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UNIQUENESS OF STABLE MEISSNER STATE SOLUTIONS
OF THE CHERN-SIMONS-HIGGS ENERGY *

DANIEL SPIRN! AND XIAODONG YAN?

Abstract. For external magnetic field he, < Ce™®, we prove that a Meissner state solution for
the Chern-Simons-Higgs functional exists. Furthermore, if the solution is stable among all vortexless
solutions, then it is unique.
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1. INTRODUCTION

In this paper, we study uniqueness of stable Meissner solutions for the following Chern-Simons-Higgs func-

tional . )
curl h
Gesn (u, A) /|v ”E' e cal 82| ul? (1—|u|2) . (1.1)

The associated Euler-Lagrange equations for (1.1) are

(2 [eurl A — heg |?

1
1 i u=Viu+ 22U (1= ul?) (3[ul* — 1) (1.2)

u_g | <curlA — Ry

0=— Lo ME ) +jalu). (1.3)

The paper is motivated by Serfaty’s work [9] on Ginzburg-Landau energy where she proved uniqueness of
stable Meissner state solutions for h., < Ce™®. In addition, it was proved in the same work that vortexless
solution to Ginzburg-Landau equation continue to exists for h., higher than the critical field (up to he, < Ce™%)
and is locally minimizing (for h., below the first critical field, it is proved by Sandier and Serfaty [8] that the
vortexless solution to G-L equation is globally minimizing). The uniqueness of the Meissner state for the
Ginzburg-Landau energy has been studied elsewhere, including Ye and Zhou [12] for the case with trivial gauge
field and Bonnet et al. [3] for the full Ginzburg-Landau energy. In [3] the authors show uniqueness of the
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Meissner solution for small ¢ and k., ~ Ce~! by looking for solutions in a particular function space; whereas
in [9] the author showed the uniqueness of the Meissner solution for h., < Ce™® for solutions in a different
function space.

Remark 1.1. The study of uniqueness of solutions to the Ginzburg-Landau energy when vortices are present
is much more difficult. Pacard and Riviere [7] proved uniqueness of critical points u. of the Ginzburg-Landau
energy with trivial gauge field when the singularities of the limiting field are nondegenerate critical points of
the renormalized energy.

We follow the approach of [9] to study Meissner solutions of the Chern-Simons-Higgs energy.

Recently, the authors [10] proved existence of vortexless solutions to (1.2)—(1.3) in the case he, < 2|12g5|,

1> pe > e °8¢l” for 0 < @ < 1. The solution obtained in [10] is a minimizer in
V={(u,A) € H (Q,C) x H' (Q,R?) : |u| =1 on 09 }.

It is also shown in [10] that for he, higher than critical field, a minimizer in V' must have a vortex.

Remark 1.2. When p. — p € (0,+00] the critical magnetic field was shown to be asymptotically h., =
Hy(p, Q) |loge|, where the constant Hi(u, ) is calculated in terms of a scaled London equation, see [5,6].
A straightforward modification of the analysis of [10] shows that this critical field strength is in fact sharp and
that |u.| is strictly bounded away from zero.

It is a natural question to ask whether vortexless solutions continue to exist for h., higher than critical field
and whether it is unique. In this paper, we prove the existence of stable vortexless solutions to (1.2)—(1.3) for
heg < Ce™® and limsup, e < co. Under the additional assumption that p. > 5%, the stable vortexless solution
obtained is unique. In our setting, we define solution (u, A) of (1.2)-(1.3) to be vortexless if it satisfies |u| >
in Q.

Our main results are the following theorems. We again concentrate on the technically interesting . — 0
case.

Theorem 1.3. There exists ag € (0,1/24) such that for a < g, if hex < Ce™%, and limsup, pe < 00, there
exists a vortexless solution to (1.2)—(1.3) which is stable under perturbations among vortexless mappings.

Theorem 1.4. Assuming je > 5%, limsup, pe < 0o. There exists a € (0,1/24) and eo such that, if € < gg, and
her < Ce™®, a vortexless solution of (1.2)~(1.3) that is stable under perturbation among vortexless functions
and satisfies [, [Vul> <o (€7) for some B > 0 is unique. Let Eg = {(u, A) € D: |u| > 5}. Fore <eq, there
exists a unique solution of (1.2)~(1.3) that minimizes G s, over Ey, and its energy is Go + o (1) where

GO == Gcsh(]-a heva£0)

and & solves the London equation (2.1).

For hex < QUOgE‘ 1> pe > e 18el” for 0 < a < 1, existence of solutions to (1.2)—(1.3) which satisfy

luc| > 1 in Q was obtalned in [10] for all £ < g9. The solution obtained in [10] is a minimizer in V. From there
it is not hard to show that |u] 2 in Q for a smaller choice of gg. For h., higher than the critical field (up to
Ce™), we will prove that vortexless solution continue to exist and is locally minimizing in V.

Remark 1.5. Uniqueness of periodic topological-type vortex solution has been established in the Chern-Simons-
Higgs model in the self-dual case, p = ¢ and h., = 0, see [4,11].

The uniqueness proof is motivated by an idea of Serfaty [9] for Ginzburg-Landau energy, Gy;: assuming there
are two solutions (u1, A1) and (ug As), she proved, through explicit computations, that

o (u1 +ug Ay + Ag) Ggi (u1, A1) + Ggi (ug, A2)
gl < )

1.4
53 5 (1.4)



UNIQUENESS OF STABLE MEISSNER STATE SOLUTIONS OF THE CHERN-SIMONS-HIGGS ENERGY 25

It then follows that for all ¢t € (0,1), Gg ((1 —¢) ur + tusg, (1 — ) A1 +tA2) < max (Gg (u1, A1), Gy (uz A2)),
which contradicts the assumed stability of solutions. The idea of Serfaty is the following: for vortexless solutions,
we can write u = nel¥ and (u, A) is gauge equivalent to (7, A — dyp) = (1, A’). The Ginzburg-Landau energy
becomes

Gy (u, A) /| | |A’| +|Vn| + (1— 2)2+|dA’fhez|2.

The term I(n fQ 57 ( — )2 is convex for vortexless solutions (77 > %); it follows that
I + I + C
() ! () (m ! nz) > _2/ (1 — 12)? (1.5)
€% Ja

On the other hand for K (n,A") = [, In|* |A']?, direct calculation shows

K (m, AY) + K (n2, A m+ne Al + AL 2 2
SRR g (B B < O max (e 451,20 [ n ) (1)
Since |Al|; . =0 (1), the convex term from [, 517 (1 — 772)2 dominates over [, []*|A]* and (1.4) follows from
(1.5), (1.6) and the convexity of the rest of the terms.
In our case, under the same gauge choice, the Chern-Simons-Higgs energy becomes

1 2 9o 1 o p2 |eurl A’ — he,|?
Gean (1) = 5 [ 1T 490 4 g (1 =) 4 B el

The term fQ ,%2772 (1 - n2)2 is convex for vortexless solutions (n > 1%) with a similar bound from below as (1.5)

r_ N 2
and the term [, 7? |A'|2 is controlled above by (1.6). Finally for term L (n, A") = [, %M, we have

n

L (m, AY) + L (2, A3) m o+ A+ A 2
1 5 EVA 5 12 2 SC(maX(|curlA’1|Loo,|cur1A’2|Lx)) /9(771—772)2.

Since |A'|; . =0(2), [curl 4|, . =0 (1) (Lem. 3.3), we obtain the same conclusion.

2. PROOF OF EXISTENCE

Following [10], we introduce the following notation.
N\ 2
=5 19l + gl (1= )

A= d*fa f = heazfo + <7

and we assume

where
A2+ AL =0 in Q
A =1 on 09, (2.1)
& =0 on 01,
and

(=AC=0 on 0.
We quote the following estimate from [10].



26 D. SPIRN AND X. YAN

Lemma 2.1. Suppose || < F, Gesp (u, A) < M, andn = |u| > %on 09, then for all2 < p < oo and0 < 8 < 1%
the following estimates hold

Inll g < CV M, (2.2)

|1 =%, < Ceb, (2.3)

11— il < Cppe M, (2.4)
19l 0 < Cppe® M 410 (2:5)

Moreover, for all 1 <a<2,0< 8 < 27, we have bounds

; < (o sefr=" 110 ) M2 9.6
lja()llpe < | Cape” M +1Q[ | M2, (2.6)

Co
I = hecll < S22 VAE (Cope? b 4102). (27)

where Cp.3 — 00 as o — 2. If (u, A) is a weak solution of (1.3), we have

h - hez
,'72

q\/_<qg€ﬁM +|Q|> (2.8)

Wia

forall1<g<2 0<jg< 24
An immediate corollary of Lemma 2.1 is the following lemma.

Lemma 2.2. Given he, < Ce™® for some 0 < a < ﬁ, limsup pe < 00. If Gegp, (u, A) < M. = Cu2h?,, then
for any 2 < p < o0,

Inllp, < CpMe+ 19, (2.9)
if2<p<22,
nllze < Cp. (2.10)
Moreover, if (u, A) satisfies (1.3), A = d*&, there exists § > 0, such that

c
V€| < E\/ (CgEBM + |Q|) + Chey; (2.11)

€
i particular, this implies

C _ 3
V€| pe < —5ME + Chea. (2.12)
He
Proof. (2.9) follows directly from (2.5). By (2.5), we have
Il < CPultieeta) 4 o, (2.13)

pick 3 close to ffor0<a<
since

=, limsup g1 < 00, (2.10) follows from (2.13) when 2 < p < 22. To prove (2.11),

h* heaz
b= heall, < H -~

2
11l (2.14)
Lt
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with % = % + % Pick 2 < r < s < 11, there exists ¢ < 2 such that 22qu >t = . By (2.8) and Sobolev
embedding, we deduce

h_heac

2
7’ Wla

q\/_<qg€ ME +|Q|> (2.15)

h — heac
772

o

Lt

for 0 < B < %. (2.11) follows from (2.10), (2.14), (2.15) and Sobolev embedding. Finally (2.12) follows
directly from (2.11). O

Following idea of proof of Lemma 2.3 in [10], applying estimates in Lemmas 2.1 and 2.2, we have the following
gradient estimate.

Lemma 2.3. Assume (u, A) is a solution of (1.2)~(1.3) satisfying 3% = 0 on 0 and Ges, (u, A) < M.,
ex < fe E<C’ we have

Vul < 22
where Cy is a constant independent of u, A, and €, jic.

We introduce the following regularization of w (similar regularization for Ginzburg-Landau energy is intro-
duced in [1] and used in [9]). Given any 0 < v < 1, for any (u, A) € V, u” is defined as a minimizer for

: I ul?
inf Vo + (1 — ) —_—
it g [ e (1)
|[v]=1 on 99
Lemma 2.4. u” is in H® (2, C) and satisfies

u—u”
g2v

1
—Au" = 8—2u7 (1= ) (3lu"]* —1) +
F(u?) < F(u)
vl < <

€

Proof. Follow the same proof as in [1,2], where we replace u” (1 — [u7|?) with u” (1 — [u7|?) (3[u?|? —1).

Since |Vu| < %, the vortices of u” are well defined. The following ball construction lemma is a variation of
the ball construction used in [10].

Proposition 2.5. There exists o € (0,1/24), such that if hey < Ce™®, letu : Q — C be such that |Vu| < o
lu| =1 on 9Q and F (u) < Ce™2*. Then there exist disjoint balls {B;},.; such that for sufficiently small

(1 {|u } C U;B;.

(2) cardI < 05720‘

(3) r Cuigze\

4) If BZ- C Q, and d; = deg (u, 0B;), then

F (u, B;) > wu [loge| — (2.16)
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Proof. Follow the proof of Proposition 2.13 in [10], choosing s; = £3 in the initial step, replacing the assumption
heo < CLEE by he, < Ce™ and § by {3, O
We recall the definitions
1
Ve =5 [ V67 + 186 +2n 3 di€ ) ~ oo [ A6
iel Q2
~ 1
V©) =5 [ 1VCP+1AC +2r 3D dc (0.
icl

Lemma 2.6. There exists a € (0,1/24) such that if he, < Ce™®, limsup,__,opue < 00, given (u, A) satisfy-
ing (1.3) and F(u) < Cu? h2,, the energy can be split as

exr’

Gesn (u, A) = F (u) +V (€) + 0 (¢7)

= Go+ F (u) +2hes Y dio (i) + V (Q) + 0 (£7),
i€l

where (a;,d;) denote the vortices of u?. Go = [, hg”” Vel + %him |A& — 117, 8= (a) > 0.
Proof. Write
[Vaul® = [Vul’ + |V + (1= 0°) [VE[* +2 (i, Eaytia, — &oyizs),
h - heaz ? h - heaz 2
‘ = |h—h6x|2+%|u|2 (1_ |u|2)'
u

Since (u, A) satisfies (1.3), by (2.3) and (2.12), we conclude

/Q (1—n?) |VEP < C|VERw |1 =7,

3 2

M2
sc< : +h6x> eM.
I

€

2
<C (Nahgx + hex) Eﬂghgx
< 051—805

and for & + ¢ = 3, by (2.3), (2.9) and (2.15)

2

|h— hea” | 2 |h — heal 2
— uf (1 — |ul ) <||l——= [[7[]7,24 Hl - 772HL2
o |ul L
3 2
M2
<C|— | MZeM.
12
< 05171201.

Therefore

1 2
Gon (1 4) = 5 [ 1Val” + 196 + 52 10 = hesl® +2 (0 Erstts = my122) + 0 ().
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The rest of the proof follows from similar argument as in Lemmas 4.2 and 4.3 in [9], replacing the assumption
F(u) < M |loge| and he, < C [loge| by F (u) < Cu2h2,, hey < Ce™. O

= g "ex)

Lemma 2.7. Let o, he, and u. satisfy the same assumptions as in Lemma 2.6. If (u, A) is a solution of (1.2)-
(1.3) such that w” has no vortex (Ju"| > %) and that Ges, (u, A) < Go and F (u) < Cph2,, then u has no
vortex in ).

Proof. From Lemma 2.6 and the assumption, we obtain

Go > Gesn (u, A) = Go + F (u) + V (¢) + 0 (£7),

therefore N

F(u) +V (¢) <o(e7). (2.17)
Since (u, A) is a solution of (1.2)-(1.3), by elliptic estimates (Lem. 2.3), we have |Vu| < €. Therefore the
vortex structure of u is well defined and (2.17) implies u is vortexless. O

Proposition 2.8. There exists o € (0,1/24) and g¢ such that if e < eog and hey < Ce™?, limsup, p. < 00,
there exists a solution (u, A) of (1.2)~(1.3) satisfying |u| > that is a local minimizer of J in V. In addition,

107
inf (. B, 2.1
961[51’277]“(%5) (e , §O)H—>O as € — 0, (2.18)
where
1w, ) = [VullZe + ullZz + V2172 + [A2]|Z..
Proof. Let
Me |curlA hex| 2\ 2
|Vau + —| (1= Jul
/ 4 lu | +k g2 ( )
Consider the open domain
U{(u,A)GV F(u /|v<| + AP <s§}

where (3 is given by Lemma 2.6. There exists (vy, Ax) € U which achieves ming Gy and (v, Ag) satisfies

0:7u_§ l(curlAkhem

cur + ja, (V). 2.19
o (ST ) 2.19)

This can be shown by the following argument. Given (u}, A}) minimizing sequence of G, since
n 1 n|2 ni|2 B
F(Uk)+§ IVG™ +AG]" <ez,
Q
Z == hezd*fo + d*Ca
we conclude (u}, A7) is a bounded sequence in H' (Q,C)x H! (Q, RQ). Subject to a subsequence, we can assume
(up, A7) = (vk, A) in H (Q,C) x H' (Q,R?) as n — oo and

Gk (Uk, Ak) S hm iIlf Gk (’U,Z, AZ)

Fo)+5 [ V6P +IAGP <tm inf P+ [ V67 +1AGP
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Therefore (vg, Ax) is a minimizer of Gy, in U. Applying Lemma 2.4 and Proposition 2.5 to vy, we obtain
e > F (vp) > F (v])

d;
> 73 W joge| - ¢
1€l

where L is the collection of vortex balls for v]. This implies L = (), i.e. v; has no vortex (since d; # 0).

Moreover, when 1%2 < g, we can prove a similar energy splitting formula for G, as Lemma 2.6,
_ 1 2 2 8
Gy (’Uk,Ak) —G0+F(Uk)+§ |ka| +|ACk| —I—O(E ) (2.20)
Q

On the other hand, (1, hevago) € U is a comparison map, by minimality of (v, Ay ), we obtain G.sp, (v, Ak) <
Go. This together with (2.20) implies

F (vp) + %/QWCle +]AGI? < o (7).

[e]
This guarantees (vg, Ag) € U, i.e. (v, Ax) is a local minimizer of Gj, and satisfies

7u_§ leurl Ay, — hea|”

1
u = Viu, + vk (1 — |op]?) (Blog* — 1 (2.21)
4 (|’Uk|2 + k_12)2 A 52 ( ) ( )

2
1 curl Ay — hey .

0=—— 1| —— | + . 2.22
g ( PR k12 ) Jja(vk) ( )

By elliptic estimates (similar to Lem. 2.1), (vy, Ax) is bounded in H' x H'. Up to a subsequence, we assume
(v, Ak) — (u, A) in H' x H' where (u, A) satisfies (1.2)—(1.3) and

Gcsh (u, A) S hmk inf Gk (’Uk, Ak) . (223)

o0

Given a minimizing sequence (uk, By) of Gesp in U, we have
Gesh (ur, Br) > Gy (ug, Br) > G (vk, Ax) -

(2.23) implies (u, A) is a minimizer of G, in U and (u, A) € U. We repeat the regularization argument for u
and conclude u” is vortexless. By Lemma 2.7, u is vortexless. Finally, since |u| = 1 on 9%, energy estimates

imply Hl — |u|2 H , <o (1), from here (2.18) can be proved following exact same argument of step 2 in the proof
L
of Proposition 3.1 in [9]. O

3. PROOF OF UNIQUENESS

We assume that he, < Ce™® and p. > £5. We prove that if a Meissner solution (u, A) exists and stable under
perturbation among vortexless mappings, then it is unique among the solutions satisfying HVuH%Q <o (55 )
(Here (3 is given by Lem. 2.6.) In particular, a solution (u, A) that is minimizing among all vortexless solutions
is unique.

We prove uniqueness by contradiction. If there are two distinct stable solutions (u1, A1) and (ug,As) of (1.2)
and (1.3) with divA; =0, A; - v = 0 on 0 and HVujHiz < o (e”). We assume Gegp (u1, A1) < Gesp (uz, As).
Denote n; = |u;].
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Lemma 3.1. For j =1,2, (u;, A;) is gauge equivalent to (n;, Bj) with

div (n?B;) =0 (3.1)

1 1 o p2feurl By — heg)?

Gesn (uj; Aj) = —/(277]2‘3]2‘ +|Vl* + 5_2%2‘ (1 =n7)" + f”—2|
J

3.2
; (32)
we can write u; = n;e'% globally on Q. We write B; = A; — V¢;, then (u;, A;) is gauge

9

Proof. Since n; > 15,

equivalent to _
(uje™"%, A; = V;) = (n;, By)

. 2. . . .
and curl A; = curl B;. Since fQ |V au|” is invariant under gauge-transformations,

2 2 .
/\VAJ-UJ'\ :/|VBj77j‘ :/IVnrlBijQ:/n?B?HVmIQ-
Q Q Q Q

The expression (3.2) follows. For (3.1), notice that equation (1.3) gives
i — Nex s . . QB
——— | = (i, Va,uy) = (inj, Vi,n;) = —n; Bj,

take divergence on both sides, we get div (nJQ»Bj) =0. U

A direct corollary of Lemmas 2.1 and 2.3 is the following

Lemma 3.2. If (u, A) is weak solution of (1.2)~(1.3) satisfying % = 0 on 99, the following holds for any
l<g<4,2<6<1,

, C, 3 C (92,0 1-4
liatwlony < 2322 + e + 52 (VAT) (33)
€
h— hex C,. 3 C(Q,0 1-6\ 1
‘ n2 ex . < (u_gMEQ + Cheg + (55 ) ( /ME> ) ‘u—g (34)
In particular, this implies

Cq . 3 C (92,0 -6\ 1
leurl Al o gy < <—§M; + Ches + ¥ (\/ME) ) — (3.5)

ME € ME

Proof. Since ja(u) = (iu, Vau) = (iu, Vu — iAu), it follows from (2.5), (2.12) and Lemma 2.3 that for 1 < ¢ < 4,

. 6 1-¢ 2
A gagay < IVl | lul 1Vl Al ey |||

L1(9)

3 0 1-0
< %M + Cheg + C(E(; D (vax) .

(3.4) follows from elliptic estimates for equations (1.3) and (3.3). Finally (3.5) follows from (2.10), (3.4) and
Sobolev embedding. O

Lemma 3.3. Given (uj, A;j) stable Meissner state solution and satisfying HVujHiQ < o(ef), B is given by
Lemma 2.6. If Gesp (uj,A;5) < Culh?,, hey <Ce ™, 0< a < ﬁ and pe > 5%, limsup p. < 0o, then ase — 0,

e Vex’

1
1B ey < 0 (—) (3.6)

1
l[eurl Bj | o o) < 0 (g) . (3.7)
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Proof. We follow idea of [9] to prove (3.6). If we assume (u; A;) is energy minimizing among vortexless solutions,

then
Gesh (Uj,Aj) < Gesh (1; hevago) =Go < C,U2h§,93'

g

Decomposing & = he.&o + ¢ and dropping the subscript j, we obtain
GO Z Gcsh (U,A)
1
> 5 [ 1vuf 4 vg®
2 Jo
2 2

Ne |A§ - heaz| 1 2 ( 2)2
Pe |26 ™ Pex] |~ 1 —

HEE T gl (11

+o0 (")

=Go+ F (u) + %/qu? +IV¢P 40 (%)

Therefore

/Q Vuf? = /Q Tl + 1P V6P < o ()

o
Therefore

1Bill e < M4l Lo + IVl o
C
< =Z.
9

For any p > 1, by interpolation, we have

1—2 2
Vil < CHIVAll L 1Vl 72
< CeMier
< Ce”

for some v > 0, provided p < 8+ 2. On the other hand, from (3.1), we have
n?div B; = —2nVn - B;,

which implies
2
—A¢ = fEVn - Bj.

‘We deduce that
A9 s < ClIBjll L VAl Lo -

Choosing 2 < p < 0 4 2, we have
e 1
80l < 0F <o (2):

€

Since 2% = 0 implies % =0 on 0f2. From elliptic estimates and Sobolev embedding we deduce that

ov
1
Vol <o (2),

3
2

for some 3 > 0. We now assume this condition is satisfied. From Lemma 2.1, we have [|A;||; . < S ME +Che,.

(3.8)
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1
I35l <o (2):

Finally since curl B; = curl A, if p. > £9, taking § = 3 in (3.5), (3.7) follows directly. d

from which follows

We are going to prove that

a <771 +m2 B+ Bz> Gesh (1, B1) + Gesn (172, B2)
csh ) <
2 2 2
S Gcsh (7727 B2)7

thus getting a contradiction to the assumption that (us, A2) is stable.

Lemma 3.4. If (1, B1) # (2, B2), then

2 2
/ m -+ 12 1B, + By |? u_? Curl@—hez +/i n +n2 ? 1 m +n2 ? -
o\ 2 2 1 I a2\ 2 2 =
1 9 o p2|curl By — heg S| 9 a2 1 9 o p2|curl By — hey S| 9 o2
- B L —=n7 (1 — - B L B —=n5 (1 — )
2/9771| 1"+ 1 " +€2771( i) +2 9772| 2|” + 1 " +€2772( 73)

Proof. We compute X = X + X3 + X3 where

1 +n2\*|Bi + B
Q Q

2

2 2\ 2
1 1 2 1 2 1 /i +n2 m + 12
Xo== [ =2 (1—7n? —21—2—/— 1— 3.10
2 2/952771( 771) +€2772( 772) 952 ) ) ( )

2

2
x 1/ p2 |curl By — heg 2 u? |curl By — hey / u? curl% — hes (3.11)
3= [ = |——— | = | - .
2 Q 4 m 72 Q 4 n 2222
Following [9], we have
1
Xy = 1_6/ (m = m2)? |By + Baf” + 45 |By — Byf?
Q
+ (m2 —m) (B2 — B1) - (B1 (=2m1 — 4n2) + B2 (—6m1 — 8n2)) - (3.12)

Since u1, ug are vortexless solutions, we know that % < nj for j = 1,2. This guarantees 7, 72 lie in the domain

9

of convexity of function f(x) = a2 (1 - :c2)2. In particular, when zy,22 > 35,

through Taylor expansion,
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s (242) -1 (252)
()25 ()]
(52 252 (52
e (B52)

z:z-(fL%ﬁz)Q- (3.13)

we have (assuming x; < x2)

1
3 )+ £ o) - 1 (2

Here 1 € (331, +z2) and x5 € ( IJQ“Q , 1’2) satisfying =7, 73 > = 1o, in the last step, we used this and the fact
that f”(2;) > f"(<%) > 2. From (3.13), we obtain estimates for X»:

2 2\ 2
1 2 m + 02 m + 12
Xy = — T(1-n}) - —— I
2 252/9 771( 771) ( 9 > < < 9
1 2 m+n2 ? m+n2 2\’
- 2(1—p?)" (2= 1—( 2—1'=
+%2Q”“ 2) 2 2

2
1 m—12 1 2
> — 2. —— = — — . 3.14

For X3, we denote y; = & (curl B; — hee), j = 1,2. Then

() () =)
m =+ n2

( y1+y2) (y_y1+y2)
m+mn/\m m+n

/(y2 y1+y2)( y1+y2)
N2 MmN m + 102

N — N

+
D\\I\DI)—‘\\

X3

1 [ yime—yam (& e + Yo (i B i))
2Jo mAn \nt w5 mAm\m  n
L fyie—m)+w—y2)m v (m3—ni)+ @ —y2)ni
3 m+ ' nin3
+%/@n@2*m)+@g*mﬁh,@y+m%(m*nﬂ
Q (m +n2) mmne2
E/yﬂmmf v (e —m) (i —ge) g1 —m) (91— 9)
2 Jo W 13 (m + n2) mm
N 1/ yi (y1 +y2) (2 —m)” + Wit ye) (e —m) (1 —y2) | (1 = ) m
2Ja  (m+m)’mm 12 (m + n2)° 3 (1 +112)
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Note the integrand in X3 is symmetric in indices 1, 2, we deduce

LB v =) (i — ) vz (2 —m) (Y1 — y2)
X3 =3 2.2 + 2 + 2
2Jo  minms ni (m +n2) 17207
1 / y2 (y1 +y2) (02 —m)” i (yr+v2) (2 —m) (1 —v) | (y1 — 12)° N2
2Ja (m+n2)’mn m (i + 1) 13 (m + 12)
Therefore
X = 1/ (93 +43) (2 —m)* L +y2)° (2 —m)? N 1/ (Y1 —y2)° (@ N n_z)
4 Jo nins (1 + m2)° 2 4 Jo (m+mn2) \n3  n?
1 / Y2 Y1
+ - N2 —m) (Y1 — Y2 +
4 Q( )( ) ni (m +m2) 03 (4 12)
+ +
y22 i y12 (yl y2) S+ (yl y2) . (3'15)
Mt mny g (o n2)” 2 (o +n2)
By (3.7),

1
950 < llurt Byl + s <0 (2 )

If we assume for contradiction that X < 0, combining (3.12), (3.14) and (3.15) we obtain

}/Q(y%er%) (772—771)2+(y1 +y2)” (2 —m)° 1/0(3/13/2)2 <77_1 @)

4 nin3 (1 +12)° M2 4 ) (m+mn) \n3  n

1 1

+ —2/ (2 —m)” + —/ (m = m2)? [By + Baf” + 40} [By — B <
25 0 ].6 0

Cllm —n2llp2 1B — Ball 2 (1B1ll e + 1Ballpo) + C'llm — m2ll 2 lyr — w2l (vl oo + 1921l 1)

We remark here that in the first term of the last inequality, we used the boundedness of ;. In fact, taking p = 4

and 3 close to 3 in (2.4), we conclude
11— il < C.

From here and (3.8), boundedness of n; follows from Sobolev embedding. On the other hand,

1 (vi+93) (n2— m)’ (i 4v)> me—m)® 1 [ (yi—w) (m . m 1 2
n 2,2 + 2 + o LN _2+_2 +_2 (n27n1)
4 Jo nin3 (m1 +m2)" mne 4 Jq (m+mn) \n3  ni 2e% Jo

1
15 [ (n =) | By + Baof* + 4 | By — Baf? >
Q

C

— (Im = m2llp2 1By = Bellpa + [l = mall 2 [lys = w2l z2)-

Since ||yl ;0 < 0(%), 1Bl o < 0(%), we must have 73 = 12 or By = By. If 1 = 1, simple convexity
argument gives

/Q (m)?

2 2

2
curl @ — ey

m

B+ By
2

curl B1 — heg
m

curl By — heg
2

A
4

1 2 o | M2
< - B —=
2/9771| 1™+ 4

1 2 2, M2
- B Pe
+2/Q772|2|+4

2
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thus X > 0 (since By # Bs). If By = Bs, again by convexity (since 7; > 1%)

2 2
M+ 72 2|B|2%7g§ cwrl B —hes | L (41 ? L (At ? -
0 2 ! 4 mtn £2 2 2 =

]. 9 N2 2 2
/an|31| s

curl By — heg

m

curl By — heg

2 4 4 2

1 2 1 p? 1 2
+ 5t (L= i) +§/Qn§|le2+—a + =7 (1-13)

and X > 0 (since m; # n2). We are led to contradiction in all cases therefore X > 0 and lemma is proved. O

Lemma 3.5. If u. > £5 and lim sup pe < 00, there exists o € (0,1/24) and ey such that, if € < e, a stable
vortezless solution of (1.2)~(1.3) for he, < Ce™® with fQ|Vu|2 < o(eP) for some B > 0 is unique. Let

Eg={(u,A) € D: |u| > 5}. Fore < o, if there exists a solution of (1.2)~(1.3) that minimizes Ges;, over Ey,
then it is unique.

Proof. Lemma 3.4 implies

2 ’ 2 2
< Gesh (7727 B2)-

e (771 + 12 By +BQ) Gcsh (771731) +Gcsh (772,32)
csh <

A standard argument gives

Gcsh ((1 - t) m + tn27 (]- - t) Bl + tB2) < Gcsh (772; B2)

for all ¢ € (0,1), this contradicts the stability of (12, B2). Hence 1 = 12, B; = Bs. O

REFERENCES

[1] L. Almeida and F. Bethuel, Topological methods for the Ginzburg-Landau equations. J. Math. Pures. Appl. 77 (1998) 1-49.
[2] F. Bethuel, H. Brezis and F. Hélein, Asymptotics for the minimization of a Ginzburg-Landau functional. Cal. Var. Partial
Differ. Equ. 1 (1993) 123-148.
[3] A. Bonnet, S.J. Chapman and R. Monneau, Convergence of Meissner minimizers of the Ginzburg-Landau energy of supercon-
ductivity as k — +oco. SIAM J. Math. Anal. 31 (2000) 1374-1395.
[4] K. Choe and H.-S. Nam, Existence and uniqueness of topological multivortex solutions of the self-dual Chern-Simons CP(1)
model. Nonlinear Anal. 66 (2007) 2794-2813.
[5] M. Kurzke and D. Spirn, Gamma limit of the nonself-dual Chern-Simons-Higgs energy. J. Funct. Anal. 244 (2008) 535-588.
[6] M. Kurzke and D. Spirn, Scaling limits of the Chern-Simons-Higgs energy. Commun. Contemp. Math. 10 (2008) 1-16.
[7] F. Pacard and T. Riviere, Linear and nonlinear aspects of vortices. The Ginzburg-Landau model. Progress in Nonlinear
Differential Equations and their Applications 39. Birkhduser Boston, Inc., Boston, MA, USA (2000).
[8] E. Sandier and S. Serfaty, Global minimizers for the Ginzburg-Landau functional below the first critical magnetic field. Ann.
Inst. H. Poincaré, Anal. Non Linéaire 17 (2000) 119-145.
[9] S. Serfaty, Stable configurations in superconductivity: Uniqueness, mulitplicity, and vortex-nucleation. Arch. Rational Mech.
Anal. 149 (1999) 329-365.
[10] D. Spirn and X. Yan, Minimizers near the first critical field for the nonself-dual Chern-Simons-Higgs energy. Calc. Var. Partial
Differ. Equ. (to appear).
[11] G. Tarantello, Uniqueness of selfdual periodic Chern-Simons vortices of topological-type. Calc. Var. Partial Differ. Equ. 29
(2007) 191-217.
[12] D. Ye and F. Zhou, Uniqueness of solutions of the Ginzburg-Landau problem. Nonlinear Anal. 26 (1996) 603-612.



	Introduction
	Proof of existence
	Proof of uniqueness
	References

