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QUASI-STATIC EVOLUTION FOR FATIGUE DEBONDING

Alessandro Ferriero1

Abstract. The propagation of fractures in a solid undergoing cyclic loadings is known as the fatigue
phenomenon. In this paper, we present a time continuous model for fatigue, in the special situation of
the debonding of thin layers, coming from a time discretized version recently proposed by Jaubert and
Marigo [C. R. Mecanique 333 (2005) 550–556]. Under very general assumptions on the surface energy
density and on the applied displacement, we discuss the well-posedness of our problem and we give the
main properties of the evolution process.
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Introduction

In 1998 [7], Francfort and Marigo proposed a variational theory of brittle fracture which does away with some
important defects of the classical Griffith theory [10], such as the impossibility of crack initiation, the a priori
knowledge of the crack path and the the high regularity of the crack zone.

The main idea, borrowed from Mumford-Shah model for image segmentation [12], is that the crack wants
to quasi-statically minimize its total energy among all competitors. In other words, at any time the crack
must minimize the elastic energy of the uncracked part of the material plus the surface energy of the crack
among all possible cracks greater than the previous one (cracks cannot disappear). Furthermore, to recover
the propagation criteria of Griffith theory in the current setting, the evolution is also constrained to satisfy an
energy balance between the work of the external forces and the mechanical energy of the system.

Following Griffith’s hypothesis, the surface energy of the crack is proportional to the surface area of the
crack, independently of the value of the displacement jump. Because of that, the model proposed in [7] cannot
provide crack propagation for fatigue.

We recall briefly that the fatigue phenomenon is the growth of cracks in a structure submitted to cyclic
loadings. It can be observed that fractures propagate with each cycle even if the maximal intensity of the
applied loads remain constant.

In a recent work [11], Jaubert and Marigo have extended the variational model of fracture evolution to also
provide for fatigue. As a first approach, they consider the problem of the debonding of a thin layer initially
glued to a fixed substrate and submitted to a cyclic deflection at one tip (that can be seen as a simplified
two-dimensional crack evolution model).
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The new ingredients introduced in [11] are a memory field of the displacement history and a surface energy
density depending on the displacement jump, instead of the Griffith energy. The model is therefore written in
terms of a family of time discrete evolutions. At each time step, a static variational problem is solved, and time
evolution is considered through an irreversibility condition on the memory field.

In this paper, we formulate a time continuous evolution model for the process presented in [11], in the spirit
of [3–8], and we prove an existence result for such an evolution. In [8] and references therein, the physical
meaning of those formulations is discussed.

The continuous model is based on two equations: the energy balance, that is the mechanical version of the
second law of thermodynamics, and the stability condition, that is the minimality property postulated for the
evolution at any fixed time.

Two difficult tasks are faced in order to obtain the continuous formulation. The surface energy density is
concave and bounded. That complicates the analysis since we look for a priori estimates. In [8], a very general
existence result for rate-independent processes is proved (with coercive surface energy density). Then, one
should carry the information coming from the displacement history over to the continuous formulation.

The paper is organized as follows. In Section 1, we introduce the problem and in Section 2 give the main
properties of the time discrete evolution. We show that our formulation is well-posed, i.e. it admits a solution
and the solution is unique. In Section 3, we derive the a priori estimate used in performing the limit as the
time step goes to zero. In Section 4, we present the time continuous formulation of the problem that is our
main result.

1. The variational formulation

In [11], the debonding of an inextensible and perfectly flexible thin layer due to a cyclic deflection is considered.
Let us briefly recall the problem.

At the initial time t = 0 the layer is perfectly glued to a rigid substrate. One end is submitted to a constant
horizontal tension N and to a vertical cyclic deflection V (t), while the other end is fixed.

Let u(t, x) be the displacement of the layer at time t and let L be the length of the layer. Following the
idea introduced by Francfort and Marigo [7], the quasi-static evolution of the debonding is the result of a
limit process of a time discretized sequence of minimization problems. At each time t, the total energy to be
minimized is the result of the competition between potential and surface energy.

Since the layer is inextensible and perfectly flexible, the potential energy can be written as

N

2

∫ L

0

∣∣∣∣∂u

∂x
(t, x)

∣∣∣∣
2

dx.

Meanwhile, the surface energy density is a generic increase concave function φ (in [11], the case of Dugdale
energy density is presented). In order to account for the fatigue, a memory field δ(x, t) :=

∫ t

0 [u̇(τ, x)]+dτ is
introduced in [11].

The surface energy can be written as ∫ L

0

φ(δ(t, x))dx.

Specifically, the problem can be stated as follows.
Let N be a positive constant, let φ : [0,∞) → [0,∞) be a non-decreasing concave function1, with φ(0) = 0,

φ is differentiable at 0 and φ′(0) < +∞, and let V : [0, T ] → [0,∞), V (0) = 0, be an absolutely continuous
function with piecewise continuous derivative. We assume that V has a finite number of cycles, meaning that
the open set {t ∈ (0, T ) : V̇ is continuous at t, V̇ (t) > 0} has finitely many connected components.

By the concavity assumption, the left and the right derivative of φ exist finite everywhere in (0,∞). We
denote by φ′

− the left derivative of φ at any point in (0,∞). At the point 0, the derivative of φ is nothing but its

1 φ is in particular sub-additive.
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right derivative, since φ is not defined in a left neighbourhood of 0. With an abuse of notation, we still denote
the derivative of φ in 0 by φ′

−(0) := φ′(0).
The starting point of the formulation is the discretization in time.
Let 0 = tn0 < tn1 < · · · < tnp(n) = T be any given partition Pn of the interval [0, T ]. For any i in {0, 1, . . . , p(n)},

the problem of the debonding of a thin layer is defined by iteration as follows:

(Pn
i ) minimize

In
i (u) :=

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1 + [u − un

i−1]
+)

on the set of functions u in W1,2(0, L) satisfying u(0) = 0, u(L) = V (tni ) =: V n
i ,

where

un
i−1 :=

{
a solution to (Pn

i−1), i ≥ 1
0, i = 0,

δn
i−1 :=

{ ∑i−1
k=0[u

n
k − un

k−1]
+, i ≥ 1

0, i = 0.

2. The time-discrete evolution

First of all, observe that any (Pn
i ) does admit a solution. In fact, its related Lagrangian

Ln
i (x, u, ξ) :=

N

2
|ξ|2 + φ(δn

i−1(x) + [u − un
i−1(x)]+)

is coercive and continuous. From standard arguments of the Direct Method of the Calculus of Variations [2], it
follows that it admits at least a solution un

i in W1,2(0, L), for any given boundary conditions.
Any solution un

i satisfies the Euler-Lagrange equation in a weak form. This is proved in the following lemma.

Lemma 1. For any i in {0, 1, . . . , p(n)}, un
i satisfies the Euler-Lagrange condition:

0 ≤ N

∫ L

0

dun
i

dx

dv0

dx
+
∫
{un

i >un
i−1}

φ′
−(δn

i )v0 +
∫
{un

i =un
i−1}

φ′
+(δn

i−1)[v0]+,

for any v0 in W1,2
0 (0, L).

Proof. Fix v0 in W1,2
0 (0, L), ε > 0 and consider the function un

i + εv0. By the minimality of un
i , we have

0 ≤ In
i (un

i + εv0) − In
i (un

i ) = ε2
N

2

∫ L

0

∣∣∣∣dv0

dx

∣∣∣∣
2

+ εN

∫ L

0

dun
i

dx

dv0

dx

+
∫ L

0

φ(δn
i−1 + [un

i + εv0 − un
i−1]

+) −
∫ L

0

φ(δn
i−1 + [un

i − un
i−1]

+).

The Euler-Lagrange condition is obtained taking the limit in the previous inequality as ε goes to 0:

0 ≤ N

∫ L

0

dun
i

dx

dv0

dx
+ lim inf

ε→0+

1
ε

{∫ L

0

φ(δn
i−1 + [un

i + εv0 − un
i−1]

+) −
∫ L

0

φ(δn
i−1 + [un

i − un
i−1]

+)

}
.
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The concavity of φ implies that φ′− is bounded by φ′(0); we can therefore apply the Lebesgue Dominated
Convergence Theorem and it follows that

lim inf
ε→0+

1
ε

{∫ L

0

φ(δn
i−1 + [un

i + εv0 − un
i−1]

+) −
∫ L

0

φ(δn
i−1 + [un

i − un
i−1]

+)

}

=
∫ L

0

lim
ε→0+

1
ε
{φ(δn

i−1 + [un
i + εv0 − un

i−1]
+) − φ(δn

i−1 + [un
i − un

i−1]
+)}

=
∫
{un

i −un
i−1>0,v0≥0}

φ′
+(δn

i )v0 +
∫
{un

i −un
i−1>0,v0<0}

φ′
−(δn

i )v0 +
∫
{un

i −un
i−1=0}

φ′
+(δn

i−1)[v0]+

≤
∫
{un

i >un
i−1}

φ′
−(δn

i )v0 +
∫
{un

i =un
i−1}

φ′
+(δn

i−1)[v0]+,

where we used the fact that φ′
+ ≤ φ′− to estimate the integral on the set {un

i −un
i−1 > 0, v0 ≥ 0}. That concludes

the proof. �

Two weaker forms of the Euler-Lagrange condition will be used in the paper. We recall that the concavity
of φ implies that φ′− is non-negative and φ′

+ ≤ φ′−. First

0 ≤ N

∫ L

0

dun
i

dx

dv0

dx
+
∫ L

0

φ′
−(δn

i )v0, (1)

for any v0 ≥ 0, v0 ∈ W1,2
0 (0, L).

Then, considering variations v0 that vanish on the set {un
i = un

i−1}, we obtain the equation

0 = N

∫ L

0

dun
i

dx

dv0

dx
+
∫
{un

i >un
i−1}

φ′
−(δn

i )v0, (2)

for any v0 ∈ W1,2
0 (0, L), v0|{un

i =un
i−1} = 0, by writing the Euler-Lagrange condition for v0 and for −v0. In what

follows, we refer to the this equation has the Euler-Lagrange equation.

Lemma 2. The un
i enjoy the following properties:

I. un
i are convex;

II. un
i belong to W2,∞(0, L);

III. if x in [0, L] is such that un
i (x) = 0, then un

i = 0 on [0, x]
(⇒ un

i are non-negative);
IV. un

i are strictly increasing in {x ∈ [0, L] : un
i > 0} = (xn

i , L].

Proof of I. Suppose that un
i is not convex.

Recall that un
i is continuous in [0, L] since it belongs to W1,2(0, L). Hence, there exists an interval [a, b] ⊂

[0, L] such that un
i is above the line segment that joint un

i (a) to un
i (b), i.e.

un
i (x) > un

i (a) + (x − a)
un

i (b) − un
i (a)

b − a
=: ra,b(x),

for any x in (a, b).
Consider the admissible competitor ū to un

i given by

ū := ra,bχ[a,b] + un
i {1 − χ[a,b]}.
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We have that

In
i (un

i ) − In
i (ū) =

N

2

∫ b

a

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ b

a

φ(δn
i ) − N

2
|un

i (b) − un
i (a)|2

b − a
−
∫ b

a

φ(δn
i−1 + [ra,b − un

i−1]
+).

By the monotonicity of φ and Jensen’s inequality, In
i (un

i )−In
i (ū) > 0, and, hence, un

i would not be a minimizer.

Proof of II. Let x1, x2 be two points in (0, L), x1 ≤ x2 (notice that they might be the same point). Fix ε > 0,
ε ≤ min{x1, L − x2}, and set

dvn
0

dx
(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ∈ [0, x1 − ε)
1/ε, x ∈ [x1 − ε, x1)
0, x ∈ [x1, x2)
−1/ε, x ∈ [x2, x2 + ε)
0, x ∈ [x2 + ε, L]

, vn
0 (x) :=

∫ x

0

dvn
0

dx
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, x ∈ [0, x1 − ε)
(x − x1 + ε)/ε, x ∈ [x1 − ε, x1)
1, x ∈ [x1, x2)
(x2 + ε − x)/ε, x ∈ [x2, x2 + ε)
0, x ∈ [x2 + ε, L]

.

By definition, vn
0 belongs to W1,2

0 (0, L).
By Lemma 1, un

i satisfies the Euler-Lagrange inequality (1) in direction vn
0 :

0 ≤ N

∫ x1

x1−ε

1
ε

dun
i

dx
− N

∫ x2+ε

x2

1
ε

dun
i

dx
+
∫ x1

x1−ε

φ′
−(δn

i )
x − x1 + ε

ε
+
∫ x2

x1

φ′
−(δn

i ) +
∫ x2+ε

x2

φ′
−(δn

i )
x2 + ε − x

ε

≤ N
un

i (x1) − un
i (x1 − ε)

ε
− N

un
i (x2 + ε) − un

i (x2)
ε

+ φ′(0)(x2 − x1 + 2ε).

As ε goes to 0, using the convexity of un
i (point I), we obtain

N

{
dun

i

dx+
(x2) − dun

i

dx− (x1)
}

= N

∣∣∣∣ dun
i

dx+
(x2) − dun

i

dx− (x1)
∣∣∣∣ ≤ φ′(0)(x2 − x1).

By letting x1 = x2 vary in (0, L), it follows that the right and the left derivative of un
i coincide, i.e.

dun
i

dx+
=

dun
i

dx− .
Hence, ∣∣∣∣dun

i

dx
(x2) − dun

i

dx
(x1)

∣∣∣∣ ≤ φ′(0)
N

(x2 − x1), (3)

that implies, since x1 and x2 are arbitrary in (0, L),
dun

i

dx
∈ W1,∞(0, L).

Proof of III. Consider the admissible competitor ū to un
i given by ū := un

i χ[x,L]. We proceed by induction on i.
In case i = 0, by the minimality of un

0 , we have that

0 ≥ In
0 (un

0 ) − In
0 (ū) =

N

2

∫ x

0

∣∣∣∣dun
0

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
0 ) ≥ N

2

∫ x

0

∣∣∣∣dun
0

dx

∣∣∣∣
2

.

Hence,
dun

0

dx
= 0 and, by the fact un

0 (0) = 0, un
0 = 0 on [0, x].

In case i ≥ 1, assume that the statement is true for un
i−1. Then, un

i−1 ≥ 0 and

0 ≥ In
i (un

i ) − In
i (ū) =

N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i ) −

∫ x

0

φ(δn
i−1 + [−un

i−1]
+)

=
N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i ) −

∫ x

0

φ(δn
i−1) ≥

N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

,
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by the monotonicity of φ (by definition, δn
i ≥ δn

i−1, for any i). Hence,
dun

i

dx
= 0 and, by the fact un

i (0) = 0,

un
i = 0 on [0, x].

Proof of IV. By point III, there exists xn
i in [0, L) such that {x ∈ [0, L] : un

i > 0} = (xn
i , L]. Since un

i (xn
i ) = 0

and un
i > 0 in (xn

i , L], by the convexity of un
i (point I), it follows that

dun
i

dx
> 0 in (xn

i , L]. �

Any problem (Pn
i ) is well-posed. In fact, it admits a solution (see the first observation at the beginning of

this section) and the solution is unique. That is proved in Theorem 1 below.

Theorem 1. For any i in {0, 1, . . . , p(n)}, (Pn
i ) admits unique solution.

Proof. We prove the result by iteration on i.
Consider the problem (Pn

0 ).
In case V n

0 = 0, by point III of Lemma 2, un
0 = 0 is the unique solution.

In case V n
0 > 0, suppose that there exist two solutions w̄n

0 �= ūn
0 . From the continuity of w̄n

0 and ūn
0

(point II, Lemma 2), we can construct other two solutions wn
0 �= un

0 such that wn
0 ≥ un

0 . They are defined by
wn

0 := max{w̄n
0 , ūn

0} and un
0 := min{w̄n

0 , ūn
0}. The fact that they are solutions comes from the global character

of minima. More precisely, if a and b are two points in [0, L], a < b, such that ūn
0 (a) = w̄n

0 (a) and ūn
0 (b) = w̄n

0 (b),
then, by comparing In

0 (ūn
0 ) to In

0 (ūn
0 (1− χ[a,b]) + w̄n

0 χ[a,b]) and In
0 (w̄n

0 ) to In
0 (w̄n

0 (1− χ[a,b]) + ūn
0χ[a,b]), we get

In
0 |[a,b](ūn

0 ) = In
0 |[a,b](w̄n

0 ), where In
0 |[a,b] denotes the functional In

0 in which the integrals are taken on [a, b].

Let yn
0 and xn

0 be the points defined as

yn
0 := sup{x ∈ [0, L] : wn

0 (x) = 0},
xn

0 := sup{x ∈ [0, L] : un
0 (x) = 0}.

Point III of Lemma 2 implies that {x ∈ [0, L] : wn
0 (x) = 0} = [0, yn

0 ], {x ∈ [0, L] : un
0 (x) = 0} = [0, xn

0 ], and,
from the assumption wn

0 ≥ un
0 , it follows that yn

0 ≤ xn
0 . Furthermore, by the continuity of the derivative of un

0

and of wn
0 (Lem. 2, point II), it follows that

0 = wn
i (yn

0 ) = un
i (xn

0 ) =
dwn

i

dx
(yn

0 ) =
dun

i

dx
(xn

0 ).

From the definition of xn
0 and yn

0 , we obtain from Euler-Lagrange equation (2)

0 = N

∫ L

xn
0

dun
0

dx

dv0

dx
+
∫ L

xn
0

φ′
−(un

0 )v0, for any v0 ∈ W1,1
0 (xn

0 , L),

and,

0 = N

∫ L

yn
0

dwn
i

dx

dv0

dx
+
∫ L

yn
0

φ′
−(wn

0 )v0, for any v0 ∈ W1,1
0 (yn

0 , L).

By the fact that
dun

i

dx
and

dwn
i

dx
belong to W1,1(0, L) (Lem. 2, point II), using integration by part formula and

the Fundamental Lemma of the Calculus of Variations [2], we can write both equations in a classical form:

N
d2un

0

dx2
(x) = φ′

−(un
0 (x)), for a.e. x ∈ [xn

0 , L],

N
d2wn

0

dx2
(x) = φ′

−(wn
0 (x)), for a.e. x ∈ [yn

0 , L].
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Since, from point IV of Lemma 2, wn
0 and un

0 are strictly increasing respectively in [yn
0 , L] and [xn

0 , L], their
inverse functions wn,−1

0 and un,−1
0 are well defined in [0, V n

0 ]. As we plug the inverse functions in the equations,
we obtain

N
d2un

0

dx2
(un,−1

0 (z)) = φ′(z) = N
d2wn

0

dx2
(wn,−1

0 (z)),

for any z in [0, V n
0 ]. That gives rise to a contradiction.

Indeed, fix x in (xn
0 , L]. By integrating over [0, un

0 (x)] the chain of equalities above and applying the changes
of variable z = un

0 (y) and z = wn
0 (y), we obtain

N

∫ x

xn
0

d2un
0

dx2
(y)

dun
0

dx
(y)dy = N

∫ un
0 (x)

0

d2un
0

dx2
(un,−1

0 (z))dz

= N

∫ un
0 (x)

0

d2wn
0

dx2
(wn,−1

0 (z))dz = N

∫ wn,−1
0 (un

0 (x))

yn
0

d2wn
0

dx2
(y)

dwn
0

dx
(y)dy.

Since
1
2

∣∣∣∣dun
0

dx

∣∣∣∣
2

is a primitive of
d2un

0

dx2

dun
0

dx
(and analogously for wn

0 ), it follows

N

2

∣∣∣∣dun
0

dx
(x)
∣∣∣∣
2

=
N

2

∣∣∣∣dun
0

dx
(x)
∣∣∣∣
2

− N

2

∣∣∣∣dun
0

dx
(xn

0 )
∣∣∣∣
2

=
N

2

∣∣∣∣dwn
0

dx
(wn,−1

0 (un
0 (x)))

∣∣∣∣
2

− N

2

∣∣∣∣dwn
0

dx
(yn

0 )
∣∣∣∣
2

=
N

2

∣∣∣∣dwn
0

dx
(wn,−1

0 (un
0 (x)))

∣∣∣∣
2

(we recall that
dun

0

dx
(xn

0 ) =
dwn

0

dx
(yn

0 ) = 0).

Observe that un
0 (x) ≤ wn

0 (x), wn,−1
0 (un

0 (x)) ≤ x. Then, by the convexity of wn
0 ,

dun
0

dx
(x) =

dwn
0

dx
(wn,−1

0 (un
0 (x))) ≤ dwn

0

dx
(x).

Since un
0 �= wn

0 , there exists at least a point xn in (xn
0 , L] with un

0 (xn) < wn
0 (xn). But from the above inequality,

V n
0 − un

0 (xn) =
∫ L

xn

dun
0

dx
≤
∫ L

xn

dwn
0

dx
= V n

0 − wn
0 (xn),

and, hence, wn
0 (xn) ≤ un

0 (xn), a contradiction. Therefore, we conclude that there cannot exist two distinct
solutions to (Pn

0 ).
Assume that (Pn

i−1) admits unique solution un
i−1 and consider the problem (Pn

i ).
We claim that, if un

i (x) = un
i−1(x) at a point x ∈ [0, L), then un

i = un
i−1 in the entire interval [0, x]. This is

a consequence of the uniqueness of un
i−1. Indeed, consider the competitors given by ūn

i := un
i−1χ[0,x] + un

i χ(x,L]

and ūn
i−1 := un

i χ[0,x] + un
i−1χ(x,L]. Then,

0 ≤ In
i (ūn

i ) − In
i (un

i ) = In
i |[0,x](un

i−1) − In
i |[0,x](un

i ),
0 ≤ In

i−1(ū
n
i−1) − In

i−1(u
n
i−1) = In

i−1|[0,x](un
i ) − In

i−1|[0,x](un
i−1).

It follows directly from the sub-additivity of φ and of [·]+ that

In
i−1|[0,x](un

i ) =
N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−2 + [un

i − un
i−2]

+)

≤ N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−2 + [un

i − un
i−1] + [un

i−1 − un
i−2]

+) ≤ In
i |[0,x](un

i ),
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and, from the definition of δn
i , that

In
i−1|[0,x](un

i−1) =
N

2

∫ x

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−1)

=
N

2

∫ x

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−1 + [un

i−1 − un
i−1]

+) = In
i |[0,x](un

i−1).

Therefore, In
i−1(ū

n
i−1) = In

i−1(u
n
i−1), that implies, by the uniqueness of un

i−1, ūn
i−1 = un

i−1 and, by the definition
of ūn

i−1, un
i = un

i−1 in [0, x]. As a consequence, we obtain that un
i ≥ un

i−1 on [0, L].
In case V n

i ≤ V n
i−1, problem (Pn

i ) is equivalent to minimize

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1) =

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+ const.

on the set of functions u of W1,2(0, L) satisfying u(0) = 0, u(L) = V n
i and u ≤ un

i−1. That is an obstacle
problem with convex obstruction un

i−1 (Lem. 2, point III). The unique solution is

un
i (x) =

{
un

i−1(x), x ∈ [0, xn
i ],

(x − xn
i ){V n

i − un
i−1(x

n
i )}/(L − xn

i ) + un
i−1(x

n
i ), x ∈ (xn

i , L],

where xn
i is the unique point in [0, L] such that the derivative of un

i−1 evaluated in xn
i is equal to {V n

i −
un

i−1(x
n
i )}/(L − xn

i ) [9].
In case V n

i > V n
i−1, we proceed analogously to the initial case i = 0.

Suppose that there exist two solutions wn
i �= un

i . As shown in the case i = 0, we can assume wn
i ≥ un

i . Let
yn

i ≤ xn
i be the points defined by

yn
i := sup{x ∈ [0, L] : wn

i (x) = un
i−1(x)},

xn
i := max{sup{x ∈ [0, L] : un

i (x) = 0}, yn
i }.

From the continuity of the derivative of un
i and of wn

i (Lem. 2, point II) and the fact that un
i ≥ un

i−1, it follows
un

i−1(y
n
i ) = wn

i (yn
i ) = un

i (xn
i ),

dun
i−1

dx
(yn

i ) =
dwn

i

dx
(yn

i ) =
dun

i

dx
(xn

i )

and, using the convexity of wn
i ,

dun
i

dx
(xn

i ) ≤ dwn
i

dx
(xn

i ).

For un
i , we write the Euler-Lagrange condition in the inequality form, i.e.

0 ≤ N

∫ L

xn
i

dun
i

dx

dv0

dx
+
∫ L

xn
i

φ′
−(δn

i−1 + [un
i − un

i−1]
+)v0,

for any v0 ∈ W1,2
0 (xn

i , L), v0 ≥ 0, meanwhile, for wn
i , we write the Euler-Lagrange condition in the equation

form, i.e.

0 = N

∫ L

yn
i

dwn
i

dx

dv0

dx
+
∫ L

yn
i

φ′
−(δn

i−1 + [wn
i − un

i−1]
+)v0,



QUASI-STATIC EVOLUTION FOR FATIGUE DEBONDING 241

for any v0 ∈ W1,2
0 (yn

i , L). Furthermore, using the regularity of un
i and wn

i , we obtain

N
d2un

i

dx2
(x) ≤ φ′

−(δn
i−1(x) + [un

i (x) − un
i−1(x)]+), for a.e. x ∈ [xn

i , L],

N
d2wn

i

dx2
(x) = φ′

−(δn
i−1(x) + [wn

i (x) − un
i−1(x)]+), for a.e. x ∈ [yn

i , L].

Recalling that wn
i and un

i are strictly increasing respectively in [yn
i , L] and [xn

i , L] (point IV, Lem. 2), their
inverse functions wn,−1

i and un,−1
i are well defined in [un

i (xn
i ), V n

i ].
In order to proceed with the same method as the one we used in the proof of uniqueness in the initial case

i = 0, we need that, for any fixed z, the function δn
i−1 + [z − un

i−1]
+ is non-decreasing in [0, L].

To prove that, fix z in [un
i (xn

i ), V n
i ] and let xz in [0, L] be such that z ≤ un

i−1 in [xz, L] (such a point exists
since un

i−1 is a non-decreasing function in [0, L]). Observe that

dδn
i−1

dx
≥ dun

i−1

dx
≥ 02.

Hence, δn
i−1 + z − un

i−1 and δn
i−1 are non-decreasing respectively in [0, xz] and [xz, L]. By the continuity of

δn
i−1 + [z − un

i−1]
+, we conclude that δn

i−1 + [z − un
i−1]

+ is non-decreasing in [0, L].
Using the fact above, that wn,−1

i ≤ un,−1
i and that φ′ is non-increasing, we have

N
d2un

i

dx2
(un,−1

i (z)) ≤ φ′(δn
i−1(u

n,−1
i (z)) + [z − un

i−1(u
n,−1
i (z))]+)

≤ φ′(δn
i−1(w

n,−1
i (z)) + [z − un

i−1(w
n,−1
i (z))]+) = N

d2wn
i

dx2
(wn,−1

i (z)),

for any z in [un
i (xn

i ), V n
i ]. That gives rise to a contradiction.

Indeed, fix x in (xn
i , L]. By integrating over [un

i (xn
i ), un

i (x)] the inequality above and the changes of variable
z = un

i (y) and z = wn
i (y), we obtain

N

2

{∣∣∣∣dun
i

dx
(x)
∣∣∣∣
2

−
∣∣∣∣dun

i

dx
(xn

i )
∣∣∣∣
2
}

= N

∫ x

xn
i

d2un
i

dx2
(y)

dun
i

dx
(y)dy = N

∫ un
i (x)

un
i (xn

i )

d2un
i

dx2
(un,−1

i (z))dz

≤ N

∫ un
i (x)

un
i (xn

i )

d2wn
i

dx2
(wn,−1

i (z))dz = N

∫ wn,−1
i (un

i (x))

xn
i

d2wn
i

dx2
(y)

dwn
i

dx
(y)dy

=
N

2

{∣∣∣∣dwn
i

dx
(wn,−1

i (un
i (x)))

∣∣∣∣
2

−
∣∣∣∣dwn

i

dx
(xn

i )
∣∣∣∣
2
}

(we recall that wn
i (xn

i ) = un
i (xn

i ), xn
i = wn,−1

i (un
i (xn

i ))).

2In fact, for j = 0, δn
0 = un

0 ; hence,
dδn

0

dx
=

dun
0

dx
. For j ≥ 1, assuming that

dδn
j−1

dx
≥

dun
j−1

dx
, we obtain

dδn
j

dx
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dδn
j−1

dx
+

dun
j

dx
−

dun
j−1

dx
≥

dun
j

dx
, un

j > un
j−1

dδn
j−1

dx
≥

dun
j−1

dx
=

dun
j

dx
, un

j = un
j−1

,

where we used the fact that un
j ≥ un

j−1 and that {un
j = un

j−1} is an interval (those are consequences of point I, Cor. 1)
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Observe that un
i (x) ≤ wn

i (x), wn,−1
i (un

i (x)) ≤ x. Then, by the inequality
dun

i

dx
(xn

i ) ≤ dwn
i

dx
(xn

i ) and the
convexity of wn

i ,
dun

i

dx
(x) ≤ dwn

i

dx
(wn,−1

i (un
i (x))) ≤ dwn

i

dx
(x).

Since un
i �= wn

i , there exists at least a point xn in (xn
i , L] whit un

i (xn) < wn
i (xn). But from the above inequality,

V n
i − un

i (xn) =
∫ L

xn

dun
i

dx
≤
∫ L

xn

dwn
i

dx
= V n

i − wn
i (xn),

that implies, wn
i (xn) ≤ un

i (xn), a contradiction. Therefore, we conclude that there cannot exists two different
solutions to (Pn

i ). �

We sum up below some important properties of the solutions un
i that follow directly from uniqueness. Even

if their proofs are partially contained in the proof of Theorem 1, we rewrite them for reader convenience.

Corollary 1. The un
i enjoy the following properties:

I. if un
i (x) = un

i−1(x) in x ∈ [0, L], then un
i = un

i−1 in [0, x];
II. if V n

i ≥ V n
i−1, then un

i ≥ un
i−1;

III. if V n
i ≤ V n

i−1, then un
i ≤ un

i−1;
IV. if V n

i > V n
i−1 ≥ V n

i−2, then xn
i ≤ xn

i−1, where xn
i := sup{x ∈ [0, L] : un

i (x) = un
i−1} and xn

i−1 := sup{x ∈
[0, L] : un

i−1(x) = un
i−2};

V. if V n
i < V n

i−1 ≤ V n
i−2, then xn

i ≤ xn
i−1.

Proof of I. Consider the competitors given by ūn
i := un

i−1χ[0,x] + un
i χ(x,L] and ūn

i−1 := un
i χ[0,x] + un

i−1χ(x,L].
Then, observing that ūn

i = un
i and ūn

i−1 = un
i−1 on (x, L],

0 ≤ In
i (ūn

i ) − In
i (un

i ) = In
i |[0,x](un

i−1) − In
i |[0,x](un

i ),
0 ≤ In

i−1(ū
n
i−1) − In

i−1(u
n
i−1) = In

i−1|[0,x](un
i ) − In

i−1|[0,x](un
i−1)

(In
i |[0,x] denotes the functional In

i where the integrals in there are taken on [0, x]). It follows directly from the
sub-additivity of φ and of [·]+ that

In
i−1|[0,x](un

i ) =
N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−2 + [un

i − un
i−2]

+)

≤ N

2

∫ x

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−2 + [un

i − un
i−1] + [un

i−1 − un
i−2]

+) ≤ In
i |[0,x](un

i ),

and, from the definition of δn
i , that

In
i−1|[0,x](un

i−1) =
N

2

∫ x

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−1)

=
N

2

∫ x

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ x

0

φ(δn
i−1 + [un

i−1 − un
i−1]

+) = In
i |[0,x](un

i−1).

Therefore,
In

i−1|[0,x](un
i ) − In

i−1|[0,x](un
i−1) ≤ In

i |[0,x](un
i ) − In

i |[0,x](un
i−1) ≤ 0,

and, hence, In
i−1(ū

n
i−1) = In

i−1(u
n
i−1). It follows, by the uniqueness of un

i−1, ūn
i−1 = un

i−1 and, by the definition
of ūn

i−1, un
i = un

i−1 in [0, x].
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Proof of II. Since V n
i ≥ V n

i−1, then un
i ≥ un

i−1 in a left neighbourhood of L. By point I, if there exists x in [0, L)
such that un

i (x) = un
i−1(x) in x ∈ [0, L], then un

i = un
i−1 in [0, x]. Hence, un

i ≥ un
i−1 in [0, L].

Proof of III. Since V n
i ≤ V n

i−1, then un
i ≤ un

i−1 in a left neighbourhood of L. By point I, if there exists x in
[0, L) such that un

i (x) = un
i−1(x) in x ∈ [0, L], then un

i = un
i−1 in [0, x]. Hence, un

i ≤ un
i−1 in [0, L].

Proof of IV. Suppose xn
i > xn

i−1. By point II, un
i ≥ un

i−1.
Integrating the Euler-Lagrange equation (in the classical form) on the interval [xn

i , x], we obtain

N
dun

i

dx
(x) − N

dun
i

dx
(xn

i ) =
∫ x

xn
i

φ′
−(δn

i (x)) ≤
∫ x

xn
i

φ′
−(δn

i−1(x)) = N
dun

i−1

dx
(x) − N

dun
i−1

dx
(xn

i ).

Since, by the continuity of the derivative of the minimizers,
dun

i

dx
(xn

i ) =
dun

i−1

dx
(xn

i ), we infer that
dun

i

dx
≤ dun

i−1

dx
in [xn

i , L] and, hence,

un
i (x) − un

i (xn
i ) =

∫ x

xn
i

dun
i

dx
≤
∫ x

xn
i

dun
i−1

dx
= un

i−1(x) − un
i−1(x

n
i ).

From the definition of xn
i , it follows that un

i ≤ un
i−1 in [xn

i , L]. That contradicts the assumption V n
i > V n

i−1.

Proof of V. Recall that, in case V n
i ≤ V n

i−1, problem (Pn
i ) is equivalent to minimize

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1) =

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+ const.

on the set of functions u of W1,2(0, L) satisfying u(0) = 0, u(L) = V n
i and u ≤ un

i−1. That is an obstacle
problem with convex obstruction un

i−1 (Lem. 2, point III). The unique solution is

un
i (x) =

{
un

i−1(x), x ∈ [0, xn
i ],

(x − xn
i ){V n

i − un
i−1(x

n
i )}/(L − xn

i ) + un
i−1(x

n
i ), x ∈ (xn

i , L],

where xn
i is the unique point in [0, L] such that the derivative of un

i−1 evaluated in xn
i is equal to {V n

i −
un

i−1(x
n
i )}/(L − xn

i ) [9].
Suppose xn

i > xn
i−1. Since the problem (Pn

i−1) is an obstacle problem to, we have that un
i−1 is a straight line

in [xn
i−1, L]. From the continuity of the derivative of the minimizers, it follows

V n
i − un

i−1(x
n
i )

L − xn
i

=
V n

i−1 − un
i−2(x

n
i−1)

L − xn
i−1

=
V n

i−1 − un
i−1(x

n
i )

L − xn
i

,

which implies V n
i = V n

i−1. That contradicts the assumption V n
i < V n

i−1. �

We conclude this section with two important properties of our formulation. The time discrete evolution is
independent on the discretization and the debonded zone grows for each cycle.

This is proved in the lemma below.

Lemma 3. Let Pn be a partition of [0, T ] that contains {0, T } and the points of the boundary of the open set
{t ∈ (0, T ) : V̇ is continuous at t, V̇ (t) > 0} = ∪h

r=1(ar, br). Then:
I. If Pm = {0 = tm0 < · · · < tmj < · · · < tmq(m) = T } is a refinement of Pn, i.e. Pn ⊂ Pm, then, for any

tni ∈ Pn, un
i = um

j(i) whenever tmj(i) = tni ;
II. The debonded zone grows for cycle, i.e. if V (br+1) ≥ V (br) > 0 for any r = 1, . . . , h, then xbr+1 ≤ xbr ,

where xbr := sup{x ∈ [0, L] : ubr(x) = 0} and ubr denotes the solution with boundary value V (br).
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Proof of I. This is a straightforward consequence of the uniqueness of solutions (Th. 1).
We prove the result for a refinement Pm with the property that any two consecutive points tni−1 < tni of Pn

are separated by at most one point tmj of Pm. The case of a general refinement can be obtained by writing it
as a finite union of partial refinements with the property above, and applying recursively the lemma at each
partial union.

We argue by induction on i. Assume that un
ı̂ = um

ĵ and δn
ı̂ = δm

ĵ whenever ı̂ < i and tnı̂ = tmĵ . Assume also
that tni−1 = tmj−1 < tmj < tmj+1 = tni . We want to prove that um

j+1 = un
i and δm

j+1 = δn
i . Since Pn contains the

boundary of {t ∈ [0, T ] : V̇ is continuous at t, V̇ (t) > 0}, either V n
i > V m

j > V n
i−1 or V n

i ≤ V m
j ≤ V n

i−1.
Consider the first case. Since un

i−1 = um
j−1 and δn

i−1 = δm
j−1 by the inductive assumption, we have Im

j = In
i .

By Corollary 1 this implies un
i ≥ un

i−1 and um
j ≥ um

j−1 = un
i−1. Let us prove that we have also that un

i ≥ um
j .

Indeed, if this is false, since un
i ≥ um

j in a left neighbourhood of L, there is a point x in [0, L] such that
un

i (x) = um
j (x) and un

i �= um
j in [0, x]. As the functionals In

i |[0,x] and Im
j |[0,x] coincide by the inductive

hypothesis, there would be two minimizers to the functional In
i |[0,x] in the class of functions u with boundary

values u(0) = 0 and u(x) = un
i (x); that contradicts Theorem 1 in the interval [0, x].

Now, consider the problem (Pm
j+1). By the fact that un

i ≥ um
j ≥ un

i−1 = um
j−1 and um

j+1 ≥ um
j , taking into

account the expressions of δn
i−1 and δm

j , we obtain

Im
j+1(u

n
i ) = In

i (un
i ) ≤ In

i (um
j+1) = Im

j+1(u
m
j+1).

Hence, by Theorem 1, um
j+1 = un

i . As um
j+1 = un

i ≥ um
j ≥ un

i−1 = um
j−1, from δn

i−1 = δm
j−1 we obtain also

δm
j+1 = δn

i .
In the second case, we consider two subcases. In case one of the two inequalities is an equality the result

follows directly from Theorem 1 because um
j would be equal to un

i or to un
i−1. The proof of the remaining

subcase V n
i < V m

j < V n
i−1 proceeds as the proof of the first case.

Proof of II. By point I, we can assume Pn = {0 = tn0 < · · · < tni < · · · < tnp(n) = T } = {0, a1, b1, . . . , ah, bh, T }.
To simplify the notation, we set uar = un

i for tni = ar and ubr = un
j for tnj = br.

Suppose V (ar+1) > 0. By point III of Corollary 1, ubr ≥ uar+1 . Hence, as we have already observed in the
proof of Theorem 1, there exists a point x ∈ [0, L] such that uar+1 = ubr in [0, x] and uar+1 is a straight line
in [x, L]. Since ubr(x) > 0 and ubr+1 ≥ uar+1 , we conclude that xbr+1 ≤ xbr .

Suppose V (ar+1) = 0. Let r0 be the greatest element in {1, . . . , r} such that V (ar0) = 0, and set r̄ := min{j :
r0 ≤ j ≤ r, xbj = min{xbi : r0 ≤ i ≤ r}}.

We claim that ubr̄ satisfy the Euler-Lagrange equation in [xbr̄ , L]. In fact, if r̄ = r0, then ubr0
> 0 = uar0

on [xbr0
, L], since V (br0) > 0 = V (ar0). Otherwise, xbr̄ < xbr̄−1 (by the minimal property of xbr̄ and r̄)

and xar̄ = xbr̄−1 (since V (ar̄) > 0 by definition of r0). That implies ubr̄ > uar̄ on [xbr̄ , L]. Therefore, the
Euler-Lagrange equation (2) for ubr̄ is

N
d2ubr̄

dx2
(x) = φ′

−(δbr̄ (x)), for any x ∈ [xbr̄ , L].

Since uar+1 is identically 0, the Euler-Lagrange equation for ubr+1 is

N
d2ubr+1

dx2
(x) = φ′

−(δar+1(x) + ubr+1(x)), for any x ∈ [xbr+1 , L].

Suppose that xbr+1 > xbr̄ . Then, since δar+1 + ubr+1 ≥ δar+1 ≥ δbr̄ and φ′
− is non-increasing, we have, for any

x ∈ (xbr+1 , L],
dubr+1

dx
(x) =

1
N

∫ x

xbr+1

φ′
−(δar+1 + ubr+1) ≤

1
N

∫ x

xbr+1

φ′
−(δbr̄ ) ≤ dubr̄

dx
(x).

If follows that V (br̄) ≤ V (br+1) ≤ V (br̄) − ubr̄(xbr+1 ), and, hence, ubr̄(xbr+1) ≤ 0. That implies xbr+1 ≤ xbr̄ , a
contradiction.
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By definition of r̄, xbr̄ ≤ xbr and we conclude that xbr+1 ≤ xbr . �

3. A PRIORI estimates

To perform the limit as the time step of the discretization Pn goes to 0, as n goes to ∞, we use compactness
properties. In order to do that, we need un

i to be a priori bounded in some appropriate norm. This is the object
of this section.

We extend any un
i to a piecewise constant map un defined in [0, T ]: for any n in N, un from [0, T ] to W1,2(0, L)

is given by

un(t) :=
p(n)∑
k=1

un
k−1χ[tn

k−1,tn
k )(t) + un

p(n)χ{T}(t),

where {0 = tn0 < tn1 < · · · < tnp(n) = T } = Pn.

(Notation:
∂u

∂x
will denote as usual the partial derivative of u = u(t, x) with respect to the space variable x,

meanwhile u̇ will denote the partial derivative of u with respect to the time variable t. Besides, for any function
f from [0, T ] to L1(0, L), we denotes by Var (f ; [0, T ]) the total variation on [0, T ] of the function f in the
L1(0, L) norm.)

Theorem 2. The sequence {un}n satisfies the following estimates:

I.
∥∥∥∥∂un

∂x

∥∥∥∥
L∞((0,T );W1,∞(0,L))

≤ c1, for any n;

II. Var
(

∂un

∂x
; [0, T ]

)
≤ c2, for any n.

Proof of I. Recalling inequality (3) in point II of Lemma 2, we get immediately

Lip
(

dun
i

dx

)
≤ φ′(0)

N
,

for any n in N and i in {0, 1, . . . , p(n)}. Using the convexity of un
i ,
∣∣∣∣dun

i

dx
(0)
∣∣∣∣ ≤ V n

i

L
and, hence, for any n,

∥∥∥∥∂un

∂x

∥∥∥∥
L∞((0,T );W1,∞(0,L))

≤ ‖V ‖L∞(0,T )

L
+

φ′(0)
N

=: c1.

Proof of II. Fix n in N and i in {0, 1, . . . , p(n)}.
Consider the case V n

i ≤ V n
i−1 (for i = 1, we set V−1 := 0).

By Corollary 1, un
i ≤ un

i−1. We have already noted in Theorem 1 that the problem (Pn
i ) is equivalent to

minimizing
N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1) =

N

2

∫ L

0

∣∣∣∣du

dx

∣∣∣∣
2

+ const.

on the set of functions u of W1,2(0, L) satisfying u(0) = 0, u(L) = V n
i and u ≤ un

i−1. That is an obstacle
problem with convex obstruction un

i−1 (Lem. 2, point III). We recall that the unique solution is

un
i (x) =

{
un

i−1(x), x ∈ [0, xn
i ],

(x − xn
i ){V n

i − un
i−1(x

n
i )}/(L − xn

i ) + un
i−1(x

n
i ), x ∈ (xn

i , L],

where xn
i is the unique point in [0, L] such that the derivative of un

i−1 evaluated in xn
i is equal to {V n

i −
un

i−1(x
n
i )}/(L − xn

i ) [9].
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Hence, we have that
∥∥∥∥dun

i

dx
− dun

i−1

dx

∥∥∥∥
L1(0,L)

=
∫ L

xn
i

{
dun

i−1

dx
− V n

i − un
i−1(x

n
i )

L − xn
i

}
= V n

i−1 − V n
i .

Now, consider the case V n
i > V n

i−1 (necessarily i ≥ 1, because V n
−1 = 0). We separate the proof in three

subcases: V n
i−1 < V n

i−2, V n
i−1 > V n

i−2 and V n
i−1 = V n

i−2.
Denote as usual by xn

i and xn
i−1 the points

xn
i := sup{x ∈ [0, L] : un

i (x) = un
i−1(x)},

xn
i−1 := sup{x ∈ [0, L] : un

i−1(x) = un
i−2(x)}.

Suppose V n
i−1 < V n

i−2.
Notice that, by point I of Corollary 1, un

i coincide with un
i−1 in the interval [0, xn

i ] and, hence,

dun
i

dx
(x) =

dun
i−1

dx
(x), for any x ∈ [0, xn

i ].

In case xn
i ≥ xn

i−1, by point III of Corollary 1, un
i−1 is a straight line in (xn

i , L] (recall the reduction to an

obstacle problem that we have in this case). Therefore, by the equality
dun

i

dx
(xn

i ) =
dun

i−1

dx
(xn

i ) (point II, Lem. 2)

and the convexity of un
i , for any x in (xn

i , L], we have∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(x)
∣∣∣∣ =

∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(xn

i )
∣∣∣∣ ≤ dun

i

dx
(x) − dun

i−1

dx
(xn

i ).

Taking the integral over (xn
i , L], we obtain

∫ L

xn
i

∣∣∣∣dun
i

dx
− dun

i−1

dx

∣∣∣∣ ≤
∫ L

xn
i

dun
i

dx
(x) − dun

i−1

dx
(xn

i ) = V n
i − V n

i−1 − un
i (xn

i ) + un
i−1(x

n
i ) = V n

i − V n
i ,

by the definition of xn
i .

In case xn
i < xn

i−1, fix x in (xn
i , xn

i−1]. By the estimate in point I, we have

∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(x)
∣∣∣∣ ≤

∣∣∣∣dun
i

dx
(x) − dun

i

dx
(xn

i )
∣∣∣∣+
∣∣∣∣dun

i−1

dx
(xn

i ) − dun
i−1

dx
(x)
∣∣∣∣ ≤ 2

φ′(0)
N

(xn
i−1 − xn

i ),

that implies ∫ xn
i−1

xn
i

∣∣∣∣dun
i−1

dx
− dun

i−1

dx

∣∣∣∣ ≤ 2
φ′(0)
N

(xn
i−1 − xn

i )2.

Meanwhile, for any x in (xn
i−1, L], by point III of Corollary 1, un

i−1 is a straight line in (xn
i−1, L] (recall the

reduction to an obstacle problem that we have in this case). Therefore, we have∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(x)
∣∣∣∣ =

∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(xn

i−1)
∣∣∣∣ ≤

∣∣∣∣dun
i

dx
(x) − dun

i

dx
(xn

i )
∣∣∣∣+
∣∣∣∣dun

i−1

dx
(xn

i ) − dun
i−1

dx
(xn

i−1)
∣∣∣∣

≤ dun
i

dx
(x) − dun

i

dx
(xn

i ) +
φ′(0)
N

(xn
i−1 − xn

i )

≤ dun
i

dx
(x) − dun

i−1

dx
(xn

i−1) + 2
φ′(0)
N

(xn
i−1 − xn

i ).
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Taking the integral over (xn
i−1, L], we obtain

∫ L

xn
i−1

∣∣∣∣dun
i

dx
− dun

i−1

dx

∣∣∣∣ ≤
∫ L

xn
i−1

{
dun

i

dx
(x) − dun

i−1

dx
(xn

i−1) + 2φ′(0)(xn
i−1 − xn

i )
}

= V n
i − V n

i−1 − un
i (xn

i−1) + un
i−1(x

n
i−1) + 2

φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i−1)

≤ V n
i − V n

i−1 + 2
φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i−1),

using the fact that un
i−1 ≤ un

i .
As we combine the obtained estimates, we have

∥∥∥∥dun
i

dx
− dun

i−1

dx

∥∥∥∥
L1(0,L)

≤ V n
i − V n

i−1 + 2
φ′(0)
N

[xn
i−1 − xn

i ]+(L − xn
i−1) + 2

φ′(0)
N

([xn
i−1 − xn

i ]+)2.

Suppose V n
i−1 > V n

i−2.

By point IV of Corollary 1, xn
i ≤ xn

i−1. We have already seen that
dun

i

dx
=

dun
i−1

dx
in [0, xn

i ] and (in case

xn
i < xn

i−1), for any x in (xn
i , xn

i−1],

∣∣∣∣dun
i

dx
(x) − dun

i−1

dx
(x)
∣∣∣∣ ≤ 2

φ′(0)
N

(xn
i−1 − xn

i ).

For any x in (xn
i−1, L], by the Euler-Lagrange equation, the monotonicity of φ′

− and δn
i−1 ≤ δn

i , we have that

N

{
d2un

i−1

dx2
(x) − d2un

i

dx2
(x)
}

= φ′
−(δn

i−1(x)) − φ′
−(δn

i (x));

hence,

N

{
d2un

i−1

dx2
(x) − d2un

i

dx2
(x)
}

≥ 0.

Considering the integral on (xn
i−1, L],

∫ L

xn
i−1

∣∣∣∣dun
i

dx
− dun

i−1

dx

∣∣∣∣ =
∫ L

xn
i−1

∣∣∣∣∣
∫ ·

xn
i−1

d2un
i

dx2
− d2un

i−1

dx2
+
(

dun
i

dx
(xn

i−1) −
dun

i−1

dx
(xn

i−1)
)∣∣∣∣∣

≤
∫ L

xn
i−1

∣∣∣∣∣
∫ ·

xn
i−1

{
d2un

i

dx2
− d2un

i−1

dx2

}∣∣∣∣∣+ 2
φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i )

=
∫ L

xn
i−1

∫ ·

xn
i−1

{
d2un

i−1

dx2
− d2un

i

dx2

}
+ 2

φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i )

=
∫ L

xn
i−1

{
dun

i−1

dx
− dun

i

dx
− dun

i−1

dx
(xn

i−1) +
dun

i

dx
(xn

i−1)
}

+ 2
φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i )

≤ V n
i−1 − V n

i − un
i−1(x

n
i−1) + un

i (xn
i−1) + 4

φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i ).
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Since

|un
i (xn

i−1) − un
i−1(x

n
i−1)| =

∣∣∣∣∣
∫ xn

i−1

xn
i

dun
i

dx
− dun

i−1

dx

∣∣∣∣∣ ≤
∫ xn

i−1

xn
i

∣∣∣∣dun
i

dx
− dun

i

dx
(xn

i ) +
dun

i

dx
(xn

i ) − dun
i−1

dx

∣∣∣∣
≤ 2

φ′(0)
N

(xn
i−1 − xn

i )2,

we get ∫ L

xn
i−1

∣∣∣∣dun
i

dx
− dun

i−1

dx

∣∣∣∣ ≤ V n
i−1 − V n

i + 2
φ′(0)
N

(xn
i−1 − xn

i )2 + 4
φ′(0)
N

(xn
i−1 − xn

i )(L − xn
i ).

We have obtained the estimate∥∥∥∥dun
i

dx
− dun

i−1

dx

∥∥∥∥
L1(0,L)

≤ V n
i−1 − V n

i + 4
φ′(0)
N

[xn
i−1 − xn

i ]+(L − xn
i ) + 2

φ′(0)
N

([xn
i−1 − xn

i ]+)2.

The last subcase V n
i−1 = V n

i−2 can be reconducted to one of the other two.
In fact, if i = 1, then V n

1 > V n
0 = V n

−1 = 0, and un
0 is the solution identically 0 and the proof is the same as

the one in the first subcase.
For i ≥ 2, either there exists a j in {0, . . . , i− 3} such that V n

j �= V n
i−2, or V n

i−2 = V n
i−3 = · · · = 0. In this last

case, un
i−1 is the solution identically 0 and the proof proceeds as in the first subcase. In case V n

j �= V n
i−2, we take

the greatest j such that V n
j �= V n

i−2. Since, as far as V n
r = V n

r+1, un
r coincides with un

r+1 on the entire interval
[0, L], we can apply one of the previous subcases to the pair V n

j and V n
i−1, where V n

j takes the role of V n
i−2.

In any case, we can estimate the L1(0, L) norm by

∥∥∥∥dun
i

dx
− dun

i−1

dx

∥∥∥∥
L1(0,L)

≤ |V n
i − V n

i−1| + 6
φ′(0)
N

[xn
i−1 − xn

i ]+L.

Notice that, by IV and V of Corollary 1,
∑p(n)

i=1 [xn
i−1 − xn

i ]+ ≤ 2hL, where h is the number of cycles of the
displacement V , i.e. h is such that ∪h

r=1(ar, br) = {t ∈ (0, T ) : V̇ is continuous at t, V̇ (t) > 0}. The sought
bound for the piecewise constant map un is obtained summing over i the inequality above:

Var
(

∂un

∂x
; [0, T ]

)
=

p(n)∑
i=1

∥∥∥∥∂un

∂x
(tni ) − ∂un

∂x
(tni−1)

∥∥∥∥
L1(0,L)

≤
p(n)∑
i=1

{
|V n

i − V n
i−1| + 6

φ′(0)
N

[xn
i−1 − xn

i ]+L

}

≤ ‖V̇ ‖L1(0,T ) + 12
φ′(0)
N

hL2 =: c2.

That concludes the proof. �

The estimates in Theorem 2 imply, by Helly’s selection principle [1], that for any sequence of partitions {Pn}n

with step converging to 0, there exists a subsequence {Pnk}k and a map

u′ in L∞((0, T );H1(0, L)) ∩ BV([0, T ];L1(0, L))

such that, for any t in [0, T ],
∂unk

∂x
(t) → u′(t), weakly in H1(0, L).
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In particular, u(t, x) :=
∫ x

0

u′(t) belongs to H2(0, L), for any t,
∂u

∂x
(t, x) = u′(t, x), and

unk(t, x) → u(t, x) uniformly in x ∈ [0, L],

∂unk

∂x
(t) → ∂u

∂x
(t) strongly in L2(0, L),

∂unk

∂x
(t, L) → ∂u

∂x
(t, L).

4. The time continuous evolution

In this section we present our main result. We perform the limit of the time discrete evolutions as the time
step goes to zero in order to construct the continuous formulation of the problem.

Before stating the result, we briefly introduce notation.
Let v be a map from [0, T ] to L1(0, L). We define the dissipation of v in the interval of time [s, t] ⊂ [0, T ] by

Diss+φ (v; [s, t]) :=
∫ L

0

φ(Var+(v; [s, t])),

where Var+(v(x); [s, t]) is the positive variation of v(x) in [s, t], i.e. for any f from [0, T ] to R, the positive
variation of f in [s, t] is defined by

Var+(f ; [s, t]) := ess sup

⎧⎨
⎩

l(n)∑
k=1

[f(τn
k ) − f(τn

k−1)]
+ : n ∈ N, s = τn

0 < τn
1 < · · · < τn

l(n) = t

⎫⎬
⎭ ,

where the essential supremum of an arbitrary family {fα}α∈A of measurable functions fα : (0, L) → R is the
measurable function f characterized by the following properties [13]:

• for every α, fα ≤ f a.e. in (0, L);
• if g is a measurable function such that fα ≤ g a.e. in (0, L), then f ≤ g a.e. in (0, L).

The dissipation of v is certainly finite whenever v is a map of BV([0, T ];L1(0, L)). In fact, arguing as in
the proof of Proposition II-4-1 of [13], there exists a sequence of partitions {s = τn

0 < τn
1 < · · · < τn

l(n) = t},
increasing with respect to the inclusion, such that

Var+(f ; [s, t]) = lim
n→∞

l(n)∑
k=1

[f(τn
k ) − f(τn

k−1)]
+.

By the monotone convergence theorem, using the concavity of φ,

Diss+φ (v; [s, t])= lim
n→∞

∫ L

0

φ

⎛
⎝l(n)∑

k=1

[v(τn
k ) − v(τn

k−1)]
+

⎞
⎠≤ φ′(0) lim

n→∞

l(n)∑
k=1

∫ L

0

[v(τn
k )−v(τn

k−1)]
+ ≤ φ′(0)Var(v; [s, t]).

Our main result is the following.

Theorem 3. Let V : [0, T ] → [0,∞) be a continuous displacement with piecewise continuous derivative
on [0, T ] and V (0) = 0. Assume that V has a finite number of cycles, meaning that the open set {t ∈ (0, T ) :
V̇ is continuous at t, V̇ (t) > 0} has finitely many connected components.

Then, there exists an evolution map u in BV([0, T ];W1,1(0, L)) ∩ L∞([0, T ];H2(0, L)), with u(t, 0) = 0,
u(t, L) = V (t), such that u(0) = 0 and, for any t in [0, T ],
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I. u(t) satisfies the inequality

N

2

∫ L

0

∣∣∣∣∂u

∂x
(t)
∣∣∣∣
2

+ Diss+φ (u; [0, t]) ≤ N

2

∫ L

0

∣∣∣∣dv

dx

∣∣∣∣
2

+
∫ L

0

φ(Var+(u; [0, t]) + [v − u(t)]+),

for any v in W1,2(0, L), v(0) = 0, v(L) = V (t);

II. the total energy E(t) :=
N

2

∫ L

0

∣∣∣∣∂u

∂x
(t)
∣∣∣∣
2

+ Diss+φ (u; [0, t]) is an absolutely continuous function and is

given by

E(t) = N

∫ t

0

V̇ (τ)
∂u

∂x
(τ, L)dτ.

Proof. Let ∪h
r=1{ar, br} ⊂ [0, T ] be the open set {t ∈ (0, T ) : V̇ is continuous at t, V̇ (t) > 0}.

Let {Pn = {0 = tn0 < tn1 < · · · < tnp(n) = T }}n be a sequence of partitions of the interval [0, T ] with step
converging to 0 such that ∪h

r=1{ar, br} ⊂ Pn, for any n.
By passing to a subsequence, we can assume that {un}n enjoys the properties listed at the end of the previous

section denoting u ∈ BV([0, T ];W1,1(0, L)) the limit function.
Since V (0) = 0, it follows that un(0) = 0 for any n and, since un converges uniformly to u, u(0) = 0.
We claim that, for any t ∈ [0, T ],

lim
n→∞ ‖Var+(u; [0, t]) − Var+(un; [0, t])‖∞ = 0.

This is due to the regularity of V̇ . Indeed, by Corollary 1, un(x) is non-decreasing in (ar, br), for any x ∈ [0, L]
and for any r. Let rt be such that t ∈ (art , brt). By the fact that Pn contains ∪h

r=1{ar, br}, we have

Var+(un(x); [0, t]) =
rt−1∑
r=1

{un(br, x) − un(ar, x)} + un(t, x) − un(art , x).

Since un converges uniformly to u, it follows that u(x) is non-decreasing in (ar, br), for any x ∈ [0, L], and

lim
n→∞ Var+(un(x); [0, t]) =

rt−1∑
r=1

{u(br, x) − u(ar, x)} + u(t, x) − u(art , x) = Var+(u(x); [0, t]),

uniformly in x ∈ [0, L].

Proof of I. Fix t in [0, T ] and v in W1,1(0, L), v(0) = 0, v(L) = V (t).
For any n ∈ N, there exists i = i(n) in Pn, such that t ∈ [tni , tni+1). Set Ln := L − |V (t) − V n

i | and consider

vn
i (x) :=

{
v(x), x ∈ [0, Ln],
(x − Ln)(V n

i − v(Ln))/(L − Ln) + v(Ln), x ∈ (Ln, L];

vn
i belongs to W1,1(0, L), vn

i (0) = 0, vn
i (L) = V n

i and ‖vn
i − v‖H1(0,L) → 0, as n goes to ∞.

By the minimality of un
i , we have that

N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) ≤ N

2

∫ L

0

∣∣∣∣dvn
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1 + [vn

i − un
i + un

i − un
i−1]

+)

≤ N

2

∫ L

0

∣∣∣∣dvn
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i + [vn

i − un
i ]+),
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and, by the fact that Pn contains ∪h
r=1{ar, br}, δn

i = Var+(un; [0, t]).

Since
dun

dx
(t) converges strongly in L2(0, L) to

∂u

∂x
(t), un converges uniformly to u and Var+(un; [0, t]) con-

verges uniformly to Var+(u; [0, t]) (see the observations at the end of the previous section), it follows that

N

2

∫ L

0

∣∣∣∣∂u

∂x
(t)
∣∣∣∣
2

+ Diss+φ (u; [0, t]) ≤ N

2

∫ L

0

∣∣∣∣dv

dx

∣∣∣∣
2

+
∫ L

0

φ(Var+(u; [0, t]) + [v − u(t)]+).

Proof of II. Fix t in [0, T ]. For any n ∈ N, there exists i = i(n) in Pn, such that t ∈ [tni , tni+1).

Set εn := maxi∈{1,...,p(n)}
√
|V n

i − V n
i−1| and consider

vn
i (x) := un

i−1(x) + (V n
i − V n

i−1)
[x − L + εn]+

εn
·

One verifies that vn
i belongs to W1,1(0, L), vn

i (0) = 0, vn
i (L) = V n

i . By the minimality of un
i , we have that

N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i )

≤ N

2

∫ L

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
N

2

∫ L

L−εn

|V n
i − V n

i−1|2
ε2n

+ N

∫ L

L−εn

dun
i−1

dx

V n
i − V n

i−1

εn

+
∫ L

0

φ

(
δn
i−1 +

[
un

i−1 + (V n
i − V n

i−1)
[x − L + εn]+

εn
− un

i−1

]+)

≤ N

2

∫ L

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1) +

N

2
|V n

i − V n
i−1|2

εn
+ N

V n
i − V n

i−1

εn
{un

i−1(L) − un
i−1(L − εn)}

+ φ′(0)[V n
i − V n

i−1]
+ εn

2
·

There exists a point Lk in (L − εn, L), such that

∣∣∣∣un
k−1(L) − un

k−1(L − εn)
εn

− dun
k−1

dx
(L)
∣∣∣∣ =

∣∣∣∣dun
k−1

dx
(Lk) − dun

k−1

dx
(L)
∣∣∣∣ ≤ εn

φ′(0)
N

,

where the bound is independent on k (point I of Th. 2). Using this estimate, by iteration over i as i decreases
to 0, we obtain

N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) ≤ · · ·

≤ N

2

∫ L

0

∣∣∣∣dun
0

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
0 ) + εn

N

2

i∑
k=1

|V n
k − V n

k−1| + N

i∑
k=1

(V n
k − V n

k−1)
un

k−1(L) − un
k−1(L − εn)

εn

+ εn
φ′(0)

2

i∑
k=1

[V n
k − V n

k−1]
+

≤ N

2

∫ L

0

∣∣∣∣dun
0

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
0 ) + N

i∑
k=1

{V (tnk ) − V (tnk−1)}
∂un

∂x
(tnk−1, L) + εn

‖V̇ ‖L1(0,T )

2
{N + 3φ′(0)}

= N

∫ t

0

∂un

∂x
(τ, L)dV (τ) + εn

‖V̇ ‖L1(0,T )

2
{N + 3φ′(0)}.
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The last equality above follows by the fact
∂un

∂x
is a step function and the integral in the last member is in the

sense of Riemann-Stieltjes [14].

Since δn
i = Var+(un; [0, t]), Var+(un; [0, t]) converges uniformly in [0, L] to Var+(u; [0, t]),

∂un

∂x
(t) converges

strongly in L2(0, L) to
∂u

∂x
(t) and

∂un

∂x
(t, L) converges to

∂u

∂x
(t, L) and is bounded uniformly with respect to t

(see Th. 2 and the observations at the end of the previous section), it follows that

E(t) = lim
n→∞

{
N

2

∫ L

0

∣∣∣∣∂un

∂x
(t)
∣∣∣∣
2

+ Diss+φ (un; [0, t])

}
= lim

n→∞

{
N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i )

}

≤ lim
n→∞

{
N

∫ t

0

∂un

∂x
(τ, L)dV (τ)

}
= N

∫ t

0

∂u

∂x
(τ, L)dV (τ).

By the absolute continuity of V , we have that dV (τ) = V̇ (τ)dτ [14]. Hence,

E(t) ≤ N

∫ t

0

∂u

∂x
(τ, L)V̇ (τ)dτ.

In order to prove the equality, we show also that the opposite inequality holds. The proof is similar to the
previous case. The only difference is that we use the minimality of un

i−1, instead of un
i , an we slightly modify un

i

in order to compare them.
Consider vn

i−1(x) := un
i (x) + (V n

i−1 − V n
i )[x − L + εn]+/εn. One verifies that vn

i−1 belongs to W1,2(0, L),
vn

i−1(0) = 0, vn
i−1(L) = V n

i−1. By the minimality of un
i−1, we have that

N

2

∫ L

0

∣∣∣∣dun
i−1

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i−1)

≤ N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
N

2

∫ L

L−εn

|V n
i−1 − V n

i |2
ε2n

+ N

∫ L

L−εn

dun
i

dx

V n
i−1 − V n

i

εn

+
∫ L

0

φ

(
δn
i−2 +

[
un

i + (V n
i−1 − V n

i )
[x − L + εn]+

εn
− un

i−2

]+)

≤ N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) +

N

2
|V n

i−1 − V n
i |2

εn
+ N

V n
i−1 − V n

i

εn
{un

i (L) − un
i (L − εn)}

+ φ′(0)[V n
i−1 − V n

i ]+
εn

2
·

By iteration over i, as i decreases to 0, we obtain

0 =
N

2

∫ L

0

∣∣∣∣dun
0

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
0 ) ≤ · · ·

≤ N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) + εn

N

2

i∑
k=1

|V n
k − V n

k−1| + N

i∑
k=1

(V n
k−1 − V n

k )
un

k−1(L) − un
k−1(L − εn)

εn

+ εn
φ′(0)

2

i∑
k=1

[V n
k−1 − V n

k ]+

≤ N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) − N

i∑
k=1

{V (tnk ) − V (tnk−1)}
∂un

∂x
(tnk−1, L) + εn

‖V̇ ‖L1(0,T )

2
{N + 3φ′(0)}

=
N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i ) − N

∫ t

0

∂un

∂x
(τ, L)dV (τ) + εn

‖V̇ ‖L1(0,T )

2
{N + 3φ′(0)}.



QUASI-STATIC EVOLUTION FOR FATIGUE DEBONDING 253

It follows that

E(t) = lim
n→∞

{
N

2

∫ L

0

∣∣∣∣∂un

∂x
(t)
∣∣∣∣
2

+ Diss+φ (un; [0, t])

}
= lim

n→∞

{
N

2

∫ L

0

∣∣∣∣dun
i

dx

∣∣∣∣
2

+
∫ L

0

φ(δn
i )

}

≥ lim
n→∞

{
N

∫ t

0

∂un

∂x
(τ, L)dV (τ)

}
= N

∫ t

0

∂u

∂x
(τ, L)dV (τ),

hence,

E(t) ≥ N

∫ t

0

∂u

∂x
(τ, L)V̇ (τ)dτ.

That concludes the proof. �
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