.

In the sequel, we use the convention that a bold character denotes a vector. For example, n denotes the normal
vector pointing outside of Ω. If h denotes a deformation field, it can be written as h = hτ + hnn on Γm.
Note that hτ is a vector while hn is a scalar quantity. The admissible deformation fields have to preserve the
complement of Γm in ∂Ω and therefore the space of admissible fields is

H = {h ∈ C2,α(D,D), hn = 0 on Γc ∪ Γd ∪ Γo}·

This problem recovers the following physical meaning: How should one design the structure to find the closest
potential distribution to a reference one u0 on Γo while imposing the flux on another part of the boundary?
More precisely, the state function u solves the following boundary value problem:⎧⎪⎪⎨

⎪⎪⎩
−Δ u = f in Ω,

u = 0 on Γd,
∂nu = 0 on Γm ∪ Γo,
∂nu = g on Γc,

(1.1)

where f and g are C∞. Both f and g do not live in the natural space but to a stronger one since additional
regularity is required in order to define the shape derivatives. Once Γc is of nonnegative measure, this problem
admits a unique solution u ∈ H1(Ω).

Let us describe our optimization problem. We consider the criterion JLS defined by

JLS(Ω) =
1
2

∫
Γo

|uΩ − u0|2 dσ (1.2)

where u0 ∈ H
1
2 (Γ0). The function uΩ solves (1.1) and hence depends on Ω. For the lightness of notations, we

will omit this dependency and denote this function by u. We are interested in the minimization of JLS(Ω) with
respect to the shape, where the minimum is taken on the set of admissible domains Uad. Consequently, the
only optimized part of the shape boundary is Γm. The Dirichlet boundary conditions are only here to ensure
uniqueness of solutions.

For an arbitrary data u0, existence of a minimizer to JLS is not clear. Readers interested in this question
can refer to Chapter 4 in [16] and the survey article [6]. Nevertheless, this question does not enter the scope
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of this work and we will focus on a well posed problem. We fix an admissible domain Ω∗ and choose for data u0

exactly the trace on Γo of the solution to the boundary value problem (1.1) set on Ω∗. This assumption ensures
that the optimization problem has a global minimizer in the admissible domains that is Ω∗.

Differentiability results for the state u. To compute the shape derivatives, we need some notions of
shape optimization postponed in appendix. The following result concerns the first order derivative of the state
functions u.

Theorem 1.1. Let Ω be an open smooth subset of Rd (d ≥ 2) with a C k,α boundary. Let h and h1, h2 be
deformation fields in H.

(i) If k ≥ 2, the state function u is shape differentiable. Its shape derivative u′ = Du(Ω;h) ∈ H1(Ω) solves
the boundary value problem⎧⎪⎪⎨

⎪⎪⎩
Δu′ = 0 in Ω,
u′ = 0 on Γd,

∂nu
′ = 0 on Γc ∪ Γo,

∂nu
′ = divτ (hn∇τu) + fhn on Γm.

(1.3)

(ii) If k ≥ 3, the state u has a second order shape derivative u′′ = D2u(Ω;h1,h2) in H1(Ω) solution of the
boundary value problem⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Δu′′ = 0 in Ω,
u′′ = 0 on Γd,

∂nu
′′ = 0 on Γc ∪ Γo,

∂nu
′′ = divτ (h2,n∇τ (u)′1 + h1,n∇τ (u)′2 + h1τ .(Dnh2τ )∇τu)

+ divτ (h2,nh1,n(2Dn−HI)∇τu− (h1τ .∇τh2,n + ∇τh1,n.h2τ )∇τu)
+ h1,nh2,n∂nf + f (h1τDnh2τ − h1τ .∇τh2,n − h2τ∇τh1,n) , on Γm.

(1.4)

In (1.4), (u)′i denotes the first order derivative of u in the direction of hi as given in (1.3), Dn stands
for the second fundamental form of the manifold Γm and H stands for its mean curvature.

Differentiability of the objective. Once the differentiability of the state function has been established, the
chain rule provides the differentiability with respect to the shape of the criterion. As usual for Least Squares
objective, this derivative can be simplified thanks to an adjoint state that will be denoted by p.

Proposition 1.2. Let Ω be an open smooth subset of Rd (d ≥ 2) with a C 2,α boundary. Then, for all admissible
directions h ∈ H, the shape derivative of the criteria DJ(∂Ω;h) is given by

DJLS(Ω;V ) =
∫

Γm

(fp−∇τu.∇τp)hn (1.5)

where the adjoint state p is solution of the adjoint problem⎧⎪⎪⎨
⎪⎪⎩

Δ p = 0 in Ω,
p = 0 on Γd,

∂np = u− u0 on Γo,
∂np = 0 on Γm ∪ Γc.

(1.6)

One can also be interested in the computation of higher order derivatives and specially in the second derivative
or shape hessian. To that end, we will need the shape derivative of the adjoint state p obtained as a consequence
of Theorem 1.1.
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Corollary 1.3. Let Ω be an open smooth subset of Rd (d ≥ 2). Then, the adjoint state function p is shape
differentiable. Its shape derivative p′ = Dp(Ω;h) ∈ H1(Ω) solves the boundary value problem⎧⎪⎪⎨

⎪⎪⎩
Δp′ = 0 in Ω,
p′ = 0 on Γd,

∂np
′ = 0 on Γc ∪ Γo,

∂np
′ = divτ (hn∇τp) on Γm.

(1.7)

To investigate the properties of stability of this cost function, we now consider the quadratic form associated
to the shape hessian at a critical shape Ωc.

Theorem 1.4. Let Ωc be an open smooth critical shape for JLS with a C 3,α boundary. Let h be a deformation
field in H. The objective JLS is twice differentiable with respect to the shape and its second derivative in the
direction h is given by:

D2JLS(Ωc;h,h) =
∫

Γm

(fp′ −∇u′.∇τp−∇u.∇τp
′)hn + ∂n(fp−∇τu.∇τp)h2

n. (1.8)

Then, we specify Ωc: we consider the global minimizer Ω∗.

Claim 1.5. If Ω∗ realizes the absolute minimum of the criterion JLS , then

D2JLS(Ω∗,h,h) = 0. (1.9)

Equation (1.9) means that the objective is very flat around the minimizer. This fact has two main consequences.

Claim 1.6. On the continuous criterion, the shape hessian at the global minimizer is not coercive. As a
consequence, stability of the shape optimization cannot be obtained by classical means (see the criteria of
sufficiency of second order conditions in shape optimization [9] and the convergence of numerical scheme obtained
in [15] is non insured). However, on this specific example, uniqueness of the minimizer might be obtained by
unique continuation arguments. This type of method is of common use in the field of inverse problems [18].

Claim 1.7. The second consequence concerns any numerical scheme used to obtain this optimal domain Ω∗.
In order to capture the right behaviour of the shape gradient or hessian, one should compute with an extreme
precision the state function and its derivative. In the case of a convex objective, the level of the threshold
is naturally given by the size of the lowest eigenvalues of the discretized hessian at the critical shape. If the
approximation of u inserted in the expression of the shape derivative is computed with a larger error, the
computed hessian may have eigenvalues with a non positive real part. In such a case, the numerical descent
schemes cannot converge since the discrete objective has no minimum but a saddle point.

The approximation by a ersatz material. One of the main advantage of the level set method in structure
optimization is to avoid remeshing of the moving geometry at each step of the evolution. In [4], this is achieved
thanks to the ersatz material approximation. In mathematical terms, one approximates the solution u to the
boundary value problem (1.1) by the solution uε of the new boundary value problem

⎧⎪⎪⎨
⎪⎪⎩

−div (σε ∇) uε = f in D,
uε = 0 on Γd,

∂nuε = 0 on ∂D \ (Γc ∪ Γd),
∂nuε = g on Γc,

(1.10)

where D is a domain such that
Ω ⊂ D and Γd ∪ Γo ∪ Γc ⊂ ∂D. (1.11)
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The right hand side f is extended by zero outside of Ω and the distribution of conductivity σε is then such that

σε = χΩ + εχD\Ω. (1.12)

A very important question is then to know how good is the approximation of u by uε? By variational techniques,
Jouve and Murat have shown (personal communication, 2005) that

‖u− uε‖H1(Ω) ≤ C(Ω, D, f, g)
√
ε.

In fact, numerical simulations show a better order of approximation. We tackle this question with asymptotic
methods to recover the order ε.

Theorem 1.8. Let D and Ω be as in (1.11). Let u (resp. uε) be the solution of the boundary value problem (1.1)
(resp. (1.10)). There is a constant C(Ω, D, f, g) and a value ε0 > 0 such that

‖u− uε‖H1(Ω) ≤ C(Ω, D, f, g)ε (1.13)

holds for all ε ∈ (0, ε0).

The limit of this approach is then clear: in order to keep reasonable matrix to inverse, the value of the
parameter ε cannot be too small: the problem becomes more and more badly conditioned when ε tends to 0.
This means that the numerical errors committed on the computation of the state function are small but not
small enough. With the view to our shape optimization problem with a flat objective, this lack of precision is a
serious obstacle to the use of the method. The bad situation depicted in Claim 1.7 appears in the worst case:
the hessian provides no possible error.

A better but still highly unstable case is the inverse problem presented in [1] where the hessian with respect of
the shape at the global minimizer is non-negative but compact. This phenomenon explains why a parameterized
model of the inclusion is used in [1]. It provides the threshold and the mesh used to compute the state function
is then appropriately defined.

2. Justification of the shape derivatives

The section is devoted to the proof of Theorems 1.1 and 1.4. We follow the usual strategy to prove differen-
tiability in shape optimization. Computations made in this section require some classical facts in the context
of shape calculus. We present them in Appendix A where we also introduce the notations.

2.1. Derivatives of the state function. Proof of Theorem 1.1

Proof of Theorem 1.1.
First order derivatives. Existence of derivatives is well known in that case. Hence we only explain how to
derive (1.3). Let H1

Γd
(Ω) the subspace of H1(Ω) made of functions that vanishes on Γd. We write the weak

formulation of (1.1)

∀φ ∈ H1
Γd

(Ω),
∫

Ω

∇u.∇φ+
∫

Γc

gφ =
∫

Ω

fφ.

We then differentiate these integrals with respect to the shape in the direction of h to obtain

∀φ ∈ H1
Γd

(Ω),
∫

Ω

∇u′.∇φ =
∫

∂Ω

(fφ−∇u.∇φ) hn.

To be able to interpret the boundary integral as a boundary condition, we need to remove the derivative of φ in
the right hand side. To that end, we use the boundary conditions and the definition of admissible deformation
fields ∫

∂Ω

∇u.∇φ hn =
∫

∂Ω

(∇τu.∇τφ+ ∂nu∂nφ) hn =
∫

∂Ω

∇τu.∇τφ hn.
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Thanks to the integration by part formula (A.7), we get

∫
∂Ω

∇τu.∇τφ hn = −
∫

Γm

divτ (hn∇τu)φ.

We conclude by density in L2(Γm) of the traces of the test functions φ.

Second order derivatives. We compute the second derivative by considering two admissible deformations
h1,h2 ∈ H that will describe the small variations of ∂Ω. Simon shows that the second derivative F ′′(∂Ω;h1,h2)
of F (∂Ω) is defined as a bounded bilinear operator satisfying

F ′′(∂Ω;h1,h2) = (F ′(∂Ω;h1))
′ h2 − F ′(∂Ω;Dh1 h2). (2.1)

For more details, the reader can consult the lecture of Murat and Simon or the book of Henrot and Pierre [16].
We split the proof into two distinct parts: in a first time, we prove existence of the order two derivative, then,
in a second time, we show that this derivative solves the boundary value problem (1.4).

First step. Existence of the second derivative
Let us begin the proof. Let h1,h2 ∈ H be two vector fields. The direction h1 being fixed, we consider

u̇1,h2 the variation of u̇1 with respect to the direction h2. We recall that the material derivative u̇1 of u in the
direction h1 satisfies

∀v ∈ H1
0 (Ω),

∫
Ω

∇u̇1.∇v =
∫

Ω

∇u.Ah1∇v +
∫

Ω

div (fh1) v. (2.2)

Let φ2 : Rd �→ Rd be the diffeomorphism defined by φ2(x) = x+ h2(x) and we set ψ2 = φ−1
2 . We introduce the

deformed domain Ωh2 = {x+ h2(x), x ∈ Ω} = Ω to get

∫
Ωh2

∇u̇1,h2 .∇v =
∫

Ωh2

∇uh2 .Ah1∇v +
∫

Ωh2

div (fh1) v (2.3)

where uh2 is the solution of the original problem with Ωh2 instead of Ω. Making the change of variables
x = φ2(X), we write the integral identity (2.3) on the fixed domain Ω

∫
Ω

∇˜̇u1,h2 .
(
Dψ2(Dψ2)T det(Dφ2)

)∇v =
∫

Ω

∇ũh2 .
(
Dψ2Ãh1(Dψ2)T det(Dφ2)

)
∇v +

∫
Ω

det(Dφ2) ˜div (fh1)v

(2.4)

with the notations ũ = u ◦ φ2 and Ãh1 = Ah1 ◦ φ2. Since the material derivative u̇1 of u with respect to the
direction h1 satisfies ∫

Ω

∇u̇1.∇v =
∫

Ω

∇u.Ah1∇v +
∫

Ω

div (fh1) v.

The difference of (2.2) and (2.4) gives

∫
Ω

∇
(˜̇u1,h2 − u̇1

)
.∇v =

∫
Ω

∇˜̇u1,h2 .
(
I −Dψ2(Dψ2)T det(Dφ2)

)∇v
+

∫
Ω

∇ũh2 .
(
Dψ2Ãh1(Dψ2)T det(Dφ2) −Ah1

)
∇v

+
∫

Ω

(∇ũh2 −∇u).Ah1∇v +
∫

Ω

(
det(Dφ2) ˜div (fh1) − div (fh1)

)
v.
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We quote from [17,19] the following general asymptotic formulae that contains information on the deformations
fields:

‖ det(Dφi) − 1 − div (hi) ‖∞ = O(‖hi‖2
C2),

‖Dψi(Dψi)T det(Dφi) − I +Ahi‖∞ = O(‖hi‖2
C2),

‖ ˜div (h1) det(Dφ2) − div (h1) − div (h1) div (h2) −∇div (h1).h2‖∞ = O(‖h2‖2
C2),

‖Dψ2Ãh1(Dψ2)T det(Dφ2) −Ah1 +Dh2Ah1

+ Ah1(Dh2)T − div (h2)Ah1 − (Ah1)
′(h2)‖∞ = O(‖h2‖2

C2).

Making the adequate substitutions, we easily check that the material derivative of u̇1 with respect to h2 exists.
This derivative, denoted by ü1, satisfies∫

Ω

∇ü1.∇v dx =
∫

Ω

∇u̇1.Ah2∇v + ∇u̇2.Ah1∇v −∇u.A∇v +
∫

Ω

div (h2div (fh1)) v (2.5)

where A is defined in (A.12).
Second step. Derivation of (1.4) by formal differentiation of the boundary conditions

The aim of this section is to retrieve the expression of the flux ∂nu′′ by computing the normal derivatives of
each of the expressions ˙∇u′.n and ˙divτ (h1,n∇τu). Since

∇u′.n = divτ (h1,n∇τu) + fh1,n = h1,nΔτu+ ∇τh1,n.∇τu+ fh1,n

then, after taking the material derivative of the two sides of the above identity we obtain

˙∇u′.n = ˙divτ (h1,n∇τu) + ˙fh1,n

= ˙h1,nΔτu+ h1,n
˙Δτu+ ˙∇τh1,n.∇τu+ ∇τh1,n.

˙∇τu+ ḟh1,n + f ˙h1,n. (2.6)

In order to avoid lengthy computations, we shall concentrate on each normal derivative appearing in the above
formula. Some results are straightforward and their proof will be then left to the reader. Thanks to Proposi-
tion A.7, we conclude that

˙∇τh1,n = −∇τ (h1.∇τh2,n) + (D2h1,n.h2)τ −∇h1,n.ṅ n −∇h1,n.n ṅ.

In the same manner, we also get

˙∇τu = ∇τu
′
2 + (D2u.h2)τ −∇τu.ṅ n −∇τun ṅ.

Hence, we can write

˙h1.n = h2.∇h,n −∇τh2,n.h1τ ;
˙divτ (h1,n∇τu) = ˙h1,nΔτu+ h1,n

˙Δτu+ ˙∇τh1,n.∇τu+ ∇τh1,n.
˙∇τu,

=
(−∇τ (h1.∇τh2,n) + (D2h1,n.h2)τ −∇h1,n.n ṅ

)∇τu+ h1,n
˙Δτu

+ ∇τh1,n

(∇τu
′
2 + (D2u.h2)τ

)
+ (h2.∇h1,n −∇τh2,n.h1τ ) .Δτu.

It remains to simplify the terms A = (D2u.h2)τ .∇τh1,n and B = ∇τu.(D2h1,n.h2)τ . We obtain:

A = −∇τu.(Dn∇τh1,n)h2,n +D2uh2τ .∇τh1,n

B = ∇τ (∂nh1,n).∇τuh2,n −∇τu.(Dn∇τh1,n)h2,n + (D2h1,n.h2τ ).∇τu.
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We tackle the computation of (∂nu′)′. We first expand ˙divτ (h1,n∇τu):

˙divτ (h1,n∇τu) = ˙h1,nΔτu+ ˙∇τh1,n.∇τu = ˙h1,nΔτu+ h1,n
˙Δτu+ ˙∇τh1,n.∇τu+ ∇τh1,n.

˙∇τu.

After substitution, one gets

˙divτ (h1,n∇τu) = divτ (h1,n∇τu
′
2) + div ((h2,n∂nh1,n −∇τh2,n.h1τ )∇τu) + ∇τu.(D2h1,n.h2τ )

− ∂nh1,n∇τu.(Dnh2τ ) − 2h2,n∇τu.(Dn ∇τh1,n) +D2uh2τ .∇τh1,n

+ Δτu∇τh1,n.h2τ + h1,n

(
˙Δτu− Δτu

′
2

)
. (2.7)

We then compute ˙
∂nu′1. From the expression of ṅ, we get after some straightforward computations:

˙
∂nu′1 = ∂n(u′1)

′
2 + (D2u′1 h2).n + ∇τu

′
1.(Dnh2τ −∇τh2,n). (2.8)

Finally, we compute ∂n(u′1)
′
2. We deduce from (2.7), (2.8) and formula

˙∇τh1,n = ˙divτ (h1,n∇τu) + ḟh1,n + f ˙h1,n

a first expression of the normal derivative of the second order shape derivative

∂n(u′1)
′
2 = ˙divτ (h1,n∇τu) − (D2u′1 h2).n −∇τu

′
1.(Dnh2τ −∇τh2,n)

=divτ (h1,n∇τu
′
2 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu) − ∂nh1,n∇τu.(Dn h2τ )

+ ∇τu
′
1. (∇τh2,n −Dnh2τ ) + (D2h1,n h2τ ).∇τu+D2uh2τ .∇τh1,n + ḟh1,n + f ˙h1,n

− 2h2,n(Dn∇τu).∇τh1,n + ∇τh1,n.h2τΔτu+ h1,n

(
˙Δτu− Δτu

′
2

)
− (D2u′1 h2).n.

We have
ḟh1,n + f ˙h1,n = ∇f.h2 + f (h2.∇h1,n −∇τh2,n.h1τ ) .

Taking account of the following calculation,

−(D2u′1 h2).n + ∇τu
′
1.∇τh2, n = − (

h2,nD
2u′1 n +D2u′1 h2τ

)
.n + ∇τu

′
1.∇τh2, n,

= h2,n (Δτu
′
1 +H∂nu

′
1) + ∇τu

′
1.∇τh2,n − (D2u′1h2τ ).n,

= divτ (h2,n∇τu
′
1) +Hh2,n∂nu

′
1 − (D2u′1 h2τ ).n;

we rewrite ∂n(u′1)
′
2 as

∂n(u′1)
′
2 = divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

− (∇τu
′
1 + ∂nh1,n∇τu) .(Dnh2τ ) +Hh2,n∂nu

′
1 − (D2u′1 h2τ ).n

+ (D2h1,n h2τ ).∇τu+D2uh2τ .∇τh1,n − 2h2,n∇τh1,n.(Dn∇τu) + ∇f.h2

+ Δτu∇τh1,n.h2τ + h1,n

(
˙Δτu− Δτu

′
2

)
+ f (h2.∇h1,n −∇τh2,n.h1τ ) . (2.9)

This formula remains hard to handle. To get a more convenient one, we have to work a bit more. First, we
derive tangentially to the direction h2 the boundary identity

∂nu
′
1 = h1,nΔτu+ ∇τh1,n.σ∇τu+ fh1,n.
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This leads to:

(D2u′1 h2τ ).n + (Dnh2τ ).∇τu
′
1 =∇τh1,n.h2τΔτu+ h1,n∇τΔτu.h2τ

+ (D2h1,n h2τ ).∇τu− ∂nh1,n∇τu.(Dnh2τ ) +D2uh2τ .∇τh1,n

+ ∇τf.h2τh1,n + f∇τh1,n.h2τ . (2.10)

From (A.11) and subtracting (2.10) from (2.9), we can write

∂n(u′1)
′
2 =divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

+ divτ (h1,nh2,n(HI − 2Dn).∇τu) − h1,n (∇τΔτu.h2τ + Δτ∇τu.h2τ )

+ h1,n

(∇τdivτ (h2τ ) .∇τu− divτ

(((
Dh2 + (Dh2)T

)∇τu
)
τ

))
+ ∂nfh2,nh1,n + f (h2,n∂nh1,n −∇τh2,n.h1τ ) . (2.11)

From (A.11), we obtain

˙Δτu = Δτ u̇+ ∇τdivτ (h2τ ) .∇τu+ ∇τ (Hh2,n).∇τu− divτ

(((
Dh2 + (Dh2)T

)∇τu
)
τ

)
, (2.12)

and using the relation between the material and shape derivative, we get

˙Δτu = Δτu
′ + ∇ (Δτu) .h2 and Δτ u̇ = Δτu

′ + Δτ (∇u.h2) .

Injecting these relations in (2.12) and applying them for h2τ , we get

Δτ (∇τu.h2τ ) + ∇τdivτ (h2τ ) .∇τu = ∇τΔτu.h2τ + divτ

(((
Dh2 + (Dh2)T

)∇τu
)
τ

)
.

Thanks to this last fact, expression (2.11) gives:

∂n(u′1)
′
2 = divτ (h1,n∇τu

′
2 + h2,n∇τu

′
1 + (h2,n∂nh1,n −∇τh2,n.h1τ )∇τu)

+ divτ (h1,nh2,n(HI − 2Dn).∇τu) + ∂nfh2,nh1,n + f (h2,n∂nh1,n −∇τh2,n.h1τ ) .

To conclude, we use the following formula

∂nu
′′
1,2 = ∂n(u′1)

′
2 − ∂nu

′
Dh1 h2

where

∂nu
′
Dh1 h2

= divτ ((h2,nn.∇h1,n + ∇τh1,n.h2τ − h1τ .Dnh2τ )∇τu)

+ f (h2,n∂nh1,n + ∇τh1,n.h2τ − h1τ .Dnh2τ ) .

Finally, we obtain:

∂nu
′′
1,2 = divτ (h2,n∇τu

′
1 + h1,n∇τu

′
2) − divτ ((h1τ .∇τh2,n + ∇τh1,n.h2τ )∇τu)

− divτ (h2,nh1,n(2Dn −HI)∇τu) + divτ ((h1τ .Dnh2τ )∇τu)

+ ∂nfh2,nh1,n − f (∇τh2,n.h1τ + ∇τh1,n.h2τ − h2τ .Dnh1τ ). �

Proof of Corollary 1.3. It is completely similar to the proof of Theorem 1.1 without the volume right hand
side f . Since Γo remains fixed, no derivative of u appears in that boundary condition. �
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2.2. Derivatives of the criterion. Proof of Theorem 1.4

Proof of Proposition 1.2. We differentiate the definition of the criterion on the fixed domain Γo and get

DJLS(Ω;h) =
∫

Γo

u′(u− u0).

We introduce the adjoint state p defined in (1.6) to write

DJLS(Ω;h) =
∫

Γo

u′∂np =
∫

∂Ω

u′∂np.

Since both u′ and p are harmonic, a double integration by parts makes possible to permute the normal derivation
and leads to

DJLS(Ω;h) =
∫

∂Ω

∂nu
′p.

We insert the boundary conditions of (1.3) and use integration by part formula (A.6) to compute the gradient
given in (1.5). �

Proof of Theorem 1.4. To compute the second derivative of JLS , we follow the classical scheme for computing
the derivative for a boundary integral of a function ψ. The integral on Γt

m can be brought back from the moving
boundary Γt

m to Γm thanks to the change of variables

1
t

(
I(Γt

m, h) − I(Γm)
)

=
1
t

∫
Γm

ψ ◦ Ttω(t) − ψ,

where ω(t) = |det(DTt)| ‖(DT−1
t )∗n‖. The useful formula ω′(0) = divτ (h) is stated in [12,16].

In the case of JLS, we apply this approach to ψ = fp hn −∇τu.∇τp hn to get

d
dt

(
DJLS(Ω;h)

)
|t=0

=
d
dt

(∫
Γm

[
B(t)∇ut.∇pt + fp

]
h ◦ Tt.nt

)
|t=0

where we set ut = u(Γt
m) ◦ Tt, pt = p(Γt

m) ◦ Tt, nt = n(Γt
m) ◦ Tt and B(t) = ω(t)DT−1

t (DT−1
t )∗. Taking into

account ṅ = −(Dh∗)τ and

B′(0) = divτ (h) I −Dh + (Dh)∗,

we split the derivative of the shape derivative into three terms

d
dt

(
DJLS(Ω;h)

)
|t=0 = A1(Ω;h) +A2(Ω;h) +A3(Ω;h)

where

A1(Ω;h) = −
∫

Γm

[∇τ u̇.∇τp+ ∇τ ṗ.∇τu+B′(0)∇p.∇u] hn,

A2(Ω;h) =
∫

Γm

(fp−∇u.∇p) (Dhh.n − h.(Dh∗n)τ ) ,

A3(Ω;h) =
∫

Γm

[
fp divτ (h) + f ṗ+ p h.∇f]

hn =
∫

Γm

[
fp divτ (h) + fp′ + h.∇(pf)

]
hn.
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At the optimum, we know that A2(Ω∗;h) = 0. Hence

D2JLS(Ω∗;h,h) =
d
dt
DJLS(Ω;h)|t=0 = A1(Ω∗,h) + A3(Ω∗,h),

= −
∫

Γm

(∇τ u̇.∇τp+ ∇τ ṗ.∇τu+B′(0)∇p.∇u) hn + (fp divτ (h) + f ṗ+ ph.∇f) hn.

Let us show how to simplify the expression. First of all, we write

∇τ u̇.∇τp =
(∇u′ +D2u h + (Dh)∗ ∇u) .∇τp,

and we then gather all the terms so that

∇τ u̇.∇τp+ ∇τ ṗ.∇τu = ∇u′.∇τp+ ∇u′.∇τp+ h.∇ (∇τu.∇τp) + (Dh + (Dh)∗)∇p.∇u,

and then that

A1(Ω;h) = −
∫

Γm

[∇u′.∇τp−∇u′.∇τp− h.∇ (∇τu.∇τp) − divτ (h)∇τu.∇τp
]
hn.

We then obtain (1.8) by collecting the terms A1 and A3. We use Euler’s equation to remark that

h.∇ (fp−∇τu.∇τp) = hn∂n (fp−∇τu.∇τp) . �

3. Analysis of stability

3.1. Shape hessian at a critical shape

When Ωc is a critical shape, the shape hessian takes the expression given by (1.8) that we recall here for
convenience

D2JLS(Ωc;h,h) =
∫

Γm

(fp′ −∇u′.∇τp−∇u.∇τp
′)hn + ∂n(fp−∇τu.∇τp)h2

n.

This expression is difficult to deal with since the adjoint state is not well known at an arbitrary critical shape.
Let us consider the particular case Ωc = Ω∗ where the adjoint is simple.

Proof of Claim 1.5. Since at Ω∗, u = u0 by definition, the adjoint state p cancels identically in Ω∗ and from
Corollary 1.3 so does its derivative p′. Inserting these facts in (1.8), we get the claim. �

3.2. On the ersatz material approximation

Our proof of Theorem 1.8 is inspired by Schwarz’s method in domain decomposition. To that end, we
introduce the operators

P : H1/2(Γm) → H1(D \ Ω),
φ �→ v;

and Q : H−1/2(Γm) → H1(Ω),
ψ �→ w;

where v and w solves the boundary value problems⎧⎪⎪⎨
⎪⎪⎩

Δ v = 0 in D \ Ω,
v = 0 on Γd,

∂nv = 0 on Γc ∪ ∂D,
v = φ on Γm,

and

⎧⎪⎪⎨
⎪⎪⎩

Δ w = 0 in Ω,
w = 0 on Γd,

∂nw = 0 on Γc,
∂nw = ψ on Γm.

(3.1)
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The classic theory of elliptic PDE learns us that both P and Q are bounded. Let TΓm is the usual trace operator
from H1(Ω) into H1/2(Γm). We then define the operators

P̃ : H1(Ω) → H1(D \ Ω),
u �→ P (TΓm (u)) ;

and Q̃ : H1(D \ Ω) → H1(Ω),
v �→ Q(∂nv).

Note that Q̃ is not defined on the whole H1(D \ Ω) since the normal derivative ∂nv should have a sense. We
will only apply the operator Q̃ to harmonic functions. In that case, the normal derivative is defined in the
weak sense by duality. Moreover, if v is harmonic in D \ Ω, then there is a constant C(D \ Ω) such that
‖∂nv‖H−1/2(∂Ω) ≤ C(D \ Ω) ‖v‖H1(D\Ω) and then

‖Q̃(v)‖H1(Ω) ≤ C(D \ Ω) ‖Q‖ ‖v‖H1(D\Ω). (3.2)

Proof of Theorem 1.8. In fact, we will prove that uε writes as a power series in the parameter ε. The idea is to
split uε into its values Uε on Ω and its values Vε on D \ Ω and then to use a double ansatz as follows

Uε =
∞∑

i=0

εiUε,i and Vε =
∞∑

i=0

εiVε,i. (3.3)

The error estimate (1.13) is then easily deduced from the convergence of the series defined in (3.3). Let us prove
that these series really converge.

We first determine the coefficients. Plugging these ansätze in the jump relations through the interface Γm

for the solution of the boundary value problem (1.10)

[uε] = 0 and [σε∂nuε] = 0,

we get

Uε = Vε ⇒
∞∑

i=0

εiUε,i =
∞∑

i=0

εiVε,i,

∂nUε = ε∂nVε ⇒
∞∑

i=0

εi∂nUε,i =
∞∑

i=1

εi∂nVε,i−1.

By a term by term identification, we obtain ∂nUε,0 = 0 and the relationships

Uε,i = Vε,i, (3.4)
∂nVε,i = ∂nUε,i+1 (3.5)

hold on Γm for all i ≥ 1.
As first consequence, Uε,0 solves the boundary value problem (1.1): it then holds Uε,0 = u. The term of order

zero of Vε is then completely characterized thanks to (3.4) as solution of the boundary value problem (3.1) with
φ = TΓmUε,0 where TΓm is the trace operator from H1(Ω) into H1/2(Γm). We conclude that Vε,0 = P̃ (Uε,0).

In fact, we obtain an iterative construction of the coefficients Vε,i and Uε,i in a Schwarz method’s way. For
all i ≥ 0, (3.4) implies that Vε,i = P̃ (Uε,i) and (3.5) that Uε,i+1 = Q̃(Vε,i). The coefficients in (3.3) are then
completely defined by{

Uε,0 = u,

Uε,i+1 = Q̃P̃ (Uε,i) for i ≥ 0;
and

{
Vε,0 = P̃ (u),
Vε,i+1 = P̃ Q̃(Vε,i) for i ≥ 0.



ON THE ERSATZ MATERIAL APPROXIMATION IN LEVEL-SET METHODS 631

Since the operator P̃ is bounded and thanks to (3.2), the expansions converge in the spaces H1(Ω) and H1(D\Ω)
for ε small enough, for example such that

ε <
1

C(D \ Ω) ‖P̃‖ ‖Q‖· �

A. Appendix: Elements of shape calculus

For the reader’s convenience, we recall some basic facts from shape optimization without proof. We refer
to [12,16] for references and full proofs. Let h be a deformation field in C2(Ω,Rd) with ‖h‖C2 < 1. We set
Tt(h, .) = Id+ th and denote by Ωt the transported domain Ωt = Tt(Ω). It is well known that, for sufficiently
small values of t, Tt(h, .) is a diffeomorphism in Rd. To avoid heavy notations, we will misuse the notation Tt

instead of Tt(h, .).
The key concepts we need are material and shape derivatives. For any vector field h ∈ H, we define the

material derivative of the domain functional y = y(Ω) at Ω in an admissible direction h as the limit

ẏ(Ω;h) = lim
t→0

y(Ωt) ◦ Tt − y(Ω)
t

· (A.1)

Similarly, one can define the material derivative ẏ(∂Ω;h) for any domain functional y = y(∂Ω) which depends
on ∂Ω. Another kind of derivative, called the shape derivative of y(Ω) in the direction h, occurs. It is viewed
as a first local variation. Its definition is given by the following

Definition A.1. The shape derivative y′ = y′(Ω;h) of a functional y(Ω) at Ω in the direction of a vector field h
is given by

y′ = ẏ − h.∇y. (A.2)

We will need in the sequel to manipulate the tangential differential operators on a manifold. For the reader’s
convenience, we recall from [12,16] some definitions and also some useful rules of calculus.

Definition A.2. The tangential divergence of a vector field h ∈ C1(Rd,Rd) is given by

divτ (h) = div (h) −Dh.n.n, (A.3)

where the notation Dh denotes the Jacobian matrix of h. When the vector h ∈ C1(∂Ω,Rd) is defined on ∂Ω,
then the following notation is used to define the tangential divergence

divτ (h) = div
(
h̃
)
− (Dh̃.n).n, (A.4)

where h̃ stands for an arbitrary C1 extension of h on an open neighbourhood of ∂Ω.

We introduce the notion of tangential gradient ∇τ of a smooth scalar function f in C1(∂Ω,Rd).

Definition A.3. Let an element f ∈ C1(∂Ω,Rd) be given and let f̃ be an extension of f in the sense that
f̃ ∈ C1(U) and f̃ |∂Ω = f and where U is an open neighbourhood of ∂Ω. Then the following notation is used to
defined the tangential gradient

∇τf = ∇f̃ |∂Ω −∇f̃ .n n on ∂Ω. (A.5)

The details for the existence of such an extension can be found in [12]. Let us remark that these definitions
do not depend on the choice of the extension. Furthermore, one can show the important relation∫

∂Ω

∇τf.F = −
∫

∂Ω

f divτ (F) , (A.6)
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for all elements f ∈ C1(∂Ω) and all vector fields F ∈ C1(∂Ω,Rd) satisfying Fn = 〈F, n〉 = 0. In general, the
condition above Fn = 0 is not always satisfied. The extension of this integration by parts formula to fields
with a normal vector component involves curvature. First, we point out that the curvature is connected to
the normal vector via the tangential divergence operator. Recall that the mean curvature of ∂Ω is defined as
H = divτ (n). Making use of the form of divτ (n) on the boundary, one shows straightforwardly the following
statement.

Proposition A.4. Let Ω be an open subset of R3 with a C2 boundary. For any unitary extension N of n on a
neighbourhood of ∂Ω, one has

div (N ) = H on ∂Ω.
Assume that the manifold ∂Ω has no boundary. If F ∈ H2(∂Ω)3 and f ∈ H2(∂Ω), then we have∫

∂Ω

∇f.F + fdivτ (F) =
∫

∂Ω

(∇f.n +Hf)F.n. (A.7)

We assume now that the domain Ω has a C3 boundary. The simplest second-order derivative is the Laplace
Beltrami operator; it is defined as follows thanks to the following usual chain rule.

Definition A.5. Let f ∈ H2(∂Ω). The Laplace-Beltrami Δτ of f is defined as follows

Δτf = divτ (∇τf) . (A.8)

There is a relation connecting the Laplace operator and the Laplace-Beltrami operator. Let us denote by
∂2

nnf = (D2f.n).n where D2f stands for the hessian of f .

Proposition A.6. Let Ω be a domain with a boundary ∂Ω of class C3. For all functions f ∈ H3(Ω), it holds

Δf = Δτf +H∂nf + ∂2
nnf, on ∂Ω. (A.9)

We need to compute shape and material derivative of special vector fields: the outer unit normal vector n, the
tangential gradient and the Laplace-Beltrami operator applied to a function. While the derivative of the normal
vector is obtained by a straightforward calculus, we have to transport from ∂Ωt to ∂Ω the Laplace-Beltrami
operator and the tangential gradient in order to compute the other derivatives. We recall here facts proved
in [2].

We denote by n the gradient of the signed distance to ∂Ω. This is an unitary extension of the unitary normal
vector n at ∂Ω which is smooth in the vicinity of ∂Ω. This extension furnishes a symmetric Jacobian Dn that
satisfies Dnn = 0 on ∂Ω. The direction h will be supposed to be in C2(Rd,Rd) or in C2(∂Ω,Rd). We recall:

Proposition A.7.

– The material derivative ṅ of the normal vector n at Ω in the direction of a vector field h ∈ C1(Rd,Rd)
is given by

ṅ = −∇τ (h.n) +Dnhτ ,

where hτ = h − h.n n.
– The shape boundary n′ in the direction of h is given by

n′ = −∇τ (h.n).

– For all functions f ∈ C2(R3) and directions h ∈ C2(∂Ω,R3), one has

˙∇τf = ∇ḟ + (D2fh)τ −∇f.n ṅ−∇f.ṅ n. (A.10)
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– Let f ∈ D(Rd). The material derivative of Δτf in the direction h is given by

˙Δτf = Δτ ḟ+∇τf.∇τ [divτ (hτ )] + ∇τ (Hhn).∇τf − divτ

(((
Dh + (Dh)T

)∇τf
)
τ

)
. (A.11)

In the sequel, we will use some technical formulae given in [2]. Given a smooth vector field h, we denote

Ah = Dh +DhT − div (h) I.

Given two smooth vector fields h1 and h2, we set

A = Dh2Ah1 +Ah1Dh2
T −Ah1div (h2) − (Ah1)

′(h2), (A.12)

and
b = (h2.∇u)Ah1∇v + (h2.∇v)Ah1∇u− ((Ah1∇u).∇v)h2.

Here, the notation (Ah1)′(h2) stands for the matrix defined by its elements

((Ah1)
′(h2))k,l = ∇(((Ah1)

′)k,l).h2.

Proposition A.8. It holds:

∇u.Ah∇v = ∇(h.∇u).∇v + ∇(h.∇v)∇u − div ((∇u.∇v)h) . (A.13)

∇u.A∇v = div (b) − (h2.∇u)div ((Ah1∇v)) − (h2.∇v)div ((Ah1∇u)) . (A.14)
For any function u solution of (1.1) in Ω and for every test function φ ∈ D(Ω), we have

div (Ah1∇u) = Δ(h1.∇u) + div (fh1) . (A.15)
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