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Abstract. Given the probability measure ν over the given region Ω ⊂ R
n, we consider the op-

timal location of a set Σ composed by n points in Ω in order to minimize the average distance
Σ �→ ∫

Ω
dist (x, Σ) dν (the classical optimal facility location problem). The paper compares two strate-

gies to find optimal configurations: the long-term one which consists in placing all n points at once in
an optimal position, and the short-term one which consists in placing the points one by one adding at
each step at most one point and preserving the configuration built at previous steps. We show that
the respective optimization problems exhibit qualitatively different asymptotic behavior as n → ∞,
although the optimization costs in both cases have the same asymptotic orders of vanishing.
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1. Introduction

Planning an economic activity is in general an extremely complex problem, where a high number of parameters
often intervene. In addition, the attitude of the planner has to be taken into account: long-term planners take
their decisions through an optimization process over a large time horizon, while short-term planners behave by
optimizing day-by-day their strategies. Usually, the first kind of behavior is perceived as more virtuous and
efficient, while the second is seen as easier to implement.

In this paper we analyze the long-term and short-term strategies in a very simple model problem, and we
give a way to measure the efficiency of the first versus the second. The problem we consider is the so-called
location problem which can be roughly described as follows. Suppose one has to open a certain number n ∈ N

of identical facilities (e.g. plants, shops, distribution centers, cinemas etc.) in the given urban region Ω ⊂ R
d

Keywords and phrases. Location problem, facility location, Fermat-Weber problem, k-median problem, sequential allocation,
average distance functional, optimal transportation.
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which will be modeled by a compact convex set (this convexity assumption is made for simplicity in order to
avoid ambiguities between euclidean and geodesic distances). If the density of population in Ω is given by a
known Borel probability measure ν, then the simplest way to measure the optimality of the chosen configuration
of facilities modeled by a set Σ ⊂ Ω consisting of at most n points (i.e. #Σ ≤ n), is clearly to calculate the
average distance the people have to cover to reach the nearest facility

F (Σ) :=
∫

Ω

dist (x, Σ)dν(x). (1.1)

Hence the owner of the facilities is interested in locating them in such a way as to minimize F . That is why,
if he is able to open all the facilities at once, he would choose a configuration Σ = Σn solving the following
problem.

Problem 1.1. Minimize the functional Σ �→ F (Σ) subject to the constraints

Σ ⊂ Ω, #Σ ≤ n.

We will further refer to such problem as a long-term planning problem since it models the optimal choice of
facility location so as to satisfy the global (long-term) needs of the facility owner. If Σ = Σn solves Problem 1.1,
we will denote ln := F (Σn) the respective optimal cost. It is worth mentioning that such a problem has been
extensively studied (see e.g. [10,15,16] for recent surveys on the subject). Nevertheless a lot of interesting and
important questions regarding this problem still remain open.

If, however, the owner of the facilities is unable to open all the facilities immediately (say, if he does not have
enough financial resources to do that), he will try to open them one by one, trying to minimize the average
distance functional F at each step (i.e. when opening each facility), but, of course, taking into consideration
the location of facilities already opened at previous steps. Such a short-term optimization strategy amounts to
solving the following problem (in the sequel referred to as short-term planning problem).

Problem 1.2. For each n ∈ N, n ≥ 1, find a set Σ = Σ′
n minimizing the functional Σ �→ F (Σ) subject to the

constraints
Σ′

n−1 ⊂ Σ ⊂ Ω, #Σ ≤ n,

where Σ′
0 := ∅.

The above model, to the best of our knowledge, can be traced back to [17], where the short-term facility
allocation strategy is called a myopic allocation policy (see also references therein for similar formulations).
In the same paper the authors propose also several other allocation strategies which can be considered as
intermediate between the short-term and the long-term ones.

We will further denote sn := F (Σ′
n) the optimal cost of the above short-term optimization problem.

In this paper we discuss the asymptotic behavior of solutions to the above two problems as n → ∞, by
studying the weak limits (in a suitable sense) of optimal configurations Σn and Σ′

n as well as the optimal
costs ln and sn. Namely, we will be interested in finding answers to the following questions.

(A) Find the asymptotic order of ln (resp. sn) as n → ∞, i.e. find an exponent α > 0 such that

C1n
−α ≤ ln ≤ C2n

−α (resp. C1n
−α ≤ sn ≤ C2n

−α)

for some positive constants C1 and C2 and for n sufficiently large. To simplify the notation, in the
sequel we will write in this case ln ∼ n−α (resp. sn ∼ n−α).

(B) Find precise asymptotic estimates for ln (resp. sn), i.e. find limn nαln (resp. limn nαsn), or just lim inf
and lim sup, should the limit not exist.

(C) Describe the asymptotic behavior of the minimizers, i.e. find all the weak limits, in a suitable sense, of
subsequences of minimizers.
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In the pioneering paper [17] some accurate numerical calculations of optimal short-term configurations for the
case of the uniform density on a line and on a two-dimensional square have been provided for rather small values
of n. Moreover, some deep insights have been formulated regarding the behavior of solutions. Nevertheless,
the above questions have not been explicitly addressed nor even formally posed. In this paper we provide
rigorous results concerning the nature of the problem which partially confirm the insights of [17], and also go
further. In Section 2 we summarize all the known results on the asymptotic behavior of solutions to the long-
term optimization Problem 1.1 that we need for the purpose of comparison with the short-term optimization
Problem 1.2. In Sections 3 and 4 we show that, although the optimal cost of the short-term optimization
Problem 1.2 has the same order of asymptotic expansion as n → ∞ (i.e. the answer to question (A) is the same
for both problems), the two problems are qualitatively different even in the simplest one-dimensional case d = 1,
with ν = L1. This case is actually treated in details in Section 4, where we describe explicitly the algorithm
that gives the sequence of points composing Σ′

n. To answer question (B) we prove that the above lim inf is
different from the corresponding lim sup and strictly greater than 1 and, for question (C), we consider the weak
limits in the sense of measures of the distributions of the points and we prove that there is an infinity of cluster
points and none of them is the uniform density. Finally, we conclude the paper by some remarks and open
questions supported by numerical evidence, as well as the description of a similar problem we feel important
for applications.

2. The long-term problem

The asymptotic behavior of the long-term optimal location Problem 1.1 has been intensively studied both us-
ing geometric (see e.g. [9,10]) and variational methods [3,11], in the latter case mainly by means of
Γ-convergence tools (see [8] for details on the theory). In order to later make a comparison with the respective
properties of the short-term problem, we summarize here the most important properties of this problem. Notice
first that

ln ≤ Cn−1/d. (2.1)

This estimate is straightforward, if one considers a set Σ composed by n points placed on a uniform grid of size
approximately equal to n−1/d.

We use Γ-convergence theory to find answers to the questions (A)–(C) posed in the Introduction. In order to
apply it, we need to work with functionals defined on a common space, which we choose to be the space of all
Borel probability measures P(Ω). To this aim we identify each set Σ ⊂ Ω having #Σ < +∞ with the measure
μΣ ∈ P(Ω) defined by

μΣ :=
1

#Σ

∑
x∈Σ

δx.

We define now a sequence of functionals on the space P(Ω) by setting

Fn(μ) :=

{
n1/dF (Σ), if μ = μΣ, #Σ ≤ n,

+∞, otherwise.
(2.2)

The coefficient n1/d in the above formula prevents the minimization from degenerating and is chosen according
to (2.1). It is straightforward to recognize that minimizing Fn is equivalent to solving Problem 1.1 up to the
above identification of sets with probability measures.

Here we give the Γ-convergence result only for the case ν = f · Ld. This result could easily be generalized to
a generic measure ν by inserting in the Γ-limit only the absolutely continuous part of ν with respect to Ld. The
proof of this theorem, for the case when f is a lower semicontinuous function, can be found in [3]. Anyway we
state such a result under the more general assumption f ∈ L1(Ω): the proof of this extension can be deduced
from the techniques developed by Mosconi and Tilli in [11] for the study of a similar problem (the so-called
irrigation problem).
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Theorem 2.1. The sequence of functionals {Fn}n Γ-converges with respect to the weak∗ convergence of measures
to the functional F∞: P(Ω) → R̄ defined by the formula

F∞(μ) := θd

∫
Ω

f

ρ1/d
dLd, where μ = ρ · Ld + μsing,

where ρ ∈ L1(Ω), μsing stands for the singular part of the measure μ with respect to Ld, and θd is a constant
depending only on the dimension d satisfying 0 < θd < ∞ and given by

θd := inf

{
lim inf

n
n1/d

∫
[0,1]d

dist (x, Σn)dx : Σn ⊂ [0, 1]d, #Σn ≤ n

}
.

The most important consequences of this theorem are summarized in the following corollary and answer
the questions we are interested in. For the reader’s convenience, we will simply provide a short proof for the
optimality of the measure μ̄ provided by Corollary 2.2 below, where a complete answer to questions (A), (B)
and (C) is given.

Corollary 2.2. The following assertions hold.
(A) One has ln ∼ n−1/d.
(B) More precisely, one has

lim
n

n1/dln = min
{
F∞(μ) : μ ∈ P(Ω)

}
= θd||f ||d/(d+1) > 0.

(C) Denoting by μn := μΣn the measures associated to a sequence of minimizers for Problem 1.1, we have
that μn

∗
⇀ μ̄ as n → ∞ in the weak∗ sense of measures, where μ̄ is the unique minimizer of F∞ and is

given by the formula

μ̄ = cfd/(d+1) · Ld with c :=
(∫

Ω

fd/(d+1) dLd

)−1

.

In particular, if ν has constant density, i.e. ν = c · Ld, then μ̄ has constant density as well, namely,
μ̄ = ν.

Proof. This statement comes from well-known properties of Γ-convergence (i.e. convergence of minima and of
minimizers), once we find the unique minimizer of F∞. Due to the strictly decreasing nature of F∞ with respect
to ρ on {f > 0} and to the fact that μsing and ρ1{f=0} do not affect the value of F∞, it is straightforward
that the minimizers should be absolutely continuous and concentrated on {f > 0}. To identify the density of
the absolutely continuous part, set λ := fd/(d+1) · Ld�Ω, and w := ρf−d/(d+1). With this notation, finding the
minimizers to F∞ is equivalent to minimizing the functional w �→ ∫

Ω
w−1/d dλ over the set

{
w ∈ L1(Ω, λ), w ≥ 0,

∫
Ω

w dλ = 1
}

.

By convexity of the map w �→ w−1/d, it immediately follows from Jensen inequality that the minimum of the
latter functional is attained at a constant function w. This shows μ̄ = cfd/(d+1) · Ld and the computation of
the constant c follows from the constraint μ̄ ∈ P(Ω). At last, the value of min F∞ is obtained by plugging μ̄
into the expression for F∞. �

The exact values of the constants θd are known in the one-dimensional and two-dimensional cases. Namely,
if Ω = [0, 1] and ν = L1�Ω it is actually easy to compute explicitly the unique minimizer of Problem 1.1 which
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is given by the set of n points located at the centers of n equal disjoint intervals forming a partition of Ω. In
other words, one has

Σn =
n⋃

i=1

{
2i − 1

2n

}
, F (Σn) =

1
4n

, so that θ1 =
1
4
·

In the two-dimensional case when Ω = [0, 1]2 and ν = L2�Ω it is known that the configuration of n points placed
in centers of regular hexagons, is asymptotically optimal as n → ∞ (see [9] or [10]), which gives possibility to
compute explicitly the constant θ2. Namely one gets

θ2 =
∫

σ

|x| dx =
3 log 3 + 4
6
√

2 33/4
≈ 0.377

where σ ⊂ R
2 stands for the regular hexagon of unit area centered at the origin.

3. The short-term problem

In this section we answer question (A) posed in the Introduction regarding the short-term optimal location
Problem 1.2. Namely, we will show that

sn ∼ n−1/d (3.1)
whenever ν 
 Ld, similarly to the asymptotic estimate ln ∼ n−1/d proved in Section 2.

Before proving (3.1) we find it important to remark that the values sn may actually depend not only on n,
but also on the chosen sequence of solutions {Σ′

n} of the short-term Problem 1.2. This is due to the fact that
at each minimization step both the position of the next point and the new minimum value may depend on the
history, i.e. on the configuration chosen on the previous steps. In other words, the choice of the optimal set at
each step may affect the minimal values of all the following steps as the following example shows.

Example 3.1. Consider the one-dimensional situation d = 1 with Ω := [0, 4] and

ν :=
(

1
2
· 1[0,1] +

1
4
1[2,4]

)
· L1.

Then one clearly has that both singletons {1} and {2} are solutions to the short-term location problem at the
first step n = 1, and both give the value s1 = 5/4. Now, if one takes Σ′

1 := {1}, then at the second optimization
step n = 2 we get the unique minimizer Σ′

2 := {1, 3}, which gives the value s2 = 1/2. On the other hand, if at
the first step one takes Σ′

1 := {2}, then at the second step one gets the unique minimizer Σ′
2 := {1/2, 2} which

gives a different value s2 = 5/8.

Coming back to proving (3.1), we observe that it is impossible to use the Γ-convergence theory for this
purpose. Namely, the constraint Σ′

n+1 ⊃ Σ′
n which is imposed at each minimization step, actually gives raise

to a sequence of problems that, once rescaled and expressed in terms of probability measures as in Section 2,
involve the functionals F′

n given by

F′
n(μ) =

⎧⎨
⎩

Fn(μ), if either μ = n−1
n μΣ′

n−1
+ 1

nδx, x ∈ Ω,

or μ = μΣ′
n−1

,

+∞, otherwise.

It is therefore not difficult to see that, whenever μΣ′
n

∗
⇀ μ̄ in the weak∗ sense of measures as n → ∞, then the

Γ-limit functional F′∞ would be finite only on μ̄ itself. This means that taking the limit of a sequence μΣn and
using the fact that it minimizes F′

∞ gives no additional information on the limit itself. Hence it is not possible
to find μ̄ in this way, contrary to the long-term case. We will therefore analyze the short-term Problem 1.2
directly, without using Γ-convergence tools.

The following assertion is valid.
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Theorem 3.2. For any probability measure ν there exists a constant C2 such that

sn ≤ C2n
−1/d;

moreover, if ν << Ld, there also exists a positive constant C1 such that

C1n
−1/d ≤ sn.

The two constants C1 and C2 do not depend on the choice of the sequence of solutions to the short-term optimal
location Problem 1.2. In particular, (3.1) holds.

Proof. Let {Σ′
n} (resp. {Σn}) be a sequence of minimizers for the short-term optimal location Problem 1.2

(resp. long-term optimal location Problem 1.1), where ν = f · Ld, f ∈ L1(Ω). Of course, the long-term cost is
lower than the short-term one, namely,

F (Σn) ≤ F (Σ′
n).

This provides the required estimate from below as a consequence of Corollary 2.2, under the same assumption
of such a corollary.

Now we come back to the case of an arbitrary ν and we want to prove an estimate of the form

F (Σ′
n) ≤ Bn−1/d

for a suitable constant B independent of the choice of the sequence of solutions to the short-term optimal
location Problem 1.2.

Once we have a set Σ′
n, we want to estimate by how much the functional F decreases when we add a point

x0 ∈ Ω. For the sake of brevity denote δ(x) := dist (x, Σ′
n). If we set Σ := Σ′

n ∪ {x0}, it is clear that for
x ∈ B(x0, δ(x0)/4) we have dist (x, Σ) < δ(x0)/4, δ(x) > 3

4δ(x0) and hence dist (x, Σ) < δ(x) − δ(x0)/2. Thus,
if we set

g(x0) := ν

(
B

(
x0,

δ(x0)
4

))
δ(x0)

2
,

we get
F (Σ) ≤ F (Σ′

n) − g(x0) and F (Σ′
n+1) ≤ F (Σ′

n) − sup
x0∈Ω

g(x0).

To estimate supx0∈Ω g(x0) we use the inequalities

∫
Ω

g(x0)dx0 =
∫

Ω

dx0

∫
Ω

dν(x)
δ(x0)

2
1{|x−x0|<δ(x0)/4}(x)

=
∫

Ω

dν(x)
∫

Ω

δ(x0)
2

1{|x−x0|<δ(x0)/4}(x0)dx0.

We may estimate this last quantity by using the fact that, for x0 ∈ B(x, δ(x)/5) the condition |x−x0| < δ(x0)/4
is always satisfied as well as the inequality δ(x0) ≥ 4

5δ(x). This implies

∫
Ω

g(x0)dx0 ≥
∫

Ω

dν(x)
∫

Ω

δ(x0)
2

1{|x−x0|<δ(x)/5}(x0)dx0

≥
∫

Ω

dν(x)
4ωd

2 · 5d+1
δ(x)d+1 ≥ 2ωd

5d+1

(∫
Ω

dν(x)δ(x)
)d+1

,

where ωd stands for the volume of the unit ball in R
d. The last inequality in the above chain is an application

of Jensen inequality since ν is a probability measure.
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We have therefore obtained

sup
x0∈Ω

g(x0) ≥ 1
|Ω|

∫
Ω

g(x0)dx0 ≥ C

(∫
Ω

dν(x)δ(x)
)d+1

= CF (Σ′
n)d+1,

which implies
F (Σ′

n+1) ≤ F (Σ′
n) − CF (Σ′

n)d+1,

where C > 0 depends only on the dimension d of the underlying space. The conclusion follows now from
Lemma 3.4 below (minding that the value s1 is independent of the choice of the sequence of solutions to the
short-term optimal location Problem 1.2). �

Remark 3.3. The lower estimate of Theorem 3.2 is valid whenever ν is such that the same estimate holds true
for the long-term problem (i.e. if ν is such that the infimum of the Γ-limit of the sequence Fn is positive). This
happens, for instance, whenever ν is absolutely continuous with respect to the Lebesgue measure, though it
suffices that the absolutely continuous part of ν with respect to the Lebesgue measure be nonvanishing. In fact,
it can be quite easily proven that the expression of the Γ-limit contains only the latter absolutely continuous
part.

Lemma 3.4. Let {an} be a sequence of nonnegative numbers satisfying an+1 ≤ an−Cad+1
n for all n ∈ N, where

C > 0. Then there exists a number B > 0 (depending only on a1, C and d), such that an ≤ Bn−1/d for all
n ∈ N.

Proof. The proof will be performed by induction, simultaneously with the choice of B.
The step n = 1 is satisfied choosing B ≥ a1. Now we look for a condition on B such that the following

statement is satisfied: if for some n ∈ N one has an ≤ Bn−1/d, then an+1 ≤ B(n + 1)−1/d. Since

an+1 ≤ an − Cad+1
n ≤ Bn−1/d − Cad+1

n ,

then we must impose that
Bn−1/d − Cad+1

n ≤ B(n + 1)−1/d.

Using again the fact that an ≤ Bn−1/d, we get

Bn−1/d ≤ B(n + 1)−1/d + CBd+1n−(d+1)/d,

or equivalently (
1 + 1

n

)1/d − 1
1/n

≤ CBd

(
1 +

1
n

)1/d

.

Minding that (
1 + 1

n

)1/d − 1
1/n

↗ d(x1/d)
dx

|x=1 = 1/d,

it is sufficient to impose 1/d ≤ CBd (1 + 1/n)1/d, or even 1/d ≤ 2CBd. Therefore, the choice B := a1 ∨
(1/2dC)1/d suffices for the proof to be concluded by induction. �

4. The one-dimensional case with uniform measure

In this section we address questions (B) and (C) posed in the Introduction regarding the short-term optimal
location Problem 1.2. In particular, studying question (B), we will show that, even in a very simple one-
dimensional situation with ν being the uniform measure on an interval, the ratio sn/ln (which is never smaller
than one) does not have a limit as n → ∞, and hence, neither does n1/dsn (although by Th. 3.2 one has n1/dsn ∼
1), since by Corollary 2.2 limn n1/dln exists. Moreover, we will show that in this case even lim infn sn/ln > 1.
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We further show that in the same situation there are infinitely many limit measures (in the weak∗ sense) of the
sequences of μΣ′

n
as n → ∞, where Σ′

n solves Problem 1.2, and what is more, neither of such limit measures is
equal to the unique limit measure of the sequence of solutions to the long-term Problem 1.1.

In this section we restrict ourselves to the case Ω = [0, 1] and ν = L1. We will further identify each set Σ ⊂ Ω
having finite number of points with the partition of Ω by the points of Σ. Namely, if Σ = {x1, . . . , xk}, we will
always order the elements of Σ in such a way that

x1 < x2 < . . . < xk,

and identify Σ with the partition of Ω given by the intervals (Δi)k+1
i=1 , where

Δ1 := [0, x1], Δ2 := [x1, x2], . . . , Δk = [xk−1, xk], Δk+1 := [xk, 1].

The intervals Δ1 and Δk+1 will be further called external intervals, while all the other intervals of this partition
will be called internal intervals. We will also identify the same set with the (k + 1)-dimensional vector whose
entries are the lengths of the intervals of the respective partition

(|Δ1|, . . . , |Δk+1|) = (x1, x2 − x1, x3 − x2, . . . , xk − xk−1, 1 − xk),

and we write
Σ � (x1, x2 − x1, x3 − x2, . . . , xk − xk−1, 1 − xk).

For instance, the set {1/3, 2/3} is identified with the respective partition of [0, 1], and with the vector
(1/3, 1/3, 1/3), i.e. {1/3, 2/3} � (1/3, 1/3, 1/3). The intervals [0, 1/3] and [2/3, 1] are external intervals while
the interval [1/3, 2/3] is internal.

Proposition 4.1. Given a Σk ⊂ Ω, assume that Σk � (λ1, . . . , λk+1), and let Σk+1 be a minimizer of F over
all sets Σ ⊂ Ω such that Σ ⊃ Σk and #Σk+1 = k + 1. Then Σk+1 = Σk ∪ {x}, while either of the following two
conditions hold.

(1) Either x is the center of some internal interval Δi, so that

Σk+1 � (λ1, . . . , λi−1, λi/2, λi/2, λi+1, . . . , λk+1),

while
F (Σk+1) = F (Σk) − λ2

i /8;

(2) or x divides some external interval Δ1 or Δk+1 with the length ratio 1:2 closer to the boundary of [0, 1],
so that

Σk+1 � (λ1/3, 2λ1/3, λ2, . . . , λk+1) or Σk+1 � (λ1 . . . , λk, 2λk+1/3, λk+1/3)

while
F (Σk+1) = F (Σk) − λ2

i /3,

where i = 1 (if x ∈ Δ1) or i = k + 1 (if x ∈ Δk+1).

Proof. If x ∈ Δi, i �∈ {1, k + 1} (i.e. Δi is internal), then

F (Σk+1) =
∫

[0,1]\Δi

dist (z, Σk) dz +
∫

Δi

dist (z, {xi−1, x, xi}) dz

=
∫ 1

0

dist (z, Σk) dz − (xi − x)(x − xi−1)
2

,
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and to conclude, it is enough to maximize the last quadratic function of x. The case when Δi is external, say,
i = 1 (the case i = k + 1 is completely symmetric), is absolutely analogous, once one notes that

F (Σk+1) =
∫

[0,1]\Δ1

dist (z, Σk) dz +
∫

Δi

dist (z, {x, x1}) dz

=
∫ 1

0

dist (z, Σk) dz − x2
1

2
−

(
x2

2
+

(x1 − x)2

4

)

= F (Σk) − 3x2 − 2x1x + x2
1

4
·

Here as well it is sufficient to maximize the quadratic part. �
We will further say that the point x ∈ Δi is in optimal position, if either Δi is an internal interval and x

is its center, or Δi is an external interval, and x divides it with the length ratio 1 : 2 closer to the boundary
of [0, 1]. The above proposition says that whenever Σk ⊂ Ω, #Σk = k and Σk+1 ⊂ Ω, #Σk+1 = k + 1 solve
Problem 1.2, then Σk+1 = Σk ∪ {x} with x in optimal position.

We set now

Ωi :=
[

1
2 · 3i+1

,
1

2 · 3i

]
∪

[
1 − 1

2 · 3i
, 1 − 1

2 · 3i+1

]
, i ∈ N,

so that, clearly {Ωi}i gives a partition of Ω, while |Ωi| = 2/3i+1. This allows us to formulate the following
corollary to the above Proposition 4.1.

Corollary 4.2. Let Σ′
k ⊂ Ω, #Σ′

k = k be a solution to Problem 1.2. Then, for the corresponding partition of Ω
one has that for each interval Δi there exists a unique couple of numbers (j, h) ∈ N

2, such that |Δi| = 3−j2−h,
while

(1) if Δi is internal, then j ≥ 1 and Δi ⊂ Ωj;
(2) if Δi is external (i.e. i = 1 or i = k + 1), then h = 1 and

j =
{

0, k = 1,
j0 or j0 − 1, otherwise,

where j0 := sup{j : Ωj ⊃ Δm for some m = 2, . . . , k}.
Proof. The proof is easily obtained by induction on k. �

Consider an arbitrary Σ′
k � (λ1, . . . , λk+1) solving Problem 1.2. Thanks to the Corollary 4.2 we will identify

each number λi corresponding to the internal interval Δi with the respective couple (j, h) ∈ N
2, j ≥ 1, such

that λi = 3−j2−h. We will further identify every external interval Δi with the couple (j + 1/2,−1/2), where
j ∈ N is such that λi = 3−j2−1 (the reason for the latter identification will be explained in a moment).

Consider now the set D of couples (j, h) ∈ R
2, where (j, h) ∈ N

2, j ≥ 1, or j ∈ N + 1/2, h = −1/2. We have
that each interval Δi, and each λi is identified with a unique point dλi ∈ D. We introduce the ordering on D
according to the following definition.

Definition 4.3. We denote (j2, h2) � (j1, h1), if

h2 − h1 + (j2 − j1) log 3/ log 2 < 0.

Observe that the above relation well orders the set D. We have now the following simple assertion.

Proposition 4.4. Let Σ′
k ⊂ Ω, #Σ′

k = k be a solution to Problem 1.2. Let p, q ∈ {1, . . . , k + 1}, and consider
dλp = (jλp , hλp), dλq = (jλq , hλq) ∈ D. Consider Σp

k+1 := Σ′
k ∪ {xp} and Σq

k+1 := Σ′
k ∪ {xq}, where xp ∈ Δp

and xq ∈ Δq are in optimal positions. If dλq � dλp , then

F (Σp
k+1) > F (Σq

k+1).
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Proof. One considers separately three cases.
Case 1. Both Δp and Δq are internal intervals. Then

F (Σp
k+1) = F (Σ′

k) − λ2
p/8

= F (Σ′
k) − 3−2jλp 2−2hλp /8

> F (Σ′
k) − 3−2jλq 2−2hλq /8 = F (Σp

k+1),

because hλq − hλp + (jλq − jλp) log 3/ log 2 < 0 implies 3−2jλp 2−2hλp < 3−2jλq 2−2hλq .
Case 2. One of the intervals (say, Δp) is internal, another one (Δq) is external. Then, minding that

hλp = −1/2, and hence λp = 3−jλp+1/22−1 = 3−jλp−1/222hλp , we get

F (Σp
k+1) = F (Σ′

k) − λ2
p/3

= F (Σ′
k) − 3−2jλp 24hλp

= F (Σ′
k) − 3−2jλp 24hλp

> F (Σ′
k) − 3−2jλq 2−2hλq /8 = F (Σp

k+1),

because hλq − hλp + (jλq − jλp) log 3/ log 2 < 0 and hλp = −1/2 implies 3−2jλp 2−hλp < 3−2jλq 2−2hλq /8.

Case 3. Both intervals Δp and Δq are external, so that λp = 3−jλp+1/22−1 and λq = 3−jλq +1/22−1, while
jλq < jλp . Then

F (Σp
k+1) = F (Σ′

k) − λ2
λp

/3

= F (Σ′
k) − 3−2jλp+12−2/3

> F (Σ′
k) − 3−2jλq +12−2/3 = F (Σp

k+1). �

As an immediate consequence of Proposition 4.4 we get the following theorem.

Theorem 4.5. Let Σ′
k ⊂ Ω, #Σ′

k = k be a solution to Problem 1.2. Let d = (j, h) ∈ D be maximal (with respect
to the order �) among the elements dλq ∈ D corresponding to q ∈ {1, . . . , k + 1}. If Σ′

k+1 ⊂ Ω, #Σ′
k+1 = k + 1

solves Problem 1.2, then Σ′
k+1 = Σ′

k ∪ {x} where x ∈ Δp is in optimal position and p ∈ {1, . . . , k + 1} is such
that d = dλp (such an element may be nonunique).

We are now able to formulate the following statement which says exactly what the sequence {Σ′
k} of solutions

to Problem 1.2 looks like in the particular case we are considering.

Corollary 4.6. Enumerate D in the order given by the relation �, so that D = {d(i)}∞i=1, d(i + 1) � d(i).
The sequence of solutions Σ′

k ⊂ Ω, #Σ′
k = k to Problem 1.2 can be described in the following way by induction

on (D,�). Each d(i) = (j(i), h(i)) ∈ D gives rise to a part Si of the sequence of optimal sets.
• S0 consists of the unique set Σ′

1 � (1/2, 1/2).
• The set Si+1 consists of the sets Σ′

k+1, . . . , Σ
′
h, where Σ′

k is the last element of Si,

Σ′
j+1 = Σ′

j ∪ {xj}, j = k, . . . , h − 1,

h := k+2h(i)−1, xj ∈ Δp ⊂ Ωj(i) in optimal position, and p ∈ {1, . . . , j} is an arbitrary index satisfying
d(i) = dλp .

Proof. The proof is easily obtained by induction on the well-ordered set (D,�). �
Remark 4.7. An easy consequence of what has been proven so far, is that in the case we are considering (that
is, when ν is the uniform measure over the interval) the value of sn does not depend on the particular sequence
of solutions {Σ′

n} to short-term Problem 1.2, i.e. it depends only on the index n.
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Example 4.8. We consider the first elements of the possible sequences of solutions Σ′
k ⊂ Ω, #Σ′

k = k to
Problem 1.2.

(1) i = 0, S0 = {Σ′
1}, where

Σ′
1 � (1/2, 1/2).

(2) i = 1, d(1) := (j(1), h(1)) = (−1/2,−1/2) ∈ D. From d(1) = dλp we get λp = 3−j(1)+1/22−1 = 1/2,
which corresponds to the two external intervals of length 1/2. Hence, S1 := {Σ′

2, Σ
′
3}, where

either Σ′
2 � (1/6, 1/3, 1/2) or Σ′

2 � (1/2, 1/3, 1/6),

Σ′
3 � (1/6, 1/3, 1/3, 1/6).

(3) i = 2, d(2) := (j(2), h(2)) = (1, 0) ∈ D. From d(2) = dλp we get λp = 3−j(2)2−h(2) = 1/3, which
corresponds to the two internal intervals of length 1/3, both belonging to Ωj(2) = Ω1. Hence, S2 :=
{Σ′

4, Σ
′
5}, where

either Σ′
4 � (1/6, 1/6, 1/6, 1/3, 1/6) or Σ′

4 � (1/6, 1/3, 1/6, 1/6, 1/6),

Σ′
5 � (1/6, 1/6, 1/6, 1/6, 1/6, 1/6).

(4) i = 3, d(3) := (j(3), h(3)) = (1/2,−1/2) ∈ D. From d(3) = dλp we get λp = 3−j(3)−1/22−1 = 1/6, which
corresponds to the two external intervals of length 1/6. Hence, S3 := {Σ′

6, Σ
′
7}, where

either Σ′
4 � (1/18, 1/9, 1/6, 1/6, 1/6, 1/6, 1/6)

or Σ′
4 � (1/6, 1/6, 1/6, 1/6, 1/6, 1/9, 1/18),

Σ′
5 � (1/18, 1/9, 1/6, 1/6, 1/6, 1/6, 1/9, 1/18).

(5) i = 4, d(4) := (j(4), h(4)) = (1, 1) ∈ D. From d(4) = dλp we get λp = 3−j(4)2−h(4) = 1/6, which
corresponds to the four internal intervals of length 1/6, all belonging to Ωj(4) = Ω1. Hence, S3 :=
{Σ′

8, Σ
′
9, Σ

′
10, Σ

′
11}, where

either Σ′
8 � (1/18, 1/9, 1/12, 1/12, 1/6, 1/6, 1/6, 1/9, 1/18)

or Σ′
8 � (1/18, 1/9, 1/6, 1/12, 1/12, 1/6, 1/6, 1/9, 1/18)

or Σ′
8 � (1/18, 1/9, 1/6, 1/6, 1/12, 1/12, 1/6, 1/9, 1/18)

or Σ′
8 � (1/18, 1/9, 1/6, 1/6, 1/6, 1/12, 1/12, 1/9, 1/18),

either Σ′
9 � (1/18, 1/9, 1/12, 1/12, 1/12, 1/12, 1/6, 1/6, 1/9, 1/18)

or Σ′
9 � (1/18, 1/9, 1/12, 1/12, 1/6, 1/12, 1/12, 1/6, 1/9, 1/18)

or Σ′
9 � (1/18, 1/9, 1/12, 1/12, 1/6, 1/6, 1/12, 1/12, 1/9, 1/18)

or Σ′
9 � (1/18, 1/9, 1/6, 1/12, 1/12, 1/12, 1/12, 1/6, 1/9, 1/18)

or Σ′
9 � (1/18, 1/9, 1/6, 1/12, 1/12, 1/6, 1/12, 1/12, 1/9, 1/18)

or Σ′
9 � (1/18, 1/9, 1/6, 1/6, 1/12, 1/12, 1/12, 1/12, 1/9, 1/18),
. . .

We are now able to claim the following assertions answering questions (B) and (C) for the case we are
considering.

Theorem 4.9. Assume ν = L1�[0, 1]. Then the bounded sequence {nsn} does not converge as n → ∞. Further,
for any sequence {Σ′

n} of solutions to Problem 1.2, the sequence of probability measures μΣ′
n

has infinitely many
limit measures in the weak∗ sense as n → ∞.
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Proof. Fixed a j ∈ N, consider the sequence of indices kn such that Σ′
kn

induces a subdivision of the set Ωj

into 2n equal subintervals while the partition of Ω corresponding to Σ′
kn+1 divides further one of the latter

subintervals into two equal intervals. This means that the sequence of partitions corresponding to optimal
sets Σ′

k, starting from k = kn and up to k = kn + 2n, will be obtained by dividing into two equal parts at each
step one of the 2n subintervals in Ωj . Set now

an :=
∫

[0,1]\Ωj

dist (x, Σ′
kn

)dx and bn :=
∫

Ωj

dist (x, Σ′
kn

)dx.

Fix an arbitrary dyadic number λ ∈ (0, 1) and consider the new sequence of indices k′
n := kn + λ2n, so that the

partition of Ω corresponding to Σk′
n

coincides with that corresponding to Σkn up to the fact that some of the
subintervals in Ω0, namely, a fraction λ of the total, have been split in two parts. This implies that

k′
nlk′

n
= k′

nF (Σ′
k′

n
) = (kn + λ2n)(an + (1 − λ/2)bn),

splitting an interval in two equal parts reduces the average distance from its points to Σ by a factor two. Mind
that

knlkn = knF (Σ′
kn

) = kn(an + bn),

and assume by contradiction that, limk klk exists. Then limn k′
nlk′

n
= limn knlkn , and hence,

(kn + λ2n)
(
an+

(
1 − λ

2

)
bn

)
− kn(an + bn)

= λ
(
2nan − 1

2
knbn +

(
1 − λ

2

)
2nbn

)

= λ
(
2nan − 1

2
knbn +

1
9

(
1 − λ

2

))
→ 0

as n → ∞. Therefore, 2nan − knbn/2 → λ/18 − 1/9 as n → ∞, which means that, taking two different dyadic
values of λ ∈ (0, 1), the sequence {2nan − knbn/2} has two different limits. This contradiction proves the first
claim.

To prove the second claim, we first show that the limit measures of the sequence {μΣ′
l
} are not unique, where

l ∈ [kn, kn +2n]. To this aim, suppose by contradiction that all the subsequences of the above sequence converge
in the weak∗ sense to the same limit measure μ as n → ∞. In particular, this is the case of {μΣ′

kn
}, which

clearly then converges to a uniform measure over Ωj since the points of Σ′
kn

are uniformly distributed over Ωj .
Observing that kn ≥ 2n, and hence

1/(1 + λ) ≤ kn/k′
n ≤ 1,

we may assume without loss of generality that up to extracting a subsequence of kn (not relabeled), the sequence
{kn/k′

n} converges to some finite limit. Hence

1 = lim
n→∞

μΣ′
k′

n

(Ωj)

μΣ′
kn

(Ωj)
= lim

n→∞
(1 + λ)2n/k′

n

2n/kn
= (1 + λ) lim

n→∞
kn

k′
n

,

which gives limn kn/k′
n �= 1. But since

μΣ′
k′

n

(Ωj) =
kn

k′
n

μΣ′
kn

(Ωj) +
λ2n

k′
n

,
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Figure 1. Plot of sn/ln for the case of uniform density over [0, 1].

then passing to a limit in the above relationship as n → ∞, we get

μ(Ωj) = lim
n→∞

kn

k′
n

μ(Ωj) + lim
n→∞

λ2n

k′
n

= μ(Ωj) lim
n→∞

kn

k′
n

+ lim
n→∞

(
1 − kn

k′
n

)
.

Minding that limn kn/k′
n �= 1, the above relationship is only possible when μ(Ωj) = 1, i.e. when the unique

limit measure μ is concentrated on Ωj , which is clearly not the case because

μ(Ωj+1) ≥ μ(Ωj)
3

· (4.1)

To verify the latter inequality, it is enough to notice that

μΣ′
kn

(Ωj+1)

μΣ′
kn

(Ωj)
=

2h + 1
2n + 1

, with (j, n) � (j + 1, h),

so that h ≥ n − log 3/ log 2, which gives (4.1) in the limit as n → ∞.
At last, to show that the limit measures of the sequence {μΣ′

n
} are infinite, it is enough to vary j ∈ N. �

In Figure 1 we provide a graph of sn/ln for the case we are considering calculated according to the algorithm
given by Theorem 4.5 and Corollary 4.6.

Theorem 4.10. No sequence {Σ′
n} of solutions to Problem 1.2 (with ν uniform measure on [0, 1]) has the

Lebesgue measure L1�[0, 1] as a limit measure of some subsequence of μΣ′
n

in the weak∗ sense as n → ∞.

Proof. By using Corollary 4.6, to any k we can associate a set Ωj in the following way. Let i ∈ N be such that
Σ′

k ∈ Si. Consider now the pair (j(i), h(i)) ∈ D corresponding to the index i, and set j := j(i). The index
j = j[k] associated to a set Σ′

k represents the set Ωj where we last put a point in building Σ′
k and also the

set Ωj which is being divided in a dyadic way by the optimal sequence at step k. Namely, if we look at the
points composing Σ′

k, we see the following picture.
• For every j > maxk′≤k j[k′] no point of Σk belongs to Ωj .
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• Every Ωj with j ≤ maxk′≤k j[k′] and j �= j[k] contains a certain number 2h of points of Σ′
k (precisely

we have h = max{h : (j, h) ≺ (j[k], k)}).
• At last, in Ωj[k] we cannot exactly predict the number of points of Σ′

k.
Up to choosing a subsequence of n (not relabeled), we can suppose the existence of two distinct indices j1 and
j2 such that for any n (from the chosen subsequence) we have j[n] �= j1, and j[n] �= j2. Extracting a further
subsequence of n (again not relabeled), we may assume that maxk′≤n j[k′] ≥ (j1 ∨ j2), and hence the number of
points of Σ′

n in the sets Ωj1 and Ωj2 is a power of two. This means that, if we set μn := μΣ′
kn

and we suppose

μn
∗
⇀ μ = L1�[0, 1] in the weak∗ sense as n → ∞, we get

2λ(n,j1,j2) =
μn(Ωj1)
μn(Ωj2)

→ μ(Ωj1 )
μ(Ωj2 )

= 3j2−j1 ,

where λ(n, j1, j2) is an integer exponent depending only on n, j1 and j2. Yet this is a contradiction as a sequence
of powers of two can converge only to 0, +∞ or a power of two. �

The above theorem gives a rigorous formulation of the insight of the authors of [17] who noticed that a
short-term strategy in the above one-dimensional situation, compared to other allocation policies, induces
“a more uniformly spaced allocation yet not completely uniform”.

Corollary 4.11. One has
1 < lim inf

n→∞ sn/ln < lim sup
n→∞

sn/ln,

if ν is the uniform measure over [0, 1].

Proof. The second inequality is just the reformulation of the first claim of Theorem 4.9 minding Corollary 2.2.
To prove the first inequality, note that sn ≥ ln, while, should the above lim inf be equal to one, we could build
a subsequence {Σ′

kn
} of solutions to short-term Problem 1.2 such that the respective sequence of measures

{μΣ′
kn
} is asymptotically optimal for the sequence of functionals {Fkn}n defined by (2.2). From general results

in Γ-convergence theory we would obtain μΣkn

∗
⇀ μ̄ in the weak∗ sense as n → ∞, where μ̄ is the limit measure

for the long-term Problem 1.1, i.e. the Lebesgue measure over [0, 1], which contradicts Theorem 4.10. �

5. Concluding remarks and open problems

We conclude the paper by a list of remarks and open problems regarding the model studied in this paper,
which we consider to be interesting for further study.

Question I. It seems interesting to understand whether the phenomena studied in Section 4 (e.g. non
existence of the limit of sn/ln, the fact that the respective lim inf is strictly greater than one, non-uniqueness of
the limit measures for the short-term location problem, etc.) for the case ν = L1�[0, 1] occur in the case of generic
measure ν in one-dimensional case d = 1. Further, it seems to be important for applications to characterize
completely the limit measures of the short-term problem and to obtain sharp estimates on lim infn→∞ sn/ln
and lim supn→∞ sn/ln even for the uniform measure ν. In the latter case, the numerical computation provided
in this paper (Fig. 1) suggests that both limits are close to 1. In practice, one could assume that asymptotically
the value of the functional in the short-term problem is almost the same as in the long-term one, which would
give a rigorous statement of the idea first suggested in [17].

Question II. In the case of the generic space dimension d > 1 we are able to prove only the asymptotic order
estimate of the value of the functional in the short-term problem. It seems therefore important to study the
above posed problems for generic space dimension even in the simplest case when, say, ν is the uniform measure
on the unit ball or on the unit square. Figure 2 shows what one can expect about the behavior of sn in the
case of a uniform density on a unit square (for convenience, the normalized values sn/l∞n are provided, where
l∞n := n−1/dθ2‖f‖d/(d+1) stands for the asymptotical value of the long-term minima according to Th. 2.1), while
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Figure 2. Plot of sn/l∞n for the case of a uniform density on a unit square.
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Figure 3. Short-term location for the case of a uniform density on a unit square of (left) the
first 9 points (right) 1000 points.

Figure 3 shows how the distribution of points in this case looks like. Both figures are obtained by a numerical
calculation on a uniform 200× 200 grid. We just point out that the plot of n �→ sn/l∞n in principle may depend
on the sequence Σ′

n, i.e. on the history. It seems important therefore to understand whether limn sn/ln depends
on the sequence Σ′

n. More results of numerical computations for the short-term optimal location problem can
be found on the web page [18].

Question III. At last, it is natural to mention here a similar problem introduced in [7] and sometimes
called irrigation problem (see [4–6,12–14]) on minimization of the average distance functional, but over compact
connected sets of finite length, rather than discrete sets of points (as in this paper). The statement of such a
problem is obtained by replacing the constraint on cardinality #Σ of the unknown minimizer Σ in the location
problem by the similar constraint on the one-dimensional Hausdorff measure H1(Σ). The problem is therefore
that of finding a minimizer of the cost F : Σ �→ ∫

Ω dist (x, Σ)dν(x) over all compact and connected sets Σ ⊂ Ω̄
satisfying H1(Σ) ≤ l with given l > 0. This problem, which again can be interpreted as the long-term one,
admits also a natural short-term approach. Namely, by letting the parameter l increase, we would like to
find an irrigation set Σ which increases continuously with l, in such a way that the functional F decreases
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as fast as possible. This construction may be made rigorous through a slight modification of the well-known
method of minimizing movements (see for instance [1,2] for the presentation of the theory). Namely, fixed an
arbitrary time step τ > 0, we minimize the functional Σ �→ F (Σ)+H1(Σ\Στ

k)2/2τ over the set of all connected
compact subsets of Ω satisfying the constraint Στ

k+1 ⊃ Στ
k, where Στ

0 := ∅ (alternatively, one could drop the H1-
penalization term in the above functional and add the additional constraint H1(Σk+1) ≤ H1(Στ

k) + τ instead).
Let then t �→ Στ (t) be the piecewise constant map defined by

Στ (t) := Στ
k for t ∈ [kτ, (k + 1)τ [.

One should first study whether in this way one can find a well-defined increasing evolution Σ(t) as a limit (in
the Hausdorff topology) of Στ (t) as τ → 0. Further, several questions then arise about the behavior of Σ(t). For
instance, it has been proven in [5,6,13,14] that the solutions of the long-term irrigation problem under suitable
conditions on problem data do not contain loops, have a finite number of endpoints and may have only regular
tripods (i.e. triple junctions with the branches with infinitesimal angles 120◦ between each other) as branching
points, which are at most finite in number. It is interesting to verify whether the same or similar properties
hold also for solutions of the short-term problem Σ(t) for all (or for some) t ∈ R

+, or whether such solutions
are just simple curves without branching points. Besides, one is also interested in the asymptotic density of
the curve Σ(t) (i.e. the weak∗ limits of the measures H1�Σ(t)/H1(Σ(t)) as t → ∞), which for the long-term
irrigation problem has been studied in [11].
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