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AN OPTIMAL MATCHING PROBLEM

Ivar Ekeland
1

Abstract. Given two measured spaces (X, µ) and (Y, ν), and a third space Z, given two func-
tions u(x, z) and v(x, z), we study the problem of finding two maps s : X → Z and t : Y → Z such
that the images s(µ) and t(ν) coincide, and the integral

∫
X

u(x, s(x))dµ − ∫
Y

v(y, t(y))dν is maximal.
We give condition on u and v for which there is a unique solution.
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1. Introduction

In the economic theory of hedonic pricing (see [5] for an overview), one encounters the following problem.
We are given two sets X and Y , endowed with positive measures µ and ν such that µ (X) = ν (Y ). We wish
to transport them into a third set Z, so that each element x ∈ X is matched with an element y ∈ Y , and
the resulting pair is located at some point z ∈ Z. The cost of transporting x to z is w (x, z) and the cost of
transporting y to z is v (y, z). Find the assignments z = s (x) and z = t (y) which will minimize the total cost
of transportation.

This translates into the following optimization problem: find maps s : X → Z and t : Y → Z such that
s (µ) = t (ν) (this is the matching condition) and the integral

∫

X

w (x, s (x)) dµ +
∫

Y

v(y, t(y))dν (1.1)

is minimized.
The economics of this problem will be dealt with elsewhere. The purpose of this paper is to deal with

the mathematical aspects, which are interesting in themselves. Clearly, it is related to the classical optimal
transportation (or mass transfer) problem of Monge and Kantorovitch. Recall that this problem consists in
minimizing the integral ∫

X

u (x, ϕ (x)) dµ (1.2)

among all maps ϕ : X → Y such that ϕ (µ) = ν. Here the measured spaces (X, µ) and (Y, ν) are given, with
µ (X) = ν (Y ), as well as the function u : X ×Y → R. We refer to the monographs [7] or [8] for recent accounts
of the theory.A basic result by Brenier [1] states that, if X and Y are bounded open subsets of Rn endowed
with the Lebesgue measure, with X connected, and u (x, y) = ‖x − y‖2, then there is a unique solution ϕ to
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the optimal transportation problem, and ϕ is almost everywhere equal to the gradient of a convex function.
More generally, if u is continuously differentiable up to and including the boundary of X × Y , and if the
partials Dxu (x, ·) and Dyu (·, y) are one-to-one:

Dxu (x, y1) = Dxu (x, y2) =⇒ y1 = y2 (1.3)

Dyu (x1, y) = Dyu (x2, y) =⇒ x1 = x2 (1.4)

then the optimal mass transportation problem has a solution.
A first approach to the optimal matching problem would be as follows. Define a function u : X ×Y → R by:

u (x, y) = min
z

{w (x, z) + v (ϕ (x) , z)} (1.5)

and seek a measure-preserving map ϕ : X → Y which minimizes the integral (1.2). We then recover the map
s : X → Z by setting:

w (x, s (x)) + v (ϕ (x) , s (x)) = min
z

{w (x, z) + v (ϕ (x) , z)} = u (x, ϕ (x))

and since ϕ is measure-preserving, it is invertible up to a subset of measure zero, so that we recover t : Y → Z
by the formula t (y) = s

(
ϕ−1 (y)

)
.

This approach will succeed whenever the function u defined by formula (1.5) is continuously differentiable
and satisfies condition (1.3) and (1.4). Unfortunately, this is far from being the general case. Another method
must be devised to solve the optimal matching problem, and it is the purpose of the present paper.

Kantorovitch [6] introduced into the optimal transportation problem a duality method which will be crucial
to our proof. Instead of proving directly existence and uniqueness in the optimal matching problem, we solve in
Section 3 another optimization problem, and we will show in Section 4 that it yields the solution to the original
one. This correspondence relies heavily on an extension of the classical duality results in convex analysis (see
[3]). This extension can be found in [2,4,7], or [8]; for the reader’s convenience, we provide a short but complete
treatment in Section 2. Finally, in the last sections, we will give some examples.

2. The main result

From now on, X ⊂ Rn1 , Y ⊂ Rn2 , and Z ⊂ Rn3 will be compact subsets. We are given measures µ on X
and ν on Y , which are absolutely continuous with respect to the Lebesgue measure, and satisfy:

0 < µ (X) = ν (Y ) < ∞.

We are also given functions u : Ω1 → R and v : Ω2 → R, where Ω1 is a neighbourhood of X × Z and Ω2 is a
neigbourhood of Y ×Z. It is assumed that u and v are continuous with respect to both variables, differentiable
with respect to x and y, and that the partial derivatives Dxu and Dyv are continuous with respect to both
variables, and injective with respect to z:

∀x ∈ X, Dxu (x, z1) = Dxu (x, z2) =⇒ z1 = z2 (2.1)

∀y ∈ Y, Dyv (y, z1) = Dyv (y, z2) =⇒ z1 = z2. (2.2)

The latter condition is a generalization of the classical Spence-Mirrlees condition in the economics of asymmetric
information (see [2]). It is satisfied for u (x, z) = ‖x − z‖α, provided α �= 0 and α �= 1. If α < 1 we will also
require that X ∩ Y = ∅
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Theorem 1. Under the above assumptions, there exists a pair of Borelian maps (s̄, t̄) with s̄ (µ) = t̄ (ν), such
that for every (s, t) satisfying s (µ) = t (ν), we have:

∫

X

u (x, s (x)) dµ −
∫

Y

v(y, t(y))dν ≤
∫

X

u (x, s̄ (x)) dµ −
∫

Y

v(y, t̄(y))dν < ∞.

This solution is unique, up to equality almost everywhere, and it is described as follows: there is some Lipschitz
continuous function p̄ : Z → R and some negligible subsets X0 ⊂ X and Y0 ⊂ Y such that, for every x /∈ X0

and every y /∈ Y0:

∀z �= s̄ (x) , u (x, z) − p̄ (z) < u (x, s̄ (x)) − p̄ (s̄ (x)) (2.3)

∀z �= t̄ (y) , v (y, z) − p̄ (z) > v (x, t̄ (y)) − p̄ (t̄ (y)) (2.4)

p̄ is differentiable at s̄ (x) and t̄ (y) . (2.5)

If in addition u and v are differentiable with respect to z, we get, from the minimization (2.3) and the maxi-
mization (2.4):

Dzu (x, s̄ (x)) = Dz p̄ (s̄ (x))

Dzv (y, t̄ (y)) = Dz p̄ (t̄ (y)) .

Set s̄ (µ) = t̄ (ν) = λ. It follows from the above that, for λ-almost every z ∈ Z, there is some x /∈ X0 and y /∈ Y0

such that z = s̄ (x) = t̄ (y), and for every such (x, y) we have:

Dzu (x, z) = Dz p̄ (z) = Dzv (y, z) .

Note that there is no reason why λ should be absolutely continuous with respect to the Lebesgue measure.
The proof ot Theorem 1 s deferred to Section 4. Meanwhile, let us notice that we have slightly changed the

formulation of the optimal matching problem: by setting w = −u we recover the original one. This change will
simplify future notations.

3. Fundamentals of u-convex analysis

In this section, we basically follow Carlier [2].

3.1. u-convex functions

We will be dealing with function taking values in R∪{+∞}.
A function f : X → R∪{+∞} will be called u-convex iff there exists a non-empty subset A ⊂ Z × R such

that:
∀x ∈ X, f (x) = sup

(z,a)∈A

{u (x, z) + a} · (3.1)

A function p : Z → R∪ {+∞} will be called u-convex iff there exists a non-empty subset B ⊂ X ×R such that:

p (z) = sup
(x,b)∈B

{u (x, z) + b} · (3.2)

3.2. Subconjugates

Let f : X → R∪{+∞}, not identically {+∞}, be given. We define its subconjugate f � : Z → R∪{+∞} by:

f � (z) = sup
x

{u (x, z) − f (x)} · (3.3)
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It follows from the definitions that f � is a u-convex function on Z (it might be identically {+∞}).
Let p : Z → R∪{+∞}, not identically {+∞}, be given. We define its subconjugate p� : X → R∪{+∞} by:

p� (x) = sup
z

{u (x, z) − p (z)} · (3.4)

It follows from the definitions that p� is a u-convex function on X (it might be identically {+∞}).
Example 1. Set f (x) = u (x, z̄) + a. Then

f � (z̄) = sup
x

{u (x, z̄) − u (x, z̄) − a} = −a.

Conjugation reverses ordering: if f1 ≤ f2, then f �
1 ≥ f �

2 , and if p1 ≤ p2, then p�
1 ≥ p�

2. As a consequence, if f
is u-convex, not identically {+∞}, then f � is u-convex, not identically {+∞},. Indeed, since f is u-convex, we
have f (x) ≥ u (x, z) + a for some (z, a), and then f � (z) ≤ −a < ∞.

Proposition 1 (the Fenchel inequality). For any functions f : X → R∪{+∞} and p : X → R∪{+∞}, not
identically {+∞}, we have:

∀ (x, z) , f (x) + f � (z) ≥ u (x, z)

∀ (x, z) p (z) + p� (x) ≥ u (x, z) .

3.3. Subgradients

Let f : X → R∪{+∞} be given, not identically {+∞}. Take some point x ∈ X . We shall say that a point
z ∈ Z is a subgradient of f at x if the points x and z achieve equality in the Fenchel inequality:

f (x) + f � (z) = u (x, z) . (3.5)

The set of subgradients of f at x will be called the subdifferential of f at x and denoted by ∂f (x).
Similarly, let p : Z → R∪ {+∞} be given, not identically {+∞}. Take some point z ∈ Z. We shall say that

a point x ∈ X is a subgradient of p at z if:

p� (x) + p (z) = u (x, z) . (3.6)

The set of subgradients of p at z will be called the subdifferential of p at z and denoted by ∂p (z).

Proposition 2. The following are equivalent:
(1) z ∈ ∂f (x);
(2) ∀x′, f (x′) ≥ f (x) + u (x′, z) − u (x, z).

If equality holds for some x′, then z ∈ ∂f (x′) as well.

Proof. We begin with proving that the first condition implies the second one. Assume z ∈ ∂f (x). Then, by (3.5)
and the Fenchel inequality, we have:

f (x′) ≥ u (x′, z) − f � (z) = u (x′, z) − [u (x, z) − f (x)] .

We then prove that the second condition implies the first one. Using the inequality, we have:

f � (z) = sup
x′

{u (x′, z)− f (x′)}
≤ sup

x′
{u (x′, z)− f (x) − u (x′, z) + u (x, z)}

= u (x, z) − f (x)

so f (x) + f � (z) ≤ u (x, z). We have the converse by the Fenchel inequality, so equality holds.
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Finally, if equality holds for some x′ in condition (2), then f (x′) − u (x′, z) = f (x) − u (x, z), so that:

∀x′′, f (x′′) ≥ f (x) − u (x, z) + u (x′′, z)

= f (x′) − u (x′, z) + u (x′′, z)

which implies that z ∈ ∂f (x′). �

There is a similar result for functions p : Z → R∪{+∞}, not identically {+∞}: we have x ∈ ∂p (z) if and
only if

∀ (x′, z′) , p (z′) ≥ p (z) + u (x, z′) − u (x, z) . (3.7)

3.4. Biconjugates

It follows from the Fenchel inequality that, if p : Z → R∪{+∞} is not identically {+∞}:

p�� (z) = sup
x

{
u (x, z) − p� (x)

} ≤ p (z) . (3.8)

Example 2. Set p (z) = u (x̄, z) + b. Then

p�� (z) = sup
x

{
u (x, z) − p� (x)

}

≥ u (x̄, z) − p� (x̄)

= u (x̄, z) + b = p (z) .

This example generalizes to all u-convex functions. Denote by Cu (Z) the set of all u-convex functions on Z.

Proposition 3. For every function p : Z → R∪{+∞}, not identically {+∞}, we have

p�� (z) = sup
ϕ

{ϕ (z) | ϕ ≤ p, ϕ ∈ Cu (Z)} ·

Proof. Denote by p̄ (z) the right-hand side of the above formula. We want to show that p�� (z) = p̄ (z).
Since p�� ≤ p and p�� is u-convex, we must have p�� ≤ p̄.
On the other hand, p̄ is u-convex because it is a supremum of u-convex functions. So there must be some

B ⊂ X × R such that:
p (z) = sup

(x,b)∈B

{u (x, z) + b} ·

Let (x, b) ∈ B. Since p̄ ≤ p, we have u (x, z) + b ≤ p̄ (z) ≤ p (z). Taking biconjugates, as in the preceding
example, we get u (x, z) + b ≤ p�� (z). Taking the supremums over (x, b) ∈ B, we get the desired result. �

Corollary 1. Let p : Z → R∪{+∞} be a u-convex function, not identically {+∞}. Then p = p��, and the
following are equivalent:

(1) x ∈ ∂p (z);
(2) p (z) + p� (x) = u (x, z);
(3) z ∈ ∂p� (x).

Proof. We have p�� ≤ p always by relation (3.8). Since p is u-convex, we have:

p (z) = sup
(x,b)∈B

{u (x, z) + b}
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for some B ⊂ X × R. By Proposition 3, we have:

sup
(x,b)∈B

{u (x, z) + b} ≤ p�� (z)

and so we must have p = p��. Taking this relation into account, as well as the definition of the subgradient, we
see that condition (2) is equivalent both to (1) and to (2) �

Definition 1. We shall say that a function p : Z → R∪{+∞} is u-adapted if it is not identically {+∞} and
there is some (x, b) ∈ X × R such that:

∀z ∈ Z, p (z) ≥ u (x, z) + b.

It follows from the above that if p is u-adapted, then so are p�, p�� and all further subconjugates. Note that a
u-convex function which is not identically {+∞} is u-adapted.

Corollary 2. Let p : Z → R∪{+∞} be u-adapted. Then:

p��� = p�.

Proof. If p is u-adapted, then p� is u-convex and not identically {+∞}. The result then follows from Corollary 1.
�

3.5. Smoothness

Since u is continuous and X × Z is compact, the family

{u (x, ·) | x ∈ X }

is uniformly equicontinuous on Z. It follows from definition 3.1 that all u-convex functions on Z are continuous
(in particular, they are finite everywhere).

Denote by k the upper bound of ‖Dxu (x, z)‖ for (x, z) ∈ X × Z. Since Dxu is continuous and X × Z is
compact, we have k < ∞, and the functions x → u (x, z) are all k-Lipschitzian on X . Again, it follows from
Definition 3.1 that all u-convex functions on X are k-Lipschitz (in particular, they are finite everywhere). By
Rademacher’ theorem, they are differentiable almost everywhere with respect to the Lebesgue measure.

Let f : X → R be u-convex. Since f = f ��, we have:

f (x) = sup
z

{
u (x, z) − f � (z)

} ·

Since f � is u-convex, it is continuous, and the supremum is achieved on the right-hand side, at some point
z ∈ ∂f (x). This means that all u-convex functions on X are subdifferentiable everywhere on X .

Let x be a point where f is differentiable, with derivative Dxf (x), and let z ∈ ∂f (x). Consider the function
ϕ (x′) = u (x′, z) − f � (z). By Proposition 2, we have ϕ ≤ f and ϕ (x) = f (x), so that ϕ and f must have the
same derivative at x:

Dxf (x) = Dxu (x, z) . (3.9)
By condition (2.1), this equation defines z uniquely. We shall denote it by z = ∇uf (x). In other words, at
every point x where f is differentiable, the subdifferential ∂f (x) reduces to a singleton, namely {∇uf (x)}.
Combining all this information, we get:

Proposition 4. For every u-convex function f : X → R, there is a map ∇uf : X → Z such that, for almost
every x:

Dxf (x) = Dxu (x, z) ⇐⇒ z = ∇uf (x) .
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The following result will also be useful:

Proposition 5. Let p : Z → R be u-adapted, and let x ∈ X be given. Then there is some point z ∈ ∂p� (x)
such that p (z) = p�� (z).

Proof. Assume otherwise, so that for every z ∈ ∂p� (x) we have p�� (z) < p (z). For every z ∈ ∂p� (x), we have
x ∈ ∂p�� (z), so that, by Proposition 2, we have

p�� (z′) ≥ u (x, z′) − u (x, z) + p�� (z)

for all z′ ∈ Z, the inequality being strict if z′ /∈ ∂p� (x) . Set ϕz (z′) = u (x, z′) − u (x, z) + p�� (z). We have:

z′ /∈ ∂p� (x) =⇒ ϕz (z′) < p�� (z′) ≤ p (z′)

z′ ∈ ∂p� (x) =⇒ ϕz (z′) ≤ p�� (z′) < p (z′)

so that ϕz (z′) < p (z′) for all (z, z′). Since Z is compact, there is some ε > 0 such that ϕz (z′) + ε ≤ p (z′) for
all (z, z′). Taking the subconjugate with respect to z′, we get:

p� (x) ≤ sup
z′

{u (x, z′) − ϕz (z′)} − ε

= sup
z′

{
u (x, z′) − u (x, z′) + u (x, z) − p�� (z)

} − ε

= u (x, z) − p�� (z) − ε = p� (x) − ε

which is a contradiction. The result follows �

Corollary 3. If x is a point where p� is differentiable, then:

p
(∇up� (x)

)
= p��

(∇up� (x)
)

(3.10)

and:
p� (x) = u

(
x,∇up� (x)

) − p
(∇up� (x)

)
. (3.11)

Proof. Just apply the preceding proposition, bearing in mind that ∂p� (x) contains only one point, namely ∇up� (x).
This yields equation (3.10). Equation (3.11) follows from the definition of the subgradient:

p� (x) = u
(
x,∇up� (x)

) − p��
(∇up� (x)

)

and equation (3.10). �

3.6. v-concave functions

Let us now consider the duality between Y and Ż. Given v : Y ×Z → R, we say that a map g : Y → R∪{−∞}
is v-concave iff there exists a non-empty subset A ⊂ Z × R such that:

∀y ∈ Y, g (y) = inf
(z,α)∈A

{v (y, z) + a} (3.12)

and a function p : Z → R∪{−∞} will be called v-concave iff there exists a non-empty subset B ⊂ X × R such
that:

p (z) = inf
(x,b)∈B

{v (y, z) + b} · (3.13)
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All the results on u-convex functions carry over to v-concave functions, with obvious modifications. The
superconjugate of a function g : Y → R∪ {−∞}, not identically {−∞}, is defined by:

g� (z) = inf
y
{v (y, z)− g (y)} (3.14)

and the superconjugate of a function p : Z → R∪{−∞}, not identically {−∞}, is given by:

p� (y) = inf
z
{v (y, z)− p (z)} · (3.15)

The superdifferential ∂p� is defined by:

∂p� (y) = argmin
z

{v (y, z) − p (z)}

and we have the Fenchel inequality:

p (z) + p� (y) ≤ v (y, z) ∀ (y, z)

with equality iff z ∈ ∂p� (y). Note finally that p�� ≥ p, with equality if p is v-concave

4. The dual optimization problem

Denote by A the set of all bounded function on Z:

p ∈ A ⇐⇒ sup
z

|p (z)| < ∞
and consider the minimization problem:

inf
p∈A

[∫

X

p� (x) dµ −
∫

Y

p� (y) dν

]

(4.1)

Proposition 6. The minimum is attained in problem (4.1)

Proof. Take a minimizing sequence pn:
∫

X

p�
n (x) dµ −

∫

Y

p�
n (y) dν → inf (P) .

Setting qn = pn + a, for some constant a. Then q�
n = p�

n − a and q�
n = p�

n − a. Since µ (X) = ν (Y ), we have:
∫

X

q�
n (x) dµ −

∫

Y

q�
n (y) dν =

∫

X

p�
n (x) dµ −

∫

Y

p�
n (y) dν → inf (P) .

Setting a = − infz pn (z), we find infz qn (z) = 0. So there is no loss of generality in assuming that:

∀z, inf
z

pn (z) = 0

which we shall do from now on.
The sequences p�

n is k-Lipschitzian. Since pn ≥ 0, we have

p�
n (x) ≤ sup

z
u (x, z) ≤ max

x,z
u (x, z) .
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Choose zn such that pn (zn) ≤ 1. We then have:

p�
n (x) ≥ u (x, zn) − pn (zn) ≥ min

x,z
u (x, z) − 1.

So the sequence p�
n is uniformly bounded. By Ascoli’s theorem, there is a uniformly convergent subsequence.

Similarly, after extracting this first subsequence, we extract another one along which p�
n converges uniformly.

The resulting subsequence will still be denoted by pn, so that:

p�
n → f uniformly

p�
n → g uniformly.

Taking limits, we get: ∫

X

f (x) dµ −
∫

Y

g (y) dν = inf (P) . (4.2)

It is easy to see that p��
n → f � and p��

n → g� uniformly. Since p��
n ≤ pn and p��

n ≥ pn, we have p��
n ≤ p��

n , and
hence f � ≤ g�. Set:

p̄ =
1
2

(
f � + g�

)
.

Since f � and g� are Lipschitz continuous, so is p̄. Since f � ≤ p̄ ≤ g�, we must have p̄� ≤ f �� ≤ f and p̄� ≥ g�� ≥ g.
Hence: ∫

X

p̄� (x) dµ −
∫

Y

p̄� (y) dν ≤
∫

X

f (x) dµ −
∫

Y

g (y) dν = inf (P) .

Since f � ≤ p̄ ≤ g�, both sides being continuous functions, the function p̄ must be bounded on Z, and the above
inequality shows that it is a minimizer. The proof is concluded. �

5. Proof of the main result

Let us first express the optimality condition in problem (P). Set:

s̄ (x) = ∇up̄� (x)

t̄ (y) = ∇v p̄� (y)

where the gradient maps ∇up̄� and ∇v p̄� have been defined in proposition 4.

Proposition 7. s̄ (µ) = t̄ (ν).

Proof. We follow the argument in Carlier [2]. Take any continuous function ϕ : Z → R. Since p̄ is a minimizer,
we have, for any integer n:

∫

X

n

[(

p̄ +
1
n

ϕ

)�

− p̄�

]

dµ −
∫

Y

n

[(

p̄ +
1
n

ϕ

)�

− p̄�

]

dν ≥ 0. (5.1)

We deal with the first integral. Set p̄ + 1
nϕ = pn. Since p�

n is u-convex, it is differentiable almost everywhere.
Take a negligible subset X0 such that all the p�

n, n ∈ N, and p̄�, are differentiable at every x /∈ X0. If x /∈ X0,
then ∇up�

n (x) is the only point in ∂p�
n (x), and we have, by Corollary 3:

u
(
x,∇up�

n (x)
) − p̄

(∇up�
n (x)

) ≤ p̄� (x) = u
(
x,∇up̄� (x)

) − p̄
(∇up̄� (x)

)

so that:
u

(
x,∇up�

n (x)
) − p̄

(∇up�
n (x)

) − u
(
x,∇up̄� (x)

)
+ p̄

(∇up̄� (x)
) ≤ 0 (5.2)
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yielding:

p�
n (x) +

1
n

ϕ
(∇up�

n (x)
) − p̄� (x) ≤ 0. (5.3)

From the definition of p�
n, we have, using Corollary 3 again:

u
(
x,∇up̄� (x)

) − p̄
(∇up̄� (x)

) − 1
n

ϕ
(∇up̄� (x)

) ≤ p�
n (x) = u

(
x,∇up�

n (x)
) − p̄

(∇up�
n (x)

) − 1
n

ϕ
(∇up�

n (x)
)
.

Rewriting this, we get:

1
n

ϕ
(∇up�

n (x)
) − 1

n
ϕ

(∇up̄� (x)
) ≤ u

(
x,∇up�

n (x)
) − p̄

(∇up�
n (x)

) − u
(
x,∇up̄� (x)

)
+ p̄

(∇up̄� (x)
)

(5.4)

= p�
n (x) +

1
n

ϕ
(∇up�

n (x)
) − p̄� (x) (5.5)

yielding:

− 1
n

ϕ
(∇up̄� (x)

) ≤ p�
n (x) − p̄� (x) . (5.6)

Inequalities (5.3) and (5.6) together give:

−ϕ
(∇up̄� (x)

) ≤ n
(
p�

n (x) − p̄� (x)
) ≤ −ϕ

(∇up�
n (x)

)
. (5.7)

Now let n → ∞. Using corollary 3, we have:

u
(
x,∇up�

n (x)
)

= pn

(∇up�
n (x)

)
+ p�

n (x) .

Since Z is compact, the sequence ∇up�
n (x) ∈ Z has a cluster point z, and since pn and p�

n converge to p̄ and p̄�

uniformly, we get in the limit:
u (x, z) = p̄ (z) + p̄� (x)

so that z ∈ ∂p̄� (x). But that subdifferential consists only of the point ∇up̄� (x), so that z = ∇up̄� (x). This
shows that the cluster point z is unique, so that the whole sequence must converge:

∇up�
n (x) → ∇up̄� (x) .

Letting n → ∞ in (5.7), we get:

∀x /∈ X0, lim
n

n
(
p�

n (x) − p̄� (x)
)

= −ϕ
(∇up̄� (x)

)
.

Similarly, we have:
∀y /∈ Y0, lim

n
n

(
p�

n (x) − p̄� (x)
)

= −ϕ
(
∇up̄� (x)

)

where Y0 ⊂ Y is negligible.
Since ϕ is continuous, it is bounded, and we can apply the dominated convergence theorem to inequality (5.1).

We get:

−
∫

X

ϕ
(∇up̄� (x)

)
dµ +

∫

Y

ϕ
(
∇up̄� (y)

)
dν ≥ 0.

Since the inequality must hold for −ϕ as well as ϕ, it is in fact an equality. In other words, for any ϕ : Z → R
with compact support, we have:

∫

X

ϕ
(∇up̄� (x)

)
dµ =

∫

Y

ϕ
(
∇up̄� (y)

)
dν (5.8)

and this means that s̄ (µ) = t̄ (ν), as announced. �
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Set s̄ (µ) = t̄ (ν) = λ. This is a positive measure on Z, not necessarily absolutely continuous with respect to
the Lebesgue measure.

Applying Corollary 3, we have:

p̄� (x) = u (x, s̄ (x)) − p̄ (s̄ (x))

p̄� (y) = v (y, t̄ (y)) − p̄ (t̄ (y))

and hence:
∫

X

p̄� (x) dµ −
∫

Y

p̄� (y) dν =
∫

X

[u (x, s̄ (x)) − p̄ (s̄ (x))] dµ −
∫

Y

[v (y, t̄ (y)) − p̄ (t̄ (y))]

=
∫

X

u (x, s̄ (x)) dµ −
∫

Y

v (y, t̄ (y)) dν −
[∫

X

p̄ (s̄ (x)) dµ −
∫

Y

p̄ (t̄ (y)) dν

]

=
∫

X

u (x, s̄ (x)) dµ −
∫

Y

v (y, t̄ (y)) dν −
[∫

Z

p̄ (z) dλ −
∫

Z

p̄ (z) dλ

]

=
∫

X

u (x, s̄ (x)) dµ −
∫

Y

v (y, t̄ (y)) dν. (5.9)

Let (s, t) be a pair of Borelian maps such that s (µ) = t (ν). Then, by the Fenchel inequality:

∫

X

u (x, s (x)) dµ −
∫

Y

v (y, t (y)) dν ≤
∫

X

[
p̄� (x) + p̄ (s (x))

]
dµ −

∫

Y

[
p� (y) + p̄ (t (y))

]
dν

=
∫

X

p̄� (x) dµ −
∫

Y

p̄� (y) dν +
[∫

X

p̄ (s (x)) dµ −
∫

Y

p̄ (t (y)) dν

]

.

The last bracket vanishes because s (µ) = t (ν). Applying inequality 5.9, we get:
∫

X

u (x, s (x)) dµ −
∫

Y

v (y, t (y)) dν ≤
∫

X

u (x, s̄ (x)) dµ −
∫

Y

v (y, t̄ (y)) dν.

This shows that (s̄, t̄) is a maximizer, and proves the existence part of Theorem 1.
As for uniqueness, assume that there is another maximizer (s′, t′). The preceding inequality then becomes

an equality:
∫

X

u (x, s (x)) dµ −
∫

Y

v (y, t (y)) dν =
∫

X

[
p̄� (x) + p̄ (s (x))

]
dµ −

∫

Y

[
p� (y) + p̄ (t (y))

]
dν

which we rewrite as:
∫

X

[
p̄� (x) + p̄ (s (x)) − u (x, s (x))

]
dµ +

∫

Y

[
v (y, t (y)) − p� (y) − p̄ (t (y))

]
dν = 0.

Both integrands are non-negative by the Fenchel inequality. If the sum is zero, each integral must vanish, and
since the integrands are non-negative, each integrand must vanish almost everywhere. This means that:

s (x) ∈ ∂p̄� (x) a.e.

t (y) ∈ ∂p̄� (y) a.e.

and since ∂p̄� (x) = {s̄ (x)} and ∂p̄� (y) = {t̄ (y)} almost everywhere, the uniqueness part of Theorem 1 is proved.
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6. A degenerate case

We shall now investigate some properties of the function p̄ : Z → R.
Recall that we denote λ = s̄ (µ) = t̄ (ν). It is a positive measure on Z. Its support Supp (λ) is the complement

of the largest open subset Ω ⊂ Z such that λ = 0 on Ω. If for instance µ and ν have the property that the
measure of any open non-empty subset is positive, then:

Supp (λ) = s̄ (X) = t̄ (Y ) .

Proposition 8. p̄�� = p̄ = p̄�� on Supp (λ).

Proof. We have seen that p̄�� (s̄ (x)) = p̄ (s̄ (x)) µ-almost everywhere. Since s̄ (µ) = λ, this means that p̄�� (z) =
p̄ (z) λ-almost everywhere. Since p̄ and p̄�� are continuous, equality extends to the support of λ. Similarly,
p̄ = p̄�� on Supp (λ), and the result follows. �

In certain cases, proposition 8 will impose strong restrictions on p. Let us give an example.

Example 3. Suppose X, Y, Z are compact subsets of Rn, and we want to minimize:
∫

X

‖x − s (x)‖2 dµ −
∫

Y

‖y − t (y)‖2 dν (6.1)

among all maps (s, t) such that s (µ) = t (ν).

Developing the squares, this amounts to minimizing:
[∫

X

x2dµ −
∫

Y

y2dν

]

+
[∫

X

s (x)2 dµ −
∫

Y

t (y)2 dν

]

−
[∫

X

x′s (x) dµ −
∫

Y

y′t (y) dν

]

.

The first bracket is a constant (it does not depend on the choice of s and t). The second bracket vanishes
because s (µ) = t (ν). We are left with the last one. So the problem amounts to maximizing:

∫

X

x′s (x) dµ −
∫

Y

y′t (y) dν

and it falls within the scope of Theorem 1 by setting u (x, z) = x′z and v (y, z) = y′z. Then u-convex functions
are convex in the usual sense, v-concave functions are concave in the usual sense. By proposition 8, p is linear
on Supp (λ), so we may take:

p (z) = π′z
for some vector π ∈ Rn. We then get s̄ (x) by maximizing (x − π)′ z over Z. Similarly, we get t̄ (y) by minimizing
(y − π)′ z over Z. Note that this implies that s̄ (X) = t̄ (Y ) ⊂ ∂Z, the boundary of Z. Let us summarize:

Proposition 9. There is a single map (s̄, t̄) which minimizes the integral (6.1) among all maps (s, t) such that
s (µ) = t (ν). It is given by:

s̄ (x) = argmax
z

(x − π)′ z (6.2)

t̄ (y) = argmin
z

(y − π)′ z (6.3)

and the actual value of π ∈ Rn is found by substituting (6.2) and (6.3) in the integral (6.1) and by minimizing
the resulting function of π.

It follows that the image s̄ (X) = t̄ (Y ) = Supp (λ) is contained in the boundary of Z. This is an example of
degeneracy: the dimension of Supp (λ) is strictly less than the dimension n of X, Y and Z, so that the maps s̄
and t̄ cannot be one-to-one.
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7. The non-degenerate case

Suppose X and Y are subsets of Rn endowed with the Lebesgue measure, and that there is a subset Z0 ⊂
Z such that s̄ (X) = t̄ (Y ) = Z0 = Supp (λ), and suppose moreover that there are C1 maps σ : Z0 → X
and τ : Z0 → Y such that:

s̄ ◦ σ = IZ0 = t̄ ◦ τ.

The maps σ, τ and the subset Z0 are related by:

τ ◦ σ−1 (µ) = ν (7.1)

σ (Z0) = X (7.2)

τ (Z0) = Y. (7.3)

On the other hand, σ (z) is the subgradient of p̄ at z, and τ (z) is the supergradient of p̄ at z, so that:

p̄� (σ (z)) = u (σ (z) , z) − p̄ (z)

p̄� (τ (z)) = v (τ (z) , z) − p̄ (z)

for all z ∈ Z0. By proposition 8, p = p̄� = p�, so that p̄ is C1 on Z0. The derivative Dz p̄ is related to σ and τ
by the equations

Dzu (σ (z) , z) = Dz p̄ (z) (7.4)

Dzv (τ (z) , z) = Dz p̄ (z) . (7.5)

Inverting these relations, and replacing σ and τ by their expression in terms of Dz p̄ in the relations (7.1)–(7.3),
one gets a series of conditions on Dz p̄. The first one turns out to be a second-order equation on Monge-Ampere
type, while the two others are boundary conditions.

Example 4. Consider the problem of minimizing the integral:

∫

X

α

2
‖x − s (x)‖2 dx +

∫

Y

1
2
‖y − t (y)‖2 dy (7.6)

over all maps (s, t) such that s (µ) = t (ν) . Here α > 0 is a given constant.

We apply Theorem 1 with u (x, z) = −α
2 ‖x − z‖2 and v (y, z) = 1

2 ‖y − z‖2. Note that the function p : Z → R

is u-convex iff D2
zzp (z) ≥ −αI for every z, where D2

zzp (z) is the Hessian matrix at z, and that it is v-concave
iff D2

zzp (z) ≤ I. So there a function p : Z → R is both u-convex and v-concave if and only if it satisfies
−αI ≤ D2

zzp (z) ≤ I everywhere. There are many such functions, so the condition p�� = p = p�� in Proposition 8
is no longer binding.

Equations (7.4) and (7.5) become:

Dz p̄ (z) = −α (σ (z) − z)

Dz p̄ (z) = (τ (z) − z) .
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So σ (z) = z − 1
αDz p̄ (z) and τ (z) = z + Dz p̄ (z). The system (7.1)-(7.3) becomes:

det
[
I + D2

zzp̄ (z)
]

= ± det
[

I − 1
α

D2
zzp̄ (z)

]

(7.7)

∀z ∈ Z0, z − 1
α

Dz p̄ (z) ∈ X (7.8)

∀z ∈ Z0, z + Dz p̄ (z) ∈ Y. (7.9)

Note that, since the measure of σ (X) equals the measure of X , condition (7.8), which states that σ (X) ⊂ X,
implies that in fact σ (X) = X. Similarly, condition (7.9) implies that τ (X) = X .

Example 5. Given a > 2, consider the problem of minimizing the integral:

∫ 2

1

[
1
2
s (x)2 − xs (x)

]

dx +
∫ a+1

a

1
2
yt (y)2 dy

over all maps s : [1, 2] → [0, 1] and t : [a, a + 1] → [0, 1] such that s (ρ) = t (ρ), where ρ is the Lebesgue measure.

This is the framework of Theorem 1 with X = [1, 2] , Y = [a, a + 1], Z = [0, 1] and u (x, z) = − 1
2z2 + xz,

v (y, z) = 1
2yz2.

However, it is a case when the direct approach mentioned in the introduction will work. Define a function
f : X × Y → R by:

f (x, y) = max
0≤z≤1

{

−1
2
z2 + xz − 1

2
yz2

}

=
{

−1
2
z2 + xz − 1

2
yz2 | z =

x

1 + y

}

=
1
2

x2

1 + y
·

We seek to maximize the integral:

I (ϕ) =
∫ 2

1

f (x, ϕ (x)) dx

among all measure-preserving maps ϕ : [1, 2] → [a, a + 1]. Assuming that the solution is continuous, we find
two candidates, ϕ1 and ϕ2, given by:

ϕ1 (x) = x + a − 1

ϕ2 (x) = −x + a + 2

and a direct calculation yields I (ϕ2) > I (ϕ1) .The solution is given by

s2 (x) =
x

1 + ϕ2 (x)
=

x

3 + a − x

t2 (y) =
ϕ−1

2 (y)
1 + y

=
a + 2 − y

1 + y



AN OPTIMAL MATCHING PROBLEM 71

so that Z0 =
[

1
a+2 , 2

a+1

]
. These equations can be inverted, yielding:

x =
z

1 + z
(a + 3) (7.10)

y =
a + 2 − z

1 + z
· (7.11)

The potential p (z) is found by maximizing u (x, z)−p (z) or minimizing v (y, z)−p (z) with respect to z, yielding

x = σ (z) = p′ (z) + z (7.12)

y = τ (z) = p′ (z) /z (7.13)

into which we substitute equations (7.10) and (7.11), finding:

p′ (z) =
z

1 + z
(a + 2 − z)
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