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NONLINEAR OBSERVERS IN REFLEXIVE BANACH SPACES

Jean-François Couchouron1 and P. Ligarius2

Abstract. On an arbitrary reflexive Banach space, we build asymptotic observers for an abstract
class of nonlinear control systems with possible compact outputs. An important part of this paper is
devoted to various examples, where we discuss the existence of persistent inputs which make the system
observable. These results make a wide generalization to a nonlinear framework of previous works on
the observation problem in infinite dimension (see [11,18,22,26,27,38,40] and other references therein).
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1. Introduction and presentation of the results

We consider the following general nonlinear system on an arbitrary reflexive Banach space X ,

E =
{

ẋ (t) = Au (t)x (t) + B (v (t) , x (t)) , on [0, +∞[
y (t) = C (x (t)) , x (0) = x0,

(1)

where x0 ∈ X and the controls (u, v) belong to U × V ⊂ L∞([0, +∞[ , Rm × Rq). Here, (Au(t))t≥0 represents
a family of unbounded dissipative linear operators; the bounded dissipative nonlinear operator B is defined
on Rq × X ; the bounded linear (observation) operator C maps from X to Y, where Y is a finite or infinite
dimensional (observation) normed space (Y = Rp, p < +∞, physically makes sense). The precise assumptions
on these operators are given in Section 4.

In this abstract framework we are concerned with the dynamical state estimate of the system E by means of
the output y and inputs (u, v). In this goal, for a given solution x of the system E, we construct an auxiliary
system Ê with inputs (u, v; y) and output ŷ = Cx̂ ; the solution x̂ of Ê is expected to “estimate” asymptotically
the state x of E, that is: the estimate error ε (t) = x̂ (t)−x (t), converges (resp. weakly, strongly, exponentially)
towards zero when t goes to infinity. Then such a system Ê is called an (resp. weak, strong, exponential)
observer.

Let us notice that one of the most important fields of observers applications is the stabilization problem by
feedback control laws: indeed in infinite dimension, since the solution of the system is generally unknown, it is
of interest to get an estimate of the state from the known parameters – inputs (u, v) and output y – to construct
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the stabilizing control. So the observer problem finds many industrial or engineering applications in fields of
robotics, mechanics, heat transfer or (bio)chemical processes (see [1,8,9,17,19,26,27,32,35,39] and many other
references therein and also examples in Sect. 6).

We now recall some results on linear and nonlinear systems in finite and infinite dimension, and the basic
ideas allowing in our context, to construct very simple observers for a wide class of nonlinear systems.

A control system is said to be observable if for any pair of distinct initial states there is an input which gives
rise to a pair of distinct outputs. For finite dimensional linear systems, any input is suitable in the definition
of observability and the simpler solution of the observer problem is given by the Luenberger observer (see [12]).
For nonlinear systems, even if the system is observable, one of the major difficulties for synthesis of observers,
is the existence of “bad” inputs (or non universal inputs, in the sense of Sussman [33] or Sontag [34]) for
which there is some pair of distinct states giving a same output function (see also Ex. 6.1 in Sect. 6). As
said before, the bad input phenomenon does not exist for linear systems, but already appears on bilinear ones
(that is Au (t) := A linear, and B (v (t) , x (t)) := v(t)B1x(t), where B1 is linear and v real-valued). From
the observability point of view, bilinear systems can be treated as linear time dependent systems. And for
linear time dependent systems, the Kalman’s observer provides a solution. One can easily show that for linear
time dependent systems that are dissipative for almost all values of t ≥ 0, the Luenberger observer also works
(see [20, 21]).

In infinite dimension, the observer problem taking into account non universal inputs, has recently been
examined in Hilbert spaces in the case of skew adjoint or more general dissipative bilinear systems (see [22,26,38]
or [27]), and for which the authors exhibit a particular case of the observer used in this paper. Classically, in
the bilinear case in Hilbert spaces, the Gram-observability operator is usually used to give, roughly speaking,
a “measure of observability” of the system. In this case, if the observation operator C has a finite rank, then
the Gram-observability operator is compact and cannot be coercive. But if C has an infinite rank and if the
Gram-observability operator is not compact, it happens that this Grammian operator is coercive. In this last
case, as in finite dimension, many solutions are possible and the observation problem can be solved, for instance,
by an infinite dimensional Kalman’s observer (see [9]). Physically, however, only a finite number of observations
makes sense, and thus the observation operator C must have a finite rank. Consequently, in order to take
into account the finite rank case, the Kalman’s observer is not appropriate for our observation problem. That
justifies (in part) our choice of a Luenberger-like observer, but the lack of coercive property will be boring: in
particular, in our knowledge there is no result of existence of universal inputs in this infinite dimensional non
coercive case.

This paper consists of two different things: on the one hand an abstract part namely the construction for
suitable inputs (u, v) of a general class of observers in an abstract nonlinear (even non bilinear) framework
on reflexive Banach spaces (see Ths. 5.1 for weak observers and 5.2 for strong observers); and on the other
hand applications of the abstract part to real systems for which we detail the existence of universal inputs or
the problem of the strong convergence of the estimate error (see Sect. 6).

The required existence of universal inputs in the sense of this paper (as in [38] and [22]) is a necessary condition
for the synthesis of observers. We underline that this condition implies the observability of an “asymptotic”
system (deduced from the error estimate system). In particular the universal input assumption guarantees
that the error estimate system does not contain any undetectable dynamic (i.e. unstable unobservable state)
and so we do not need any extra stability condition (see [29, 30]) on the space of undetectable states as in the
classical linear case. In this paper a universal input is universal in the Susmann’s sense (see [33] and [12]) with
in addition a strong observability assumption. Of course, existence of universal inputs is a sharp problem and
in our knowledge no theoretical result is available on this subject in infinite dimension with possibly compact
outputs. In this paper this question is only tackled on examples (see Props. 6.1, 6.2, 6.3, 6.5 and Cor. 6.1).

In our general context, we had to overcome several difficulties: firstly, the nonlinearity of B which, in
particular, excludes the use of the Gram-observability operator; secondly, the possible compactness of the
outputs; thirdly, the existence of non universal inputs (see Ex. 6.2 in Sect. 6); fourthly, the construction of an
observer in reflexive Banach spaces; finally, the generality of our assumptions on systems E.
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We point out that in a general framework including hyperbolic and parabolic systems with possibly compact
outputs, in infinite dimensional spaces it is not possible, without severe restrictions on assumptions of our
system E, to hope for a better result than a weak observer. Such a weak convergence result (Ths. 5.1) reduces
the strong convergence problem to the study of precompactness of trajectories of the system, and allows to
understand why in numerical finite dimensional approximations, the estimate error converges towards zero. In
the hyperbolic case for instance, the problem of strong convergence and, in particular, exponential convergence
(expected in applications), requires an extra work which must take into account the specificity of the systems
under consideration. Clearly, our weak convergence principle will be a first step in this direction.

Our results fully generalize, within an abstract nonlinear framework, those given in [27], [26] or similar
ones in [38] or [22] for bilinear systems, and extend in several ways observer results existing in the literature
(see [9, 11, 18, 22, 26], and others).

This paper is organized as follows. General notations and conventions are given in Section 2. Section 3
is devoted to some preliminary results on abstract semilinear Cauchy problems governed by time dependent
families of unbounded operators. Sections 4, 5 and 6 make up the core of this article. Section 4 details
assumptions on E. Section 5 contains the description of the considered class of observers and the statement of
the abstract results while applications can be found in Section 6. The main proofs are included in Section 7
and precede a short conclusion in Section 8. We have postponed in an appendix Section 9 numerous examples
of families (Au (t)) considered in system E.

2. Conventions and notations

Let X be a reflexive Banach space. We denote by X∗ the topological dual of X , and the duality brackets are
set by 〈·, ·〉 := 〈·, ·〉X,X∗ . The notation L (X) represents the set of linear bounded maps from X to X and Xw

denotes the space X endowed with the weak topology. The operator D∗ stands for the adjoint of the linear
operator D from X to X .

The usual weak (resp. weak∗) convergence in a Banach space X is represented by the symbol “ w−→”

(resp. “ w*−→”). The set of continuous functions from [0, T ] to X, endowed with the supremum norm, is denoted
by C ([0, T ] , X) , while C ([0, T ] , Xw) stands for the set of continuous functions from [0, T ] to Xw equipped with
the topology of the uniform weak convergence.

Let I0 be an arbitrary interval of [0, +∞[. In the sequel for p ∈ [1, +∞] we denote by Lp(I0, (R+)m) the set
of u = (u1, ..., um) ∈ Lp(I0, (R)m) such that uj ≥ 0 a.e. on I0, j = 1, ..., m. As usual, we will denote Lp(I0, R)
by Lp(I0). The set of admissible controls (u, v) for E in (1) is denoted by U × V ⊂ L∞([0, +∞[ , Rm × Rq).

Let u ∈ U , let T > 0 and let τ > 0, we set by uT
[τ ] (·) = u (τ + ·), the τ -translated input function on [0, T ]. The

set UT (resp. VT ) denotes the restriction of the controls on the compact interval [0, T ], e.g. if U := L
∞([0, +∞[)

then UT := L∞([0, T ]). We suppose given a concept of convergence on U × V . Then, in applications this
convergence may be associated with the topology on UT (resp. VT ) induced by one of the following topologies
on L∞([0, T ] , Rm) (resp. L∞([0, T ] , Rq)):

a) the weak (or weak∗ or strong) topology of L∞([0, T ], Rm) (resp. L∞([0, T ], Rq));
b) the relative strong topology of L1([0, T ], Rm) (resp. L1([0, T ], Rq)) on L∞([0, T ], Rm) (resp. L∞([0, T ], Rq)).

The notation un
UT−→ u∞ (resp. vn

VT−→ v∞), means that the sequence (un)n (resp. (vn)n) converges towards u∞
(resp. v∞) in UT (resp. VT ) for the convergence chosen.

In the sequel, we set Ξ = {(t, s) ∈ R× R, 0 ≤ s ≤ t}.

3. Preliminary results

We make precise here the solution notion used in this paper. We need the concept of linear evolution operators
already developed in [6, 15, 31] for instance.



70 J.-F. COUCHOURON AND P. LIGARIUS

Definition 3.1. A function Φ from Ξ to L (X) is called a linear evolution operator, if it satisfies the two
following conditions:

i) for any fixed x ∈ X , the function Φ (·, ·)x is continuous on Ξ;
ii) for all (t, s), (s, r) ∈ Ξ, the relations Φ (t, s) ◦ Φ (s, r) = Φ (t, r) and Φ (t, t) = I hold. Moreover, the

evolution operator is said to be contractive if for all (t, s) ∈ Ξ, ‖Φ (t, s)‖L(X) ≤ 1.

3.1. The Cauchy problem

The following proposition extends some results given for instance in Prüss [31], or in Kato [25]. In partic-
ular, since the Dini derivatives are not convenient for computations involving functions defined only almost
everywhere, we give an integral inequality in a space of distributions.

We introduce the following notation [x, y]− = limλ↑0 (‖x + λy‖ − ‖x‖) /λ, for all x, y ∈ X .
Let CPF

(
x0
)

be the following evolution problem,

CPF

(
x0
)

=
{

ẋ (t) = A (t)x (t) + F (t, x (t)), on [0, +∞[
x (0) = x0 ∈ X,

(2)

for which we always suppose satisfied,
(i) the family (A (t))t≥0 of densely defined operators from X to X is the generator of a linear contractive

evolution operator Φ;
(ii) the X-valued map x 7→ F (t, x) is continuous for a.a. t ∈ [0, +∞[ and the application τ 7→ F (τ, ξ) is

strongly measurable for all ξ ∈ X ;
(iii) for each t0 ≥ 0, there exists α ∈ L1 ([0, t0]) such that for all bounded subsets Ω of X one has for a.a.

τ ∈ [0, t0],
χ (F (τ, Ω)) ≤ α (τ)χ (Ω)
supx∈Ω ‖F (τ, x)‖ ≤ βΩ (τ)

where the symbol χ stands for the Hausdorff measure of non compactness and βΩ ∈ L1 ([0, t0]);
(iv) there exists a non negative function g ∈ L1

loc ([0, +∞[) such that for all ξ ∈ X and a.a. t ∈ [0, +∞[ we
have

[ξ, F (t, ξ)]− ≤ g (t) (‖ξ‖+ 1) . (3)
We have the following fundamental result on the Cauchy problem:

Proposition 3.1. Under assumptions (i–iv), the problem CPF

(
x0
)

has at least a Duhamel’s solution, i.e.,
there exists a continuous function x on [0, +∞[ satisfying the following relation,

x (t) = Φ (t, 0)x0 +
∫ t

0

Φ (t, τ) F (τ, x (τ)) dτ

for t ≥ 0. Moreover, if we consider F (t, ξ) = f (t) with f ∈ L
1
loc ([0, +∞[ , X), the unique solution x of CPf

(
x0
)

satisfies
d
dt
‖x (t)‖ ≤ [x (t) , f (t)]− (4)

in D′ (]0, +∞[) .

The proof of Proposition 3.1 can be found in Section 7.2.

Remark 3.1. Comments on the Cauchy problem CPF

(
x0
)
.

1. If ξ 7→ F (t, ξ) is dissipative for a.a. t ≥ 0 then CPF

(
x0
)

has a unique global Duhamel’s solution x on [0, +∞[ .
If in addition F (t, 0) = 0 a.a. t ≥ 0, from (4) it comes: ‖x (t)‖ ≤ ∥∥x0

∥∥ , for all t ∈ [0, +∞[ .

2. We emphasize that in our semilinear time dependent framework, the inequality (4) (in its integrated form)
improves (see [5]) the classical Benilan’s integral inequality (for the general quasi-autonomous problem) in the
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sense that the upper bound in the right hand side of (4) is smaller than the usual upper bound [x (t) , f (t)] =
limλ↓0 (‖x (t) + λf (t)‖ − ‖x (t)‖) /λ.

3.2. Compact evolution operator

We will need in Theorem 5.2 the following concept:

Definition 3.2. We will say that the evolution operator Φ is compact if there exists T1 ≥ 0 such that for all
h > 0 and all bounded subsets Ω of X the set

⋃
t≥T1

Φ (t + h, t)Ω is relatively compact in X.

Example 3.1. Compact evolution operator

If for all t ≥ T1 and all h > 0 we have Φ (t + h, t) = K (h) ◦ L (t, h) where K (h) is a compact operator and
where

⋃
t≥T1

L (t, h)Ω is bounded for each bounded subset Ω ⊂ X , then Φ is compact.

Let us precise the notion of local uniform integrability.

Definition 3.3. We say that a function f from [0, +∞[ to X is locally uniformly integrable on [0, +∞[ if f
is locally integrable on [0, +∞[ and if we have,

lim
h↓0

sup
a≥0

∫ a+h

a

‖f (τ)‖dτ = 0. (5)

We have the following result for systems generating compact evolution operators:

Lemma 3.1. Consider CPf

(
x0
)

defined in (2) in case F (t, ξ) := f (t). Assume f to be locally uniformly
integrable and assume the contractive linear evolution operator Φ (introduced in hypothesis (i) before Prop. 3.1)
to be compact. Then the trajectory of the solution of CPf

(
x0
)

is precompact if (and only if) it is bounded.

Proof. Let x be the solution of CPf

(
x0
)

and suppose that the trajectory Ω = x ([0, +∞[) is bounded. Since
τ 7→ x (τ) − Φ (τ, t− h)x (t− h) is solution of (2) on [t− h, t], with zero (instead of x0) as initial value and
F (t, ξ) = f (t), it follows from Proposition 3.1,

‖x (t)− Φ (t, t− h)x (t− h)‖ ≤
∫ t

t−h

‖f (τ)‖dτ, (6)

for all h ≥ 0 and t ≥ T1 + h (T1 is given in Def. 3.2). Thus from (5, 6) and the precompactness of⋃
t≥T1+h

Φ (t, t− h)Ω, the set x ([T1 + h, +∞[) is precompact. The claim of Lemma 3.1 is now obvious. �

4. Assumptions on E

Let (u, v) ∈ U × V , and consider the nonlinear system E given by (1) on the reflexive Banach space X . We
define precisely below assumptions, on the family of unbounded linear operators (Au(t)) (see Assumption (A)),
on the nonlinear operator B (see Assumption (B)) and on the observation operator C (see Assumption (C)).

4.1. Assumption (A)

We denote by (A), the set of four following assumptions (A1–A4).
(A1) The family (Au (t))t≥0 of densely defined operators from X to X is the generator of a linear contractive

evolution operator Φu.
(A2) The evolution operator satisfies the control-translation property, i.e. for all (t, s) ∈ Ξ and all u ∈ U , the

set of controls u∗ ∈ U such that u∗ (τ) ≡ u[s] (τ) for τ ∈ [0, t− s] is non empty (recall u[s] (τ) = u (s + τ))
and for any such u∗,

Φu (t, s) = Φu∗ (t− s, 0) .
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(A3) For all ϕ ∈ X∗ and for all bounded subsets Ω0 ⊂ X , we have

lim
h↓0

sup
x∈Ω0,t≥0

〈Φu (t + h, t)x− x, ϕ〉 = 0. (7)

(A4) For all ϕ ∈ X∗, if un
UT−→ u∞ and x0

n
w−→ x0∞ then for all (t, s) ∈ Ξ ∩ [0, T ]2, we have,〈

Φun (t, s)x0
n, ϕ

〉→ 〈
Φu∞ (t, s)x0

∞, ϕ
〉 · (8)

Due to Assumption (A2), for (t, s) ∈ Ξ ∩ [0, T ]2, there is no ambiguity here to consider Φu(t, s) with
u ∈ UT defined on [0, T ] only, and not on [0, +∞[.

Assumption (A) is very general as we will see in numerous examples exhibited in Section 9.2 below.

Remark 4.1. Comments on Assumptions (A).

1. Assumption (A2) implies that if two elements u, v ∈ U coincide on [s, t] then Φu (τ, σ) = Φv (τ, σ) for
0 ≤ s ≤ σ ≤ τ ≤ t. The control-translation property is for instance satisfied in case Au (t) depends on u
through u (t) (i.e. Au (t) = Au(t)) and U = L∞([0, +∞[). See also examples in Section 9.2.

2. In conditions (A3) and (A4) X∗ can be replaced equivalently by a dense subset Ω∗ of X∗. Indeed, we have
‖Φ∗u (t + h, t)‖L(X∗) = ‖Φu (t + h, t)‖L(X) ≤ 1 and thus relations (7, 8) (and also (74) below) can be extended
by density. In the same way, we can replace in relation (7) the set Ω0 by a dense subset Ω1 of Ω0.

4.2. Assumption (B)

In this section, we precise the assumptions on the nonlinear part of System E. As in Section 3.1 the symbol χ
stands for the Hausdorff measure of non compactness. Let CT be either C ([0, T ] , X) or C ([0, T ] , Xw).
The nonlinear operator B defined from Rq ×X to X satisfies the following conditions:

(B1) The operator B is dissipative with respect to its second variable, i.e. for all ξ ∈ Rq, and all (x, z) ∈ X×X ,

[x− z, B (ξ, x) −B (ξ, z)]− ≤ 0 .

(B2) For all v ∈ V , the application (τ, x) 7→ B (v (τ) , x) is a Caratheodory function on R+ × X , and there
exists a constant Qv > 0, such that relations

χ (B (v (τ) , Ω)) ≤ Qvχ (Ω) and sup
x∈Ω

‖B (v (τ) , x)‖ ≤ βΩ,v (τ) (9)

hold for almost all τ ≥ 0, all bounded subsets Ω of X , and some βΩ,v locally uniformly integrable on
[0, +∞[ (see Def. 3.3).

(B3) The nonlinear operator B is (VT × CT )-integrably sequentially continuous in the following sense:
the relations vn

VT−→ v∞ and xn(·) CT−→ x∞(·) imply

B(vn(·), xn (·)) w−→ B (v∞(·), x∞(·)) in L
1 ([0, T ] , X) .

4.3. Assumption (C)

The linear observation operator C from X to Y is:

(C1) Bounded, with Y being a finite or an infinite dimensional observation normed space.
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4.4. Assumption (E1)

(E1) The solution of E is bounded on [0, +∞[.

Remark 4.2. Comments on Assumptions (B, C) and (E1).

1. Assumptions (A) and (B) are not sufficient to ensure (see Prop. 3.1) the boundedness of the solution x of E
on R

+. Owing to Proposition 3.1 a usual sufficient condition of boundedness is, for instance, B (ξ, 0) = 0, for all
ξ ∈ Rq. However in this paper the boundedness is not studied. On the one hand, in practice, the boundedness
is often checked by suitable Lyapunov functions. On the other hand, in physical applications observers are
obviously considered for bounded trajectories.

2. Assumption (B2) is automatically satisfied if for instance, for all ξ ∈ Rq, the operator B is Lipschitz w.r.t the
second variable and bounded on bounded subsets of R+ ×X . All the relations developed here remain valid if
the relation (9) holds in a local suitable sense and for instance if B is locally Lipschitz w.r.t the second variable.

3. A classical situation where (B3) holds is the following with CT = C ([0, T ] , Xw): B (v (t) , .) = v (t) B1 (.) with
B1 weakly-weakly continuous from X to X when the topology on V is the relative weak∗ topology of L∞ ([0, T ])
in V . The verification of this claim is left to the reader.

4. For instance, when v has positive components the dissipativity in (B1) will only be required for ξ ∈ (R+)q.

5. Nonlinear Asymptotic observers

Of course, since we are concerned with the construction of observers, some asymptotic system must be
observable in some sense precisely described in next Section 5.3. Let us notice that such an assumption will
imply a detectability condition for the error estimate system as in the linear classical case (the unobservable
dynamics are stable, see [37]).

We propose for the system E given in (1), the following general asymptotic observer for all (u, v) ∈ U × V ,

Ê =
{ .

x̂ (t) = Au (t) x̂ (t) + B (v (t) , x̂ (t))−K (t, ŷ (t)− y (t))
ŷ (t) = C (x̂ (t)) ; x̂ (0) = x̂0 ∈ X

(10)

where the nonlinear operator K is precisely defined below in assumptions (O).

5.1. Assumption (O)

Let M ∈ R+∗ ∪ {+∞} and consider the set:

ΓM = {(t, ξ, θ) ; t ≥ 0, 0 ≤ ξ ≤ M, 0 ≤ θ ≤ ‖C‖Y ξ} ·

(O1) The map K from R+ × Y to X is continuous ; for all t ≥ 0, the map y 7→ K (t, y) is Lipschitzian, with
Lipschitz constant independent of t, and satisfies K (t, 0) = 0.

(O2) There exists a continuous function h from Γ∞ to R+ continuous on each ΓM , M < +∞, satisfying
(i) for all t ∈ [0, +∞[ , for all x ∈ X,

[x,−K (t, C (x))]− ≤ −h (t, ‖x‖ , ‖C (x)‖Y ) ;

(ii) for each M < +∞, and each sequence (tn, ξn, θn)n in ΓM we have

tn → +∞
h (tn, ξn, θn) → 0

}
⇒ (θn → 0) .

Remark 5.1. Comments on assumption (O).
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1. Whenever K (t, 0) = 0, a.e. t ≥ 0 (for instance z 7→ K (t, z) linear a.e. t ≥ 0), Assumption (O2)-(i) implies
that x 7→ −K (t, C (x)) is dissipative for each t ∈ [0, +∞[.

2. Consider a Hilbert space X = H , with a R–valued output y = C (x) = 〈x, c〉H , where c ∈ H \ {0} is the
observation vector ; then one can check assumptions (O) with K (t, C (x)) = 〈x, c〉H c, and h (t, ξ, θ) = θ2/ξ
(with h (·, 0, 0) = 0).

3. More generally, let X = lp (φ) with φ an arbitrary set and 1 < p < +∞ (recall that, lp (φ) is a reflexive
Banach space and any Hilbert space is isomorphic to some l2 (φ)). Let (eϕ)ϕ∈φ be the canonical Schauder basis
of lp (φ), and xϕ the component of x on eϕ. A direct computation shows that Assumption (O2) holds with
y = C (x) = xϕ, K (t, C (x)) = xϕeϕ and h (t, ξ, θ) = θp/ξp−1 . One can observe that the inequality in (O2)-(i)
becomes an equality with the function K (t, C (x)) chosen.

4. Obviously in the previous example with X = lp (φ) , Assumption (O2) remains true with any positive linear
combination of xϕeϕ i.e. y = C (x) = (xϕ1 , · · · , xϕn)> and for all t ≥ 0, K (t, C (x)) =

∑n
i λixϕieϕi with λi > 0

and n ∈ N.

5.2. The error equation

The estimate error ε (t) = x̂ (t)− x (t) satisfies the following equation:

Σ =
{

ε̇ (t) = Au (t) ε (t) + ∆x̂Bv (t, ε (t))−K (t, C (ε (t))) (i)
ε (0) = ε0 ∈ X (ii) (11)

where ∆x̂Bv (t, ε) := B (v (t) , x̂ (t))−B (v (t) , x̂ (t)− ε). Let z be a continuous function from [0, +∞[ to X , and
denote by Ψz

u,v (t, s) the nonlinear evolution operator associated with ξ 7→ Au (t) ξ + ∆zBv (t, ξ) := Au (t) ξ +
B (v (t) , z)−B (v (t) , z − ξ) (see Prop. 3.1). This means that Ψz

u,v (t, s) ε0 is the value at t of the solution of Σ
on [s, +∞[, with ∆z instead of ∆x̂ and ε (s) = ε0 instead of ε (0) = ε0.

Remark 5.2. In the bilinear case, i.e. B (v (t) , x) := v (t)Dx with D bounded linear, we have simply in the
error equation ∆zBv (t, ε) = v (t) Dε for all continuous functions z.

5.3. Universal and regularly persistent inputs

We have now to characterize the class of inputs which guarantee the observability properties of the system E.
As in the next definition, if necessary we make more precise the notation of the system E by setting E =
Eu,v (x0).

We adapt here the classical notions of universal and regularly persistent inputs introduced first in finite
dimension by Sussmann [33] and Sontag [34] and by Gauthier et al. [22] in infinite dimension:

Definition 5.1. An input (u∞, v∞) ∈ UT × VT is said to be universal on [0, T ] if,(
z0 6= z1

)⇒ (
C ◦ ST

u∞,v∞

(
z0
) 6= C ◦ ST

u∞,v∞

(
z1
) )

, (12)

where, ST
u∞,v∞

(
x0
)

denotes the restriction on [0, T ] of the solution of Eu∞,v∞
(
x0
)
, for all x0 ∈ X .

Remark 5.3. Notice, as in [22], that the notion of universal controls (u∞, v∞) on [0, T ] is a generalization of
initial observability on [0, T ] for linear systems defined, for instance in Curtain-Pritchard [16] (p. 69).

Another equivalent definition of universal inputs can be given as follows:

Lemma 5.1. An input (u∞, v∞) ∈ UT×VT is universal on [0, T ] if and only if, for each solution (z (t) , t ∈ [0, T ])
of Eu∞,v∞

(
z0
)
, we have the following implication, for all ε0 ∈ X,(∀t ∈ [0, T ] , C

(
Ψz

u∞,v∞ (t, 0) ε0
)

= 0
)⇒ (

ε0 = 0
)

.
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Definition 5.2. An input (u, v) ∈ U ×V is said to be regularly persistent if there exist T > 0, and a strictly
increasing sequence (τn)n of real positive numbers satisfying,

i) limn τn = +∞;
ii) T0 = supn (τn+1 − τn) < +∞ and the sequence (uT0

[τn], v
T0
[τn]) is relatively compact in UT0 × VT0 ;

iii)
(
uT

[τn], v
T
[τn]

) UT×VT−→ (
uT
∞, vT

∞
)
;

iv) the control
(
uT
∞, vT

∞
)

is universal on [0, T ] in UT × VT .

Definition 5.3. An input (u, v) ∈ U ×V is said to be persistent if there exist T > 0, and a strictly increasing
sequence (τn)n of real positive numbers satisfying, i), iii) and iv) in Definition 5.2.

Remark 5.4. Comments on universal, persistent and regularly persistent inputs.

1. The notion of regularly persistent input developed here is a generalization of those given in [22]. Analogous
inputs (which do not imply the observability since (12) is only required for distinguishable z0 and z1) have
already been studied in finite dimension by Sussmann [33] and Sontag [34] or Celle et al. [12], and are extended
and adapted here to an abstract infinite dimensional Banach space.

2. Thanks to Definition 5.1, a universal input separates the state points from the output, and then make
the system observable on [0, T ]. A regularly persistent input (u, v) is defined on ([0, +∞[)2 and the restriction
of (u, v) on ([0, T ])2, denoted

(
uT

[τn], v
T
[τn]

)
, tends to make the system observable in the same way as the universal

input
(
uT
∞, vT

∞
)
. Roughly speaking, regularly persistent inputs are sufficiently rich to guarantee an “asymptotic

estimation” of the state of the system.

3. Starting with a universal input u it is not difficult to construct regularly persistent input by extending
u periodically. Indeed, for instance, in U = L∞([0, +∞[ , Rm) equipped with the relative strong topology of
L1([0, +∞[ , Rm) or its strong or weak or weak∗-topology, a periodic input with period T0, which is universal
on [0, T ] with 0 < T ≤ T0, is regularly persistent (see examples given in Sect. 6).

4. Definitions 5.1, 5.2 and 5.3 can be extended to the case T = +∞ by replacing [0, T ] , by [0, +∞[ and UT

(resp. VT ) by U (resp. V).

5.4. The observer abstract results

We suppose in this subsection that Assumptions (A), (B), (E1) and (O) hold.

Theorem 5.1. Let (u, v) ∈ U × V be a regularly persistent input and suppose CT = C ([0, T ] , Xw) in Assump-
tion (B3). Then the estimate error ε (.) converges weakly to zero in X as t goes to +∞.

In the case where all the inputs are universal (see Ex. 6.2), we deduce the following corollary:

Corollary 5.1. Suppose CT = C ([0, T ] , Xw) in Assumption (B3). If every input (u, v) ∈ UT×VT is universal for
some fixed T > 0, and if the set of translated functions {(uT

[τ ], v
T
[τ ]); τ ≥ 0} is sequentially precompact in UT ×VT ,

then the observer error ε (.) converges weakly to zero in X (when t goes to +∞) for any (u, v) ∈ U × V.

The next strong observer principle concerns an important class of systems. We emphasize that in this result,
only CT = C ([0, T ] , X) is required in Assumption (B3).

Theorem 5.2. Suppose CT = C ([0, T ] , X) in Assumption (B3) and let (u, v) ∈ U × V be a persistent input.
If Φu is compact then the observer error ε (.) converges strongly towards zero in X as t goes to +∞.

6. Applications

We give in this section various examples for the observation problem with some developments about the
existence of regularly persistent inputs and about the strong convergence of the estimate error.

Example 6.1. A finite dimensional system.
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The following elementary bilinear example with x = (x1, x2)
> ∈ R× R,

(P1)


ẋ1 (t) = −u (t) (x1 (t) + x2 (t))
ẋ2 (t) = −x2 (t)

y (t) = x1 (t) ,
x (0) = x0 ∈ R

2,

with u ∈ U : =
{
L∞ ([0, +∞[ ; R+) , 0 ≤ u (t) ≤ √

2, for a.a t ≥ 0
}
, is dissipative for almost all t ≥ 0. It is easily

verified that the system (P1) is unobservable for u = 0. The input u = 0 is a non universal input for the state
reconstruction problem, but each non zero input in U is universal (see other examples in [12]). Let us notice
that such a system is observable and thus does not have undetectable states.

Example 6.2. A bilinear system with/without bad inputs [22].

We examine below a particular bilinear example, in two main situations: the case A of the multi–output
system (i.e. y (t) = (y1 (t) , y2 (t))>) and the case B of single output (i.e. y (t) = y1 (t)). In case A, we
will show that all inputs defined on any time interval are universal, and in case B, we will exhibit regularly
persistent inputs (and bad inputs which make the system unobservable). Such a situation is in agreement with
the general theory developed in finite dimension by Gauthier and Kupka in [20] or in [21].

We construct below a Luenberger observer for the considered system, and we show the weak convergence
of the estimate error for all inputs in the case A (Cor. 5.1) and for all regularly persistent inputs in the
case B (Th. 5.1).

Let us consider, the following bilinear system on X = L
2 (R)×L2 (R) with the usual scalar product 〈·, ·〉X =

〈·, ·〉
L2 + 〈·, ·〉

L2 , with φ = (φ1, φ2)
>,

(P2)


∂φ1 (x, t)

∂t
=

∂φ1 (x, t)
∂x

+ v (t)φ2 (x, t)
∂φ2 (x, t)

∂t
=

∂φ2 (x, t)
∂x

− v (t)φ1 (x, t)
(13)

y (t) = C (φ (·, t)) , (φ1, φ2) (., 0) = (φ10, φ20) , (14)

where y (t) = (y1 (t) , y2 (t))> = C (φ1, φ2)
> is defined by

y1 (t) = r1〈φ1 (·, t) , e−
(·)2
2 〉L2 and y2 (t) = r2〈φ2 (·, t) , e−

(·)2
2 〉L2 , (15)

with rj ∈ {0, 1}: in the multi-output case (case A) we have r1 = r2 = 1 and in the single-output case (case B),
we have r1 = 1 and r2 = 0.

The system (13) can be rewritten in the form of E by means of the following notations. Let φ = (φ1, φ2)
> ∈ X

and Au (t) = A1

⊕
A2 defined on Dom (Au (t)) = H1 (R)×H1 (R) with

A1 =
(

1 0
0 0

)(
∂/∂x
∂/∂x

)
, and A2 =

(
0 0
0 1

)(
∂/∂x
∂/∂x

)
.

Of course we set B (v (t) , φ) = v (t)Dφ where the bounded linear skew adjoint operator D is defined by

Dφ (x, t) =
(

0 1
−1 0

)
φ (x, t) .

We consider V = L
∞ ([0, +∞[) and on VT we can choose one of the topologies given in a), b) of Section 2.

The operator A1

⊕
A2 is m-dissipative densely defined on X . So according to Example 9.2 and Remark 4.2-3,

we see that Assumptions (A), (B) and (C) hold.



NONLINEAR OBSERVERS IN REFLEXIVE BANACH SPACES 77

In view of the Remark 5.1, we propose the following Luenberger observer for instance in the worst case

y (t) = y1 (t) = 〈φ1 (·, t) , e−
(·)2
2 〉L2 . Namely for all φ̂ =

(
φ̂1, φ̂2

)>
∈ X , let ŷj (t) =

∫ +∞
−∞ φ̂j (x, t) e−

x2
2 dx and


∂φ̂1 (x, t)

∂t
=

∂φ̂1 (x, t)
∂x

+ v (t) φ̂2 (x, t)− r1

(∫ +∞

−∞
φ̂1 (x, t) e−

x2
2 dx− y1 (t)

)
e−

x2
2

∂φ̂2 (x, t)
∂t

=
∂φ̂2 (x, t)

∂x
− v (t) φ̂1 (x, t)− r2

(∫ +∞

−∞
φ̂2 (x, t) e−

x2
2 dx− y2 (t)

)
e−

x2
2

We can check that the solution of (13) can be written as follows


φ1 (x, t) = cos

[∫ t

0

v (τ) dτ

]
φ10 (x + t) + sin

[∫ t

0

v (τ) dτ

]
φ20 (x + t)

φ2 (x, t) = − sin
[∫ t

0

v (τ) dτ

]
φ10 (x + t) + cos

[∫ t

0

v (τ) dτ

]
φ20 (x + t) .

(16)

Case A: The multi-outputs case.
Consider first, the system (13) with two outputs, y (t) = (y1 (t) , y2 (t))> with y1 and y2 as in equations (15).

Proposition 6.1. Every input v ∈ L∞ ([0,∞[) is universal on [0, T ] for each T > 0.

Indeed, suppose for all t ∈ [0, T ] ,and for all φ0 ∈ X , the relation C (Ψz
v (t, 0)φ0) = 0 hold. That is equivalent

to the following, for all t ∈ [0, T ], and for all φ0 = (φ10, φ20)
> ∈ X,


cos
[∫ t

0

v (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ10 (x + t) dx + sin

[∫ t

0

v (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ20 (x + t) dx = 0

− sin
[∫ t

0

v (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ10 (x + t) dx + cos

[∫ t

0

v (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ20 (x + t) dx = 0

(17)

or for all t ∈ [0, T ] 
∫ +∞

−∞
e−

x2
2 φ10 (x + t) dx = 0∫ +∞

−∞
e−

x2
2 φ20 (x + t) dx = 0.

Differentiating the above expression with respect to t, integrating by part and evaluating at t = 0 one get
successively: 

∫ +∞

−∞
xne−

x2
2 φ10 (x) dx = 0∫ +∞

−∞
xne−

x2
2 φ20 (x) dx = 0

with n = 0, 1, 2, . . .

Since the Hermite–like functions
{

xne−
x2
2

}
form a basis in L2 (R) , it follows that φ0 = 0, which is what we

want to prove.
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Case B: The single output case.

Consider now only one output, for instance y (t) = y1 (t) = 〈φ1 (·, t) , e−
(·)2
2 〉L2 . The control v (t) = 0 is not

universal on [0, T ] , as we can see by taking two distinct initial conditions of the form φ0 = (0, φ20)
> since thanks

to (17) the two corresponding solutions must have the same output trajectory.

Thanks to Theorem 5.1, if v is regularly persistent the estimate error of the proposed observer converges
weakly towards zero when t → +∞.

Proposition 6.2. System (13, 14) with output y1 admits regularly persistent inputs.

Proof. We have to build a regularly persistent input. Let T > 0 and vT ∈ C∞ ([0, T ]) (the space of infinitely
differentiable real functions on [0, T ]) satisfying,

(
vT
)(k)

(0) = 0 ∀k ∈ N, and vT (]0, T [) ⊂
]
0,

π

T

[
· (18)

We claim that v is universal on [0, T ] . Indeed we have to prove that if

cos
[∫ t

0

vT (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ10 (x + t) dx + sin

[∫ t

0

vT (τ) dτ

] ∫ +∞

−∞
e−

x2
2 φ20 (x + t) dx = 0 (19)

for all t ≥ 0, then we have (φ10, φ20) = (0, 0) . Remark first that the function t 7→ ∫ +∞
−∞ e−

x2
2 φ10 (x + t) dx is

infinitely differentiable on R+. Let I be the following ideal of the ring C∞ ([0, T ])

I =
{
f ∈ C

∞ ([0, T ]) ; f (k) (0) = 0 ∀k ∈ N

}
·

Denoting by g (t) the left hand side of (19) the estimation of g(k) (t) modulo the ideal I gives the following
congruence

g(k) (t) ≡
∫ +∞

−∞
Pk (x) e−

x2
2 φ10 (x + t) dx (20)

where Pk is a (monic) polynomial function of degree k for all k ∈ N. Evaluating g(k) (0), we have by induction,
with (19) and (20), the following relation∫ +∞

−∞
xke−

x2
2 φ10 (x) dx = 0 ∀k ∈ N. (21)

So by a previous argument it comes φ10 = 0. Then according to (18) the relation (19) becomes∫ +∞

−∞
e−

x2
2 φ20 (x + t) dx = 0 (22)

for all t ≥ 0. We have already seen that (22) provides φ20 = 0. So vT is universal on [0, T ] . Then reproducing
such a universal input T -periodically on [0, +∞[, we obtain a regularly persistent input v ∈ L∞ ([0, +∞[). �

Example 6.3. A nonlinear hyperbolic example: the vibrating beam.

The vibrating beam has already been studied in [32] for the stabilizing control problem and in [8] for the
observation problem. But the study in [8] must be resumed since strongly universal inputs (in the sense of [8]
which involves a coercive Grammian) cannot exist in such a model (with compact output). In addition we
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consider a nonlinear version of the vibrating beam with a more general class of outputs. The symbol ϕ (x, t)
stands for the displacement of the beam and satisfies

∂2ϕ

∂t2
(x, t) = −∂4ϕ

∂x4
(x, t) , x ∈ ]0, L[ , t ≥ 0,

ϕ (0, t) =
∂ϕ

∂x
(0, t) = 0, t ≥ 0,

∂3ϕ (L, t)
∂x3

=
∂2ϕ (L, t)

∂t2
+ v1 (t)G1

(
∂ϕ (L, t)

∂t

)
, t ≥ 0,

∂2ϕ

∂x2
(L, t) = − ∂3ϕ

∂t2∂x
(L, t)− v2 (t)G2

(
∂2ϕ

∂t∂x
(L, t)

)
, t ≥ 0,

y (t) =
(

r1
∂ϕ

∂t
(L, t) , r2

∂2ϕ

∂t∂x
(L, t)

)ᵀ
, t ≥ 0,

(23)

where for j ∈ {1, 2} , vj (t) is an applied scalar control which acts on the free boundary of the system, Gj a
Lipschitz increasing map from R to R such that Gj (0) = 0 and rj ∈ {0, 1} with r1 + r2 6= 0. The velocities
∂ϕ

∂t
(L, t) ,

∂2ϕ

∂t∂x
(L, t) on the free boundary of the beam are set for the output y (t) of the system. In addition,

initial conditions are prescribed on the displacement and the velocity of the beam,

ϕ (x, 0) = ϕ0 (x) and
∂ϕ (x, 0)

∂t
= ϕ1 (x) for x ∈ ]0, L[ .

The system could be set under the form E, more precisely{ dZ

dt
= AZ + B(v1 (t) , v2 (t) , Z)

y = CZ = (〈c1, Z〉 , 〈c2, Z〉)ᵀ (24)

in the Hilbert space:

H =
{
(z1, z2, z3, z4)ᵀ ∈ H2 (0, L)× L2 (0, L)× R× R; z1 = dz1/dx = 0 at x = 0

}
with the inner product,

〈(z1, z2, z3, z4)ᵀ, (z̄1, z̄2, z̄3, z̄4)ᵀ〉H =
∫ L

0

(
d2z1 (x)

dx2

d2z̄1 (x)
dx2

+ z2 (x) z̄2 (x)
)

dx + z3z̄3 + z4z̄4.

We have c1 = (0, 0, r1, 0)ᵀ, c2 = (0, 0, 0, r2)ᵀ and

B(v1, v2, (z1, z2, z3, z4)
ᵀ) = (0, 0,−r1v1G1 (z3) ,−r2v2G2 (z4))

ᵀ .

Notice that Z 7−→ B (σ, τ, Z) is not linear and (24) is not in the bilinear standard form.
The operator A in (24) is defined by

Aᵀ(z1, z2, z3, z4)ᵀ =
(

z2,−d4z1

dx4
,
d3z1

dx3
(L) ,−d2z1

dx2
(L)
)ᵀ

and

D (A) =
{

(z1, z2, z3, z4) ∈ H4 (0, L)×H2 (0, L)× R× R; zi (0) =
dzi

dx
(0) = 0 for i = 1, 2

and z2 (L) = z3,
dz2

dx
(L) = z4

}
·
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It has been shown in [32] that A is a skew-adjoint infinitesimal generator of a linear C0 group of contraction
with compact resolvent. For v1 ≥ 0, v2 ≥ 0, the map Z 7−→ B(v1, v2, Z) is dissipative in H since Gj is assumed
increasing and all assumptions (A) , (B) , (E1) and (O) are satisfied if vj ≥ 0 j ∈ {1, 2} and, for instance, if the
topology on VT = L∞

(
[0, +∞[ , R2

)
is for all T > 0, the weak∗ topology. Consequently in this context, from

Theorem 5.1, for all regularly persistent input v = (v1, v2) ≥ (0, 0) , the estimate error ε (t) ⇀ 0 weakly in H.
For such an input the proposed observer is

∂2ϕ̂ (x, t)
∂t2

= −∂4ϕ̂ (x, t)
∂x4

, x ∈ ]0, L[ , t ≥ 0,

ϕ̂ (0, t) =
∂ϕ̂ (0, t)

∂x
= 0, t ≥ 0,

∂3ϕ̂

∂x3
(L, t) =

∂2ϕ̂

∂t2
(L, t) + r1v1 (t)G1

(
∂ϕ̂

∂t
(L, t)

)
− r3r1

∂

∂t
(ϕ̂− ϕ) (L, t) , t ≥ 0,

∂2ϕ̂

∂x2
(L, t) +

∂3ϕ̂

∂t2∂x
(L, t) = −r2v2 (t)G2

(
∂2ϕ̂

∂t∂x
(L, t)

)
− r4r2

∂2

∂t∂x
(ϕ̂− ϕ) (L, t) , t ≥ 0,

y (t) =
(

r1
∂ϕ̂

∂t
(L, t) , r2

∂2

∂t∂x
ϕ̂ (L, t)

)ᵀ
, t ≥ 0,

(25)
where ϕ is the solution of (23) and r3 > 0, r4 > 0.

Henceforth, consider for instance L = 1. With this condition we will see below (thanks to a result in [32]) that
no undetectable mode ((zn (L) , z′n (L)) = 0) appears for beam lengths L = 1 and such a necessary condition
will be sufficient (as we will see that) to insure that all inputs are universal. In particular condition L = 1
makes the asymptotic system deduced from (25) observable. First, setting T = +∞, we have:

Proposition 6.3. The null control v ≡ (0, 0) is universal on [0, +∞[ .

Proof. Our goal is to show
〈
c, etAx0

〉
H

= 0 for all t ≥ 0 implies x0 = 0, where

c = (0, 0, 1, 0)ᵀ ,

the proof being analogous if c = (0, 0, 0, 1)ᵀ . Set x0 ∈ H and suppose〈
c, etAx0

〉
H

= 0 for all t ≥ 0. (26)

Extending (H, 〈, 〉H) in a complex Hilbert space (H, 〈, 〉H) in the usual sense we obtain (see [32]) a complete
othonormal system of eigenfunctions of A, namely Φn, n ∈ Z

∗ with eigenvalues λk = iµ2
k and λ−n = −iµ2

k

if k ≥ 1 with multiplicity 1, and 0 < µ1 < µ2 < · · · < µn < · · · . Hence we have the following spectral
decomposition

Z(t) := etAx0 =
∑

n∈Z∗
cneλntΦn (27)

with

Φn =
Ψn

‖Ψn‖H
, where Ψn :=


zn

λnzn

λnzn (1)
λnz′n (1)

 and zn = z−n for n ∈ Z
∗.

We will use the following result which avoids to turn to specific properties on almost periodic functions and
in particular Besicovitch spaces (as for instance in [4]). We skip its proof which can be derived from standard
arguments.
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Lemma 6.1. Let (γn)n∈Z∗ be a sequence of real numbers and (Φn)n∈Z∗ an orthonormal hilbertian basis in the
complex Hilbert space H. Set x0 ∈ H, cn =

〈
x0, Φn

〉
and

Z (t) =
∑
n∈Z∗

cneiγntΦn, t ≥ 0.

Then for all k ∈ Z∗, we have

lim
T−→+∞

1
T

∫ T

0

Z (t) e−iγktdt =
∑
j∈Λk

cjΦj ,

where we have set Λk = {j ∈ Z∗; γj = γk} .

By using Lemma 6.1 in Section 7 and the projection on the third component (26) implies

cnλnzn (1) = 0 for all n ∈ Z
∗.

Consequently if zn (1) 6= 0 for all n ∈ Z
∗, we deduce cn = 0 for all n ∈ Z

∗ (since λn 6= 0) and finally from (27)
Z (t) = 0 for all t ≥ 0, that is in other words x0 = 0. Thus we have to show zn (1) 6= 0 for all n ∈ N∗. By
contradiction let some n such that zn (1) = 0. Then from AΦn = λnΦn (and line 3 in (23)) it follows

z′′′n (1) = λ2
nzn (1) = 0.

By direct computations (see [32]) we find

zn (x) = αn (sin µnx− sinh µnx) + βn (cosµnx− coshµnx)

for all x ∈ [0, 1] and some αn, βn ∈ R. Then the system zn (1) = z′′′n (1) = 0 is equivalent to{
αn (sin µn − sinhµn) + βn (cosµn − coshµn) = 0
αn (− cosµn − coshµnx) + βn (sin µnx− sinh µnx) = 0

which has non trivial solutions αn, βn if and only if

sin µn sinh µn = 0. (28)

But it was shown in [32] that (28) has no solution when (L = 1 and) µn is an eingenvalue of A. Therefore
αn = βn = 0 and zn ≡ 0 that is Φn ≡ 0, which is a contradiction. �

Now we can state the following result:

Corollary 6.1. Every v ∈ L
∞
(
[0, +∞[ , (R+)2

)
is universal on [0, +∞[.

Proof. Let Ẑ be a solution of (24) and Z be the solution of

dZ

dt
= AZ + ∆ẐBv(t, Z)

with initial condition (Z (0)) , where ∆ẐBv(t, Z) = B
(
v (t) , Ẑ (t)

)
−B

(
v (t) , Ẑ (t)− Z (t)

)
and suppose

CZ ≡ (0, 0) on [0, +∞[ . (29)

From the Duhamel’s formula, we have

CetAZ(0) = CZ (t)−
∫ t

0

Ce(t−τ)A∆ẐBv(τ, Z)dτ . (30)
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Since (29) means 〈cj , Z (τ)〉 = 0 it follows

∆ẐBv(τ, Z) =
(
0, 0,−r1v1 (τ) G1

(〈
c1, Ẑ (τ)

〉)
,−r2v2 (τ) G2

(〈
c2, Ẑ (τ)

〉))ᵀ

−
(
0, 0,−r1v1 (τ) G1

(〈
c1,
(
Ẑ − Z

)
(τ)
〉)

,−r2v2 (τ) G2

(〈
c2,
(
Ẑ − Z

)
(τ)
〉))ᵀ

= (0, 0, 0, 0)ᵀ
(31)

on [0, +∞[ . Then (31) and(30) give

CetAZ(0) ≡ 0 (32)

for all t ≥ 0. Now by Proposition 6.3 relation (32) implies Z(0) = 0, which ends the proof. �
Theorem 5.2 does not apply for system (23) but with a suitable assumption on u we have the following strong

convergence result.

Proposition 6.4. For each uniformly continuous control v ∈ L
∞
(
[0, +∞[ , (R+)2

)
the estimate error (relative

to (23) and (25)) ε (t) −→ 0 strongly in H when t −→∞.

Proof. The previous developpements and in particular Corollary 6.1 show that ε (t) −→ 0 weakly in H when
t −→∞. Thus we have just to prove the precompactness of the trajectory of ε. First we will prove that ε (.) is
uniformly continuous on [0, +∞[ . Set v (t) = (v1 (t) , v2 (t)) . The map ε (.) is solution of

dε

dt
= Aε + B(v (t) , Ẑ)−B(v (t) , Ẑ − ε)−DCε

with D(z3, z4) := (0, 0, r3z3, r4z4)
ᵀ
,

(33)

and Ẑ is solution of

dẐ

dt
= AẐ + B(v (t) , Ẑ)−DCε. (34)

Of course in order to apply Lemma 7.5 we will regard (33) as a quasi-autonomous evolution governed by A in
a natural sense. Let us write ε = (ε1, ε2, ε3, ε4) . Owing to the dissipativity of B, integral inequalities (see [5])
give immediately

1
2
‖ε (t)‖2 ≤ 1

2
‖ε (0)‖2 −

∫ t

0

〈ε (τ) , DCε (τ)〉dτ

≤ 1
2
‖ε (0)‖2 −

∫ t

0

2∑
j=1

rjrj+2ε
2
j+2 (τ) dτ

for all t ≥ 0. Consequently, we have

rjεj+2 (.) ∈ L
2 ([0, +∞[ , H) , j = 1, 2. (35)

Let h ≥ 0. The dissipativity of the map −DC and Bénilan’s integral inequalities again give

1
2
‖ε (t + h)− ε (t)‖2 ≤1

2
‖ε (h)− ε (0)‖2 +

∫ t

0

〈
ε (τ + h)− ε (τ) , B

(
v (τ + h) , Ẑ (τ + h)

)
−B

(
v (τ + h) ,

(
Ẑ − ε

)
(τ + h)

)
−
(
B(v (τ) , Ẑ (τ))−B(v (τ) , Ẑ (τ) − ε (τ))

)〉
·
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Thus, using the linearity of 〈., .〉 relatively to its second variable and denoting by K a common Lipschitz constant
of G1 and G2, from (36) we deduce

1
2
‖ε (t + h)− ε (t)‖2 ≤1

2
‖ε (h)− ε (0)‖2 + K

∫ t

0

2∑
j=1

rj (vj (τ + h)) |εj+2 (τ + h)− εj+2 (τ)| |εj+2 (τ + h)| dτ

+ K

∫ t

0

2∑
j=1

rj (vj (τ)) |εj+2 (τ + h)− εj+2 (τ)| |εj+2 (τ)| dτ.

(36)

Now (35) insures

limh↓0 supt≥0

∫ t

0

2∑
j=1

rj (vj (τ + h)) |εj+2 (τ + h)− εj+2 (τ)| |εj+2 (τ + h)| dτ

+
∫ t

0

2∑
j=1

rj (vj (τ)) |εj+2 (τ + h)− εj+2 (τ)| |εj+2 (τ)| dτ = 0.

(37)

Finally (36) and (37) gives the required uniform continuity.
Now, in order to apply Lemma 7.5 in Section 7 it remains to prove that f is uniformly continuous on [0, +∞[ .

Here we have
f (t) = B(v (t) , Ẑ (t))−B(v (t) , Ẑ (t)− ε (t))−DCε (t) .

According to the first part of this proof we have only to show that g = f + DCε is uniformly continuous on
[0, +∞[ . This results from the following facts: (i) B is weakly-strongly continuous, (ii) Ẑ is weakly uniformly
continuous and bounded on [0, +∞[ (see Lem. 7.3), (iii) v and ε are uniformly continuous and bounded
on [0, +∞[ . �
Remark 6.1. No usual classical tools on precompactness results for solutions of evolution equations (as the
Webb’s Theorem for exponentially stable semigroup or the Dafermos Slemrod’s Theorem –for dissipative oper-
ator with compact resolvent– etc.) falls within the scope of such system (33). So it was necessary to define a
suitable approach (see in Sect. 7, Lem. 7.5) in order to tackle this compactness result. Really Proposition 6.4
remains valid for a more general class of inputs than the bounded uniformly continuous controls but then we
would need too long developpments to prove our claims (see [14]).

Example 6.4. A heat exchanger. A nonlinear parabolic example with a non compact and nonlinear perturbation.

Let X1 a real Hilbert space. On the Hilbert space X = Xm
1 endowed with its usual inner product

〈·, ·〉X = 〈·, ·〉X1
+ · · ·+ 〈·, ·〉X1

consider the following nonlinear system for a given c ∈ X,

(P4) =

{
Ṙ(t) = Au(t)R(t) + B (v (t) , R (t)) , R(0) = R0 ∈ X

y (t) = 〈R (t) , c〉X

where the linear operator has the following decomposition Au (t) =
⊕m

j=1
(A0j + uj (t)A1j) . The closed dissi-

pative linear operators A1j and A0j must satisfy the following conditions namely Assumption (H):
(HA) For each j = 1, . . . , m the operator A0j is m-dissipative densely defined and self adjoint. For all j =

1, . . . , p ≤ m, we have

(A1j)
−1 ∈ L (X) and 〈A0jx, x〉 ≤ −‖A1jx‖2

, ∀x ∈ Dom(A0j) . (38)

We suppose also that we have A1j ∈ L (X) for j = p + 1, . . . , m if p < m. The control u = (u1, . . . , um) belongs
to U : =L∞

(
[0, +∞[ , (R+)m) and UT is equipped with the weak∗ topology.
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(HB) The operator B is nonlinear continuous from Rq × X to X and satisfies Assumption (B) with V =
L∞

(
[0, +∞[ , (R+)q) and VT equipped with the weak∗ topology.

When assumption (HA) holds, it is not difficult to check that Assumptions (A) is automatically satisfied for
the operator Au (·). Indeed it suffices to verify that hypotheses of Example 9.3 are satisfied for A0j + uj (t)A1j

for all j = 1, . . . , m. The non trivial point (explained below) is to show that kj (t) =
∥∥A1j ◦ etA0j

∥∥
L(X1)

is locally
integrable on [0, +∞[ for j = 1, . . . , p.

Of course the linear operator A1j ◦ etA0j is bounded for all t > 0. The reader can check the weak-strong
continuity of the operator (t, x) 7→ A1j ◦ etA0j x on ]0, +∞[×X1. So it is possible to show that the map kj is
continuous on ]0, +∞[ . One has classically in this analytic case for all x0

j ∈ X1, and t > 0, j = 1, . . . , p,

∥∥A1j ◦ etA0j x0
j

∥∥2 ≤ − 〈A0jetA0j x0
j , e

tA0j x0
j

〉 ≤ ∥∥x0
∥∥2

t
· (39)

And (39) yields k (t) ≤ 1/
√

t from what follows the required local integrability.
In Section 9.2 we have shown that when etA0j is compact for all t > 0 (which is the case here) the evolution

operator Φuj is compact. Consequently, Assumption (B) in (HB) is only required with CT = C ([0, T ] , X).
Such a system has been worked out for instance in [39] with X1 = L

2 ([0, L]) and X = X4
1 , m = 4, and

models a counter flow heat exchanger in a general form,

Au (t) =


α1D

2
1 − u1 (t) D1 0 0 0

0 α2D
2
2 0 0

0 0 α3D
2
3 + u2 (t)D3 0

0 0 0 α4D
2
4

 , (40)

where ui (t) ≥ 0 stands for the fluid velocity of the counterflow heat exchanger, αi > 0 is the heat diffusion

coefficient and Di =
∂

∂x
◦ pi where the pi for i = 1, . . . , 4 are the coordinate functions of R

4 and the domains
are given by the following formulae

Dom(D1) =
{
f ∈ W 1,2 ([0, L]) ; f (0) = 0

}
,

Dom
(
D2

1

)
=
{
f ∈ W 2,2 ([0, L]) ; f (0) = f ′ (L) = 0

}
,

Dom
(
D2

l

)
=
{
f ∈ W 2,2 ([0, L]) ; f ′ (0) = f ′ (L) = 0

}
for l = 2 or l = 4,

Dom(D3) =
{
f ∈ W 1,2 ([0, L]) ; f (L) = 0

}
,

Dom
(
D2

3

)
=
{
f ∈ W 2,2 ([0, L]) ; f (L) = f ′ (0) = 0

} ·
(41)

Nevertheless in [39] as well as in the other publications devoted to this subject (see [26, 27, 40]) important
simplifications (linearization, controls u assumed to be constant or diffusion terms neglected etc.) were required.

We have u = (u1, 0, u2, 0) ∈ L∞
(
[0, +∞[ , (R+)4

)
. The verifications of Assumption (H), for (Au(t)) given

by (40) and (41), are obtained by straightforward computations and are left to the reader.
The nonlinear operator B is the matrix of the fluids heat exchange coefficients which vary nonlinearly with

the fluid velocities, and B satisfies our assumption (HB) in the working domain.
More precisely B may be defined as follows. Let R = (R1, R2, R3, R4)

ᵀ and let F1, F3 be Lipschitz increasing
maps on R with Fi (0) = 0, i = 1, 3. Let also h11, h12, h31, h32, h13,h33 be positive real numbers, with h12+h31 ≤
2
√

h11

√
h32 then we set

B (v, R) =


−h11R1 + h12R3 + h13 − v1F1 (R1)

0
h31R1 − h32R3 + h33 − v2F3 (R3)

0


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with v = (v1, v2) ∈ V = L
∞
(
[0, +∞[ , (R+)2

)
. For all ξ ∈ (R+)2 , the nonlinear operator B (ξ, .) is dissipative,

Lipschitz-continuous and non compact. We see that Assumption (B) holds with CT = C ([0, T ] , X). The
observation vector c = (c1, 0, c3, 0)> ∈ X can be chosen to observe the first component at the output x = L,
i.e. y (t) = y1 (t) = 〈φ1 (·, t) , c1 (·)〉

L2 = a−1
∫ L

L−a
φ1 (x, t) dx with a small enough (see [27], [26]).

A candidate observer satisfying (O) for our system is the following, with r > 0,

(P̂4) =


.

R̂(t) = Au(t)R̂(t) + B(v (t) , R̂(t))− r
(〈

R̂ (t) , c
〉

X
− y (t)

)
c

R̂(0) = R̂0 ∈ X.
(42)

Then Assumptions (O) are satisfied and from Theorem 5.2 the estimate error converges strongly towards zero
since (u, v) is a persistent input.

Example 6.5. A non Hilbertian example. A heat equation.

Let X = L
p (Ω), where p ∈ ]1, +∞[ and Ω be a bounded open subset of RN with a smooth boundary. Let

c ∈ Lp (Ω) ∩ Lq (Ω) with 1
p + 1

q = 1 and denote by 〈., .〉 the duality bracket between Lp (Ω) and Lq (Ω) . Now,
consider the following heat equation in X

dϕ

dt
= ∆ϕ + v (t)B(ϕ (t))

ϕ (0) = ϕ0 ∈ X
y = 〈ϕ, c〉 ,

where ∆ is the Laplacian with domain D = W 1,p
0 (Ω)∩W 2,p, the control v belongs to V := L∞ ([0, +∞[ , R+) and

B is a nonlinear (non compact) dissipative Lipschitz continuous map from X to X. The space X is reflexive but
not hilbertian for p 6= 2. Moreover (see [3] and [28]) the Laplacian with Dirichlet conditions ∆ is m-dissipative
with dense domain in X and generates a compact semigroup in X. Thus assumptions (A) and (B) are satisfied
with CT = C ([0, T ] , X) for this parabolic system. A candidate observer satisfying (O) is

dϕ̂

dt
= ∆ϕ̂ + v (t)B(ϕ̂ (t))− r 〈ϕ̂− ϕ, c〉 c

ϕ̂ (0) = ϕ̂0 ∈ X
ŷ = 〈ϕ̂, c〉 ·

According to Theorem 5.2, for each persistent input the error estimate ε converges strongly to zero.
It is well-known (see for instance [10]) that ∆ has eigenfunctions ϕn in X with respective negative eigenvalues

λn such that (ϕn)n∈N
form a Schauder basis of X and λn ↓ −∞.

Suppose that there is α > 0 such that we have

+∞∑
n=0

eλnα < +∞. (43)

In particular such a technical assumption is satisfied if there exists k ≥ 2 such that

+∞∑
n=0

1

|λn|k
< +∞,

which is a usual situation.
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Proposition 6.5. If (43) holds and if there is no undetectable eigenfunction then the null input is universal
on [0, T ] for all T > α.

Proof. Set x (t) = et∆x0 =
∑+∞

n=0 eλntx0
n and suppose

+∞∑
n=0

eλnt
〈
x0

n, c
〉

= 0 for all t ∈ [0, T ] . (44)

We have to prove x0 = 0. Put αn :=
〈
x0

n, c
〉
.

Introduce the complex function

H (z) =
+∞∑
n=0

eλnzαn, z ∈ C.

Then by setting M := supn |αn| < +∞, if Re (z) > α, it follows∣∣αneλnz
∣∣ = |αn| eλn Re(z) ≤ |αn| eλnαeλn(Re(z)−α) ≤ Meλnα.

Therefore from (43) and classical results on normal sequences of holomorphic functions, H is holomorphic on
the open complex half plane {z; Re (z) > α} . But according to (44) the zeros of H are not isolated and thus H
must be identically zero in this halph plane. In particular we have

+∞∑
n=0

eλntαn = 0 for all real numbers t > α. (45)

For all n0 ∈ N, introduce the set Λn0 := {n ; λn = λn0} . By induction (rearranging (45) and letting t −→ +∞)
it follows ∑

n∈Λn0

αn = 0 (46)

for all n0. The latter means that
∑

n∈Λn0
ϕ0

n is the null function (otherwise it is an undetectable eigenfunction
what is impossible in view of assumptions of Prop. 6.5). Finally we have ϕ0

n = 0 for all n which ends the proof.
�

7. Main proofs

7.1. Proofs of the observer abstract results

Proof of Theorem 5.1. Let us start with some preliminary lemmas.

Lemma 7.1 (Boundedness). Let (u, v) ∈ U × V, and consider x, x̂ and ε respectively the solutions of E, Ê,
and Σ then for all t ∈ [0, +∞[ . Set ‖x‖∞ = supt≥0 ‖x (t)‖, then the following estimations hold,

‖ε (t)‖ ≤ ∥∥ε0
∥∥ and

‖x̂ (t)‖ ≤ ‖x‖∞ +
∥∥ε0
∥∥ .

This above lemma is proved directly in the next one:

Lemma 7.2. For all (u, v) ∈ U × V ⊂ [L∞ ([0, +∞[)]2, for all T > 0, and for all ε0 ∈ X, we have:

lim
t→+∞

∫ T

0

h (t + τ, ‖ε (t + τ)‖ , ‖C (ε (t + τ))‖Y ) dτ = 0
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and therefore if (tn) ↑ +∞, there exists a subsequence (tnk
) such that

C (ε (tnk
+ τ)) −→

k→+∞
0 for almost all τ ∈ [0, T ] .

Proof of Lemmas 7.1 and 7.2. From the Proposition 3.1, and the dissipativity of z 7→ B (v (τ) , x̂ (τ)) −
B (v (τ) , x̂ (τ)− z) for given τ ∈ R+, we obtain immediately the following inequality for 0 ≤ s ≤ t ≤ T ,

‖ε (t)‖ − ‖ε (s)‖ ≤
∫ t

s

[ε (τ) ,−K (τ, C (ε (τ)))]− dτ

≤ −
∫ t

s

h (τ, ‖ε (τ)‖ , ‖C (ε (τ))‖Y ) dτ .

(47)

Then, it follows that ‖ε (·)‖ decreases on R+ and ‖ε (t)‖ ≤ ∥∥ε0
∥∥. Hence ‖x̂ (t)‖ ≤ ‖x (t)‖+‖ε (t)‖ ≤ ‖x‖∞+

∥∥ε0
∥∥

for all t ∈ [0, +∞[ .That ends the proof of the Lemma 7.1.
Now the second inequality of (47) implies∫ +∞

0

h (τ, ‖ε (τ)‖ , ‖C (ε (τ))‖Y ) dτ ≤ ∥∥ε0
∥∥ .

Therefore, since h being nonnegative, we obtain for all T > 0,

lim
t→+∞

∫ t+T

t

h (τ, ‖ε (τ)‖ , ‖C (ε (τ))‖Y ) dτ = 0 , (48)

which gives the first result of Lemma 7.2.
Let (tn) ↑ +∞ be a sequence in R+. By the integral relation (48), the sequence of functions τ 7→

h (tn + τ, ‖ε (tn + τ)‖ , ‖C (ε (tn + τ))‖Y ) converges towards zero in L
1 ([0, T ] ; R+). Consequently, there is a

subsequence (tnk
) such that h(tnk

+ τ, ‖ε (tnk
+ τ)‖ , ‖C (ε (tnk

+ τ))‖Y ) converges towards zero for almost all
τ ∈ [0, T ] . Using now the property (O2)-(ii) and Lemma 7.1, there exists a subsequence (tnk

) such that,

C (ε (tnk
+ τ)) −→

k→+∞
0

for almost all τ ∈ [0, T ] . That ends the proof of Lemma 7.2. �

Lemma 7.3. Let y be the Duhamel’s solution of CPf

(
x0
)

given in (2) where f is a locally uniformly integrable
on [0, +∞[ (see Def. 3.3). Suppose y is bounded and (A3) holds for (A(t)) with Φ instead of Φu . Then y is
weakly uniformly continuous on [0, +∞[. Moreover, if the trajectory y ([0, +∞[) is precompact in X then y is
strongly uniformly continuous.

Corollary 7.1. The functions x, x̂, ε (solution of resp. E, Ê, Σ), are weakly uniformly continuous on [0, +∞[.

Corollary 7.2. For all τ ∈ [0, +∞[ , we have C (ε (t + τ)) w−→
t→+∞ 0.

Remark 7.1. If C is compact, C (ε (t + τ)) converges strongly towards zero as t goes to infinity.

Proof of Lemma 7.3 and its corollaries.
Step a) Proof of Lemma 7.3. Applying Proposition 3.1, By the Duhamel’s formula, we can write for t ≥ 0 and
h ≥ 0,

y (t + h)− y (t) = (Φ (t + h, t) y (t)− y (t)) +
∫ t+h

t

Φ (t + h, s) f (s) ds . (49)
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Since we have
∥∥∥∫ t+h

t Φ (t + h, s) f (s) ds
∥∥∥ ≤ ∫ t+h

t ‖f (τ)‖dτ the integrability assumption on f (see (5)), the
boundedness of y on [0, +∞[ and Assumption (A3) insure the required weak uniform continuity. Consequently,
if the trajectory of y is assumed to be precompact, we obtain the strong uniform continuity of y.
Step b) Proof of Corollary 7.1. According to (B2) and Lemma 7.1 we see easily that the assumptions of
Lemma 7.3 are satisfied for our systems E , Ê and Σ. So Corollary 7.1 is obvious.

Step c) Proof of Corollary 7.2. Now, let T > 0 and let (tn) be a sequence of positive real with lim tn = +∞ ,
then the claim of Lemma 7.2 implies that there exists a subsequence (tnk

) such that

limk C (ε (tnk
+ τ)) = 0 for almost all τ ∈ [0, T ] .

The previous weak uniform continuity shown in above step a) and the linearity of C give finally:

C (ε (tnk
+ τ)) w−→

k→+∞
0, for all τ ∈ [0, T ] .

Due to the arbitrary choice of the sequence (tn)n going to infinity we see that for each fixed τ ∈ [0, +∞[, it
cannot exist any sequence (tn)n such that (C (ε (tnk

+ τ)))n does not converge weakly towards zero. Therefore
we have,

C (ε (t + τ)) w−→
t→+∞ 0, for all τ ∈ [0, +∞[ , (50)

and the proof is complete. �
Now we are in position to set the central lemma of the proof (which can be writing also for T = +∞ provided

that we replace [0, T ] by [0, +∞[).

Lemma 7.4. Let (τn)n∈N
be a strictly increasing sequence in R

+. Let T > 0 be such that
(
uT

[τn], v
T
[τn]

) UT×VT−→
(u∞, v∞) , then there exists a strictly increasing sequence of positive integers (nk)k satisfying,

i) x̂T
[τnk

] is weakly pointwise convergent towards some x̂∞ on [0, T ];

ii) εT
[τnk

] is weakly pointwise convergent towards some ε∞ on [0, T ];

iii) ε∞ (t) = Ψx̂∞
u∞,v∞ (t, 0) ε∞ (0) ;

iv) the function x̂∞ is solution of Eu∞,v∞ ;
v) ∀t ∈ [0, T ], C

(
Ψx̂∞

u∞,v∞ (t, 0) ε∞ (0)
)

= 0.

Proof. In view of Lemma 7.1, sequences
(
x̂T

[τn]

)
n

and
(
εT
[τn]

)
n

are uniformly bounded in C ([0, T ] ; X) .

Then a weak version of Ascoli–Arzela theorem (see Vrabie in [36], Th. 1.3.2, p. 10) guarantees the relative
weak compactness of

(
x̂T

[τn]

)
n

and
(
εT
[τn]

)
n

in C ([0, T ] , Xw) since bounded sets of X are weakly relatively com-

pact and since the sequences
(
x̂T

[τn]

)
n

and
(
εT
[τn]

)
n

are weakly uniformly continuous by Lemma 7.3. Therefore,

there exists a suitable increasing sequence of positive integers (nk)k satisfying relations i) and ii) of Lemma 7.4.
For the sake of simplicity, let us write x̂k, εk, uk, vk or Kk instead of respectively x̂T

[τnk
], εT

[τnk
], uT

[τnk
], vT

[τnk
]

or KT
[τnk

]. For all ϕ ∈ X∗, the Duhamel’s relation and assumption (A2) give for all t ∈ [0, T ] ,

〈εk (t) , ϕ〉 = 〈Φuk
(t, 0) εk (0) , ϕ〉

+
∫ t

0

〈Φuk
(t, s) {B (vk (s) , x̂k (s))−B (vk (s) , x̂k (s)− εk (s))} , ϕ〉ds

−
∫ t

0

〈Φuk
(t, s)Kk (s, C (εk (s))) , ϕ〉 ds.

(51)
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By virtue of Lemma 7.2, assumption (O1) and the Lebesgue dominated convergence, it comes∫ t

0

〈Φuk
(t, s)Kk (s, C (εk (s))) , ϕ〉 ds −→

k→+∞
0 .

Now according to assumption (A4) we have,

〈Φuk
(t, 0) εk (0) , ϕ〉 −→

k→+∞
〈Φu∞ (t, 0) ε∞ (0) , ϕ〉 ·

From (A4’) and the Lebesgue dominated convergence theorem the sequence
(
Φ∗uk

(., s)ϕ
)
k

converges (strongly)
in L1 ([0, T ] , X∗) towards Φ∗u∞ (t, s)ϕ. Therefore both conditions (A4’) and (B3) together provide

∫ t

0

〈
B (vk (s) , x̂k (s))−B (vk (s) , x̂k (s)− εk (s)) , Φ∗uk

(t, s)ϕ
〉
ds

−→
k→+∞

∫ t

0

〈
B (v∞ (s) , x̂∞ (s))−B (v∞ (s) , x̂∞ (s)− ε∞ (s)) , Φ∗u∞ (t, s)ϕ

〉
ds ; (52)

and Consequently, passing to the limit in relation (51), we conclude for all t ∈ [0, T ] and for all ϕ ∈ X∗,

[c]l 〈ε∞ (t) , ϕ〉 = 〈Φu∞ (t, 0) ε∞ (0) , ϕ〉

+
∫ t

0

〈Φu∞ (t, s) {B (v∞ (s) , x̂∞ (s))−B (v∞ (s) , x̂∞ (s)− ε∞ (s))} , ϕ〉ds,
(53)

and finally,
∀t ∈ [0, T ] , ε∞ (t) = Ψx̂∞

u∞,v∞ (t, 0) ε∞ (0) . (54)
In the same way, owing to Lemma 7.2 for all ϕ ∈ X∗, and t ∈ [0, T ] , we obtain easily

〈x̂∞ (t) , ϕ〉 = 〈Φu∞ (t, 0) x̂∞ (0) , ϕ〉+
∫ t

0

〈Φu∞ (t, s)B (v∞ (s) , x̂∞ (s)) , ϕ〉ds,

for all ϕ ∈ X∗, and t ∈ [0, T ] , and

x̂∞ (t) = Φu∞ (t, 0) x̂∞ (0) +
∫ t

0

Φu∞ (t, s)B (v∞ (s) , x̂∞ (s)) ds , (55)

for all t ∈ [0, T ] . In other words x̂∞ is solution of Eu∞,v∞ . The strong continuity of ε∞ and x̂∞ which is not
obvious from their definitions follows from relations (53) and (55). Thus we have shown iii) and iv).

It just remains to prove the last assertion–v) of Lemma 7.4, that is, for all t ∈ [0, T ] , C (ε∞ (t)) = 0. But this
relation is clear from relation (54), Corollary 7.2 and since the bounded operator C is sequentially weakly-weakly
continuous (from X to Y ). �
End of proof of Theorem 5.1:

Step a) We start with a sequence (τn)n ↑ +∞ and some T > 0 required in the definition of regularly persistent

input. In particular (τn+1 − τn)n is bounded and
(
uT

[τn], v
T
[τn]

)
n

is convergent in UT × VT towards an universal

input (u∞, v∞) on [0, T ]. Then applying Lemma 7.4–v), and the definition of an universal input we see that
each weak cluster value of (ε (τn))n in X is zero. Therefore, ε (t + τn) w−→

n→+∞ 0 for all t ∈ [0, T ] .

Step b) Finally let (rn)n be an arbitrary sequence such that lim rn = +∞. We have to prove

ε (rn) w−→
n→+∞ 0 .
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In this purpose (eventually by extracting a subsequence of (rn)n), let us remark that we can find a sequence (tn)n

and a subsequence (τqn)n of (τn) satisfying
rn = τqn + tn, 0 ≤ tn ≤ T0

T0 = supn (τn+1 − τn) < +∞
limn tn = t∞ ∈ [0, T0] .

Thanks to the property ii) of Definition 5.2, denote by
(
uT0∞ , vT0∞

)
a cluster value of

((
uT0

[τqn ]

)
n

,
(
uT0

[τqn ]

))
n

in

UT0 × VT0 , and denote respectively by εT0∞ and x̂T0∞ weak cluster values on [0, T0] of εT0
[τqn ] and x̂T0

[τqn ]. Then
Lemma 7.4–iii) with T0 in place of T , yields

εT0∞ (t) = Ψx̂T0∞
u

T0∞ ,v
T0∞

(t, 0) εT0∞ (0) for all t ∈ [0, T0] . (56)

But according to Assumption (A2) we have (56) with T1 = inf (T0, T ) in place of T0.Then in view of step a) , it
follows εT0∞ (0) = weak–lim ε (τqn) = 0. Therefore, relation (56) becomes

εT0∞ (t) = 0 ∀t ∈ [0, T0] . (57)

Since ε is weakly uniformly continuous on R+ (see Lem. 7.3), the following relations holds:

ε (rn)− ε (τqn + t∞) = ε (τqn + tn)− ε (τqn + t∞) w−→
n→+∞ 0 . (58)

But since t∞ ∈ [0, T0], the definition of εT0∞ implies

ε (τqn + t∞) w−→
n→+∞ εT0∞ (t∞)

and (57) provides now εT0∞ (t∞) = 0. Then, from this last equality and (58) it follows

ε (rn) w−→
n→+∞ 0,

which ends the proof of Theorem 5.1. �
Proof of Corollary 5.1. Let (tn)n be a sequence in R+ satisfying limn tn = +∞ . Let ε∞ be a weak cluster
value of (ε (tn))n . We want to prove ε∞ = 0 .

In this goal, let us write ε∞ = weak–lim ε
(
tnq

)
. By Lemma 7.4, there exists a subsequence (nqk

)k realizing,

∀t ∈ [0, T ] C
(
Ψx̂∞

u∞,v∞ (t, 0) ε∞ (0)
)

= 0 , (59)

with,
ε∞ = weak– limk εT

[tqk
]

x̂∞ = weak– limk x̂T
[tqk

]

u∞ = limk uT
[tqk

] in UT .

v∞ = limk vT
[tqk

] in VT .

Since by hypothesis, (u∞, v∞) is universal on [0, T ] the relation (59) involves ε∞ (0) = 0. Since by definition,
ε∞ (0) = ε∞ , we obtain the required equality: ε∞ = 0 . �
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Proof of Theorem 5.2. We have to prove that, for all sequences (tk)k ↑ +∞ in R+∗, (ε (tk))k converges strongly
towards zero in X .

From Lemma 3.1 the trajectories of x̂ and ε are precompact in X. So from Lemma 7.3 it follows that
the functions x̂ and ε are strongly equicontinuous on [0, +∞[ . Consequently, if (τk)k is given as in Defini-

tion 5.3, the classical Ascoli–Arzelà Theorem ensures that the sequences
(
x̂T

[τk]

)
k

and
(
εT
[τk]

)
k

are precompact

in C ([0, T ] , X) . So the proofs of Lemma 7.4 and Theorem 5.1 (step a)) run with CT = C ([0, T ] , X). In
addition since the trajectory of ε is precompact the weak convergence of

(
εT
[τk]

)
k

becomes strong. Now since

‖ε‖ decreases on [0, +∞[ , we have ε (tk) −→ 0 and the proof is done. �

7.2. Proof concerning the Cauchy problem CPF

(
x0
)

Proof of Proposition 3.1. We prove here our fundamental result on the Cauchy problem CPF

(
x0
)
, namely

Proposition 3.1. We postpone at the end of this Section the proof of the existence result which is done in a
particular case in Prüss [31] and can be derived by a standard argument from the Theorem 1 of [13].

Obviously we can restrict the claim of Proposition 3.1 to any compact interval [0, T ] with T > 0. Let us
prove first the second assertion, i.e., the integral inequality (4) in D′ (]0, +∞[) for the solution of CPf

(
x0
)

with
f ∈ L1

loc ([0, +∞[ , X)
Let [x, y] = lim

λ↘0
((‖x + λy‖ − ‖x‖)/λ) be the usual bracket on X . If ∆ = (τ0, . . . , τN ) is a partition of [0, T ]

and y a function from [0, T ] to a set Y . Let us denote by ∆ (y) the step function satisfying ∆ (y) (t) = y (τp)
when t ∈ ]τp−1, τp] for p = 1, . . . , N − 1 and ∆ (y (0)) = y (τ1) , ∆(y) (t) = y (τN−1) for t ∈ ]τN−1, τN ] . Let x be
a Duhamel’s solution of Sf

(
x0
)
.

Thanks to the bracket properties, the function H defined by

H (t) =
(
f (t) , [x (t) , f (t)]−

)
is Bochner integrable on [0, T ] . Thus, for this function H there exists an adapted sequence of partitions (∆n)n∈N

,

that is, for each n, ∆n =
(
τNn
p

)
p=0,...,Nn

is a partition of [0, T ] with step size εn converging to zero such that
the following step functions Hn = ∆n (H) converge towards H in L

1 ([0, T ] , X × R) .
Let xn = ∆n (x) , fn = ∆n (f) , δn

p = τp − τp−1 , p = 1, . . . , Nn and for τn
pt−1 < t ≤ τn

pt

γn (t) =
1

δn
pt

∫ τn
pt

τn
pt−1

∥∥f (τ) − f
(
τn
pt

)∥∥dτ

We see that
∫ T

0
γn (τ) dτ =

∫ T

0
‖f (τ)− fn (τ)‖ dτ has limit zero when n goes to infinity. Thus eventually by

extracting a subsequence we can suppose that there is G ∈ L1 ([0, T ]) satisfying, for all n ∈ N and a.a. t ∈ [0, T ] ,

‖fn (t)‖ ≤ G (t) , and γn (t) ≤ G (t) . (60)

Let ϕ ∈ D (]0, T [) such that ϕ ≥ 0. Since τ 7→ ‖x (τ)‖ϕ′ (τ) is Riemann integrable with compact support
on ]0, T [ we have

−
∫ T

0

‖x (τ)‖ϕ′ (τ) dτ = − limn

n∑
p=1

∥∥x (τn
p

)∥∥ (ϕ (τn
p

)− ϕ
(
τn
p−1

))
= limn

n∑
p=1

(∥∥x (τn
p

)∥∥− ∥∥x (τn
p−1

)∥∥)ϕ
(
τn
p−1

)
.

(61)
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Now x being a Duhamel’s solution it comes,

x
(
τn
p

)
= Φ

(
τn
p , τn

p−1

)
x
(
τn
p−1

)
+
∫ τn

p

τn
p−1

Φ
(
τn
p , τ

)
f (τ) dτ.

Therefore, from this equality and using the classical properties of the brackets (in particular [ξ1, ξ2 + ξ3]− ≤
[ξ1, ξ2] + [ξ1, ξ3]−), together with the contractive aspect of Φ (t, s), we have,∥∥x (τn

p

)∥∥− ∥∥x (τn
p−1

)∥∥ =
[
x
(
τn
p

)
, x
(
τn
p

)]
− −

∥∥x (τn
p−1

)∥∥
≤ [x (τn

p

)
, Φ
(
τn
p , τn

p−1

)
x
(
τn
p−1

)]
+

[
x
(
τn
p

)
,

∫ τn
p

τn
p−1

Φ
(
τn
p , τ

)
f (τ) dτ

]
−
− ∥∥x (τn

p−1

)∥∥
≤
[
x
(
τn
p

)
,

∫ τn
p

τn
p−1

Φ
(
τn
p , τ

)
f (τ) dτ

]
−

.

(62)

Introduce the following step functions gn defined by

gn (t) =
1
δn
p

∫ τn
p

τn
p−1

Φ
(
τn
p , τ

)
f (τ) dτ if τn

p−1 < t ≤ τn
p p = 1, . . . , Nn. (63)

We want to prove that (gn)n converges towards f in L1 ([0, T ] , X) . In the one hand, for τn
pt−1 < t ≤ τn

pt
, we

have ∥∥∥∥∥gn (t)− 1
δn
pt

∫ τn
pt

τn
pt−1

Φ
(
τn
pt

, τ
)
fn (t) dτ

∥∥∥∥∥ ≤ 1
δn
pt

∫ τn
pt

τn
pt−1

∥∥f (τ)− f
(
τn
pt

)∥∥dτ = γn (t) .

We have already remarked that (γn)n converges towards zero in L1 ([0, T ]) . On the other hand since

Φ
(
τn
pt

, τ
)
fn (t) −→ f (t) for τ ∈ [τn

pt−1, τ
n
pt

]
,

for almost all t ∈ [0, T ] when n goes to infinity and since from (60) we have∥∥∥∥∥ 1
δn
pt

∫ τn
pt

τn
pt−1

Φ
(
τn
pt

, τ
)
fn (t) dτ

∥∥∥∥∥ ≤ ‖fn (t)‖ ≤ G (t)

a.e. on [0, T ] , thanks to the Lebesgue dominated Theorem we deduce

lim
n

∫ T

0

‖gn (τ) − f (τ)‖dτ = 0. (64)

The bracket properties give∫ T

0

∣∣[xn (τ) , gn (τ)]− − [xn (τ) , fn (τ)]−
∣∣ dτ ≤

∫ T

0

‖gn (τ)− fn (τ)‖ dτ

≤
∫ T

0

‖gn (τ)− f (τ)‖dτ +
∫ T

0

‖f (τ) − fn (τ)‖dt. (65)



NONLINEAR OBSERVERS IN REFLEXIVE BANACH SPACES 93

According to (64) and (65) we see that the sequence
(
[xn, gn]−

)
n

converges towards [x, f ]− in L1 ([0, T ]) because
the same is true by definition for [xn, fn]− . Then with this last conclusion, the relations (61, 62, 63) and the
positivity of ϕ provide

−
∫ T

0

‖x (τ)‖ϕ′ (τ) dτ ≤
∫ T

0

[x (τ) , f (τ)]− ϕ (τ) dτ.

That ends the proof of this part.
The first assertion, namely the existence of Duhamel’s solutions, is given for instance in Prüss [31] in case F

is in addition continuous locally bounded.
In our more general framework we remark that if λ ∈ [0, 1] , according to (3) and (4), every Duhamel’s

solution x of CPλF

(
x0
)

on [0, T0] for 0 < T0 ≤ T admits the following bound

sup
t∈[0,T0]

‖x (t)‖ ≤
(∥∥x0

∥∥+
∫ T

0

g (τ) dτ

)
exp

(∫ T

0

g (τ) dτ

)
.

Consequently Theorem 1 in [13] and a standard homotopic continuation argument in the Topological Index
Theory guarantee the existence of at least a Duhamel’s solutions for CPF

(
x0
)

on [0, T ]. �

7.3. A precompactness lemma

Denote by QP
(
x0, f, A

)
the following quasi-autonomous problem

QP
(
x0, f, A

)
=
{ .

x (t) = Ax (t) + f (t) , t ≥ 0
x (0) = x0,

where A is a densely defined m-dissipative (nonlinear) operator on the reflexive Banach space X and f a locally
integrable function on [0, +∞[ . With these notations and assumptions we have the following lemma:

Lemma 7.5. Suppose the resolvent of A to be compact and f uniformly continuous and bounded on [0, +∞[ .
Then the solution x of QP

(
x0, f, A

)
has a precompact range if and only if it is uniformly continuous and

bounded on [0, +∞[ .

More general statements could be found in [14].

Proof. (a) Suppose that the trajectory x ([0, +∞[) is precompact. Let (tn)n and (hn)n be sequences in [0, +∞[
such that tn −→ +∞ and hn ↓ 0. Then

‖x (tn + hn)− x (tn)‖ ≤ ∥∥x (tn + hn)− ehnAx (tn)
∥∥+

∥∥ehnAx (tn)− x (tn)
∥∥ . (66)

But Bénilan’s integral inequalities imply

∥∥x (tn + hn)− ehnAx (tn)
∥∥ ≤ ∫ tn+hn

tn

‖f (τ)‖dτ,

and thank to the boundedness of f,

lim
n

∥∥x (tn + hn)− ehnAx (tn)
∥∥ = 0. (67)

Now if we consider a cluster point of the bounded sequence
(∥∥ehnAx (tn)− x (tn)

∥∥)
n

(eventually by extracting
a subsequence and using the precompactness of x ([0, +∞[)) we can suppose

lim
n

x (tn) = l.
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Then
lim
n

∥∥ehnAx (tn)− x (tn)
∥∥ =

∥∥e0Al − l
∥∥ = 0. (68)

The required uniform continuity follows from (66, 67) and (68).

(b) Turn now to the converse and assume that x is uniformly continuous and bounded on [0, +∞[ . Let (fn)n≥1

and (xn)n≥1 sequences of Lipschitz functions such that

lim
n

sup
t≥0

‖f (t)− fn (t)‖ = 0 and lim
n

sup
t≥0

‖x (t)− xn (t)‖ = 0. (69)

For instance we can choose for fn (resp. xn) the piecewise linear approximation of f (resp. x) built on the nodal

points
k

n
, k ∈ N. The uniform continuity of f and x guarantees the Lipschitz aspect of fn and xn as well as

relations (69). Of course the Lipschitz constant relative to fn (resp. xn) depends on n. For such approximations
we have ‖fn‖∞ ≤ ‖f‖∞ (resp. ‖xn‖∞ ≤ ‖x‖∞), what we suppose in the sequel.

(b1) First suppose x0 ∈ D (A) . Let ω > 0 and denote by yn the solution of the quasi-autonomous problem
QP

(
x0, fn + ωxn, A− ωI

)
. We have

‖yn (t)‖ ≤ e−ωt
∥∥x0
∥∥+

∫ t

0

e−ω(t−s) ‖fn (s) + ωxn (s)‖ ds ≤ ∥∥x0
∥∥+

1
ω
‖f‖∞ + ‖x‖∞

for all t ≥ 0. Moreover, since x is solution of QP
(
x0, f + ωx, A− ωI

)
, integral inequalities give

‖x (t)− yn (t)‖ ≤
∫ t

0

e−ω(t−s) ‖(f − fn) (s) + ω (x− xn) (s)‖ds ≤ 1
ω
‖f − fn‖∞ + ‖x− xn‖∞ (70)

for all t ≥ 0. Consequently from (69) and (70) we deduce

lim
n
‖x− yn‖∞ = 0. (71)

Let Kn be a common Lipchitz constant of fn and xn. Applying now Bénilan’s integral inequalities with the
mild solution yn we find

∥∥yn (h)− x0
∥∥ ≤ ∫ t

0

e−ω(t−s)
∥∥fn (s) + ωxn (s)−Ax0

n

∥∥ds ≤ h

(
1
ω

(‖f‖∞ +
∥∥Ax0

∥∥)+ ‖x‖∞
)

then

‖yn (t + h)− yn (t)‖ ≤ e−ωt
∥∥yn (h)− x0

∥∥+
∫ t

0

e−ω(t−s) ‖fn (s + h)− fn (s) + ω (xn (s + h)− xn (s))‖ ds

≤ h

(
1
ω

(‖f‖∞ +
∥∥Ax0

∥∥)+ ‖x‖∞
)

+
(

1
ω

+ 1
)

Knh := Lnh

for all t ≥ 0, h ≥ 0. Therefore yn is Lipschitz on [0, +∞[ , with Lipschitz constant Ln. But a Lipschitz mild
solution of a quasi-autonomous problem QP in reflexive Banach space X is a strong one (see for instance [7]).
It follows

‖Ayn (t)‖ ≤
∥∥∥∥dyn

dt
(t)
∥∥∥∥+ ‖fn (t) + ωxn (t)‖ ≤ Ln + ‖f‖∞ + ω ‖x‖∞ (72)

for a.a. t ≥ 0. Since yn is bounded and the resolvent of A is compact (72) implies that there is a neglectible set
Ω ⊂ [0, +∞[ such that yn ([0, +∞[ \ Ω) is precompact in X. Finally in view of the continuity of yn the range of
yn is compact. Owing to (71) the latter conclusion gives that x has a precompact range. Indeed we have the
following classical topological lemma:
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Lemma 7.6. Assume Γ is a subset of X such that for every ε > 0 there exists a precompact subset K of X
satisfying,

d (γ,K) = inf {‖γ − y‖ ; y ∈ K} ≤ ε ,

for each γ ∈ Γ . Then Γ is relatively compact.

(b2) Now if x0 ∈ X we consider a sequence x0
n ∈ D (A) satisfying lim x0

n = x0. If zn stands for the solution of
QP

(
x0

n, f, A
)

the dissipativity of A leads to

lim
n
‖x− zn‖∞ = 0. (73)

Because from part (b1) zn has a precompact range the precompactness of x ([0, +∞[) follows from (73) and
Lemma 7.6. �

8. Conclusion

In this paper we have pointed out in some sense a minimum required to construct Luenberger-like semi-linear
observers. We showed that the reflexivity of the state space is deeply linked to our abstract nonlinear framework
and that Theorem 5.1 appears in this context as a universal weak principle. An important case (see Sect. 3.2
and Ex. 6.4) of strong convergence of the estimate error has been worked out in Theorem 5.2. The considered
applications illustrated this abstract approach and expressed how the question of existence of universal inputs
(in infinite dimension) and strong observer (for hyperbolic systems) can be tackled.

9. Appendix

9.1. Reformulation of Assumptions (A3, A4)

In order to check Assumptions (A) in practice it is convenient to give another formulation of Assumptions (A3)
and (A4). We consider the normalized duality mapping on X∗ defined for all ϕ ∈ X∗ by,

J (ϕ) =
{
x ∈ X∗∗, 〈x, ϕ〉X∗∗,X∗ = ‖ϕ‖2

X∗ = ‖x‖2
X∗∗

}
·

Of course, in the sequel since X is reflexive, X∗∗ will be identified with X by means of the canonical isomorphism.
A new formulation of Assumption (A3) is as follows:
(A3’)There is a dense subset Ω∗ of X∗ such that

lim
h↓0

sup
t≥0

‖Φ∗u (t + h, t)ϕ− ϕ‖X∗ = 0 (74)

for all t ≥ 0 and for all ϕ ∈ Ω∗.

Lemma 9.1. Assumption (A3’) is equivalent to (A3).

Proof. The implication (A3’)⇒(A3) is obvious. Let us prove now (A3)⇒(A3’). Since the set
{Φu (t + h, t)x− x; t ≥ 0, h ≥ 0, x ∈ Ω0} is bounded, the condition (A3) holds if and only if (7) holds for
all ϕ ∈ X∗. Let ϕ ∈ Ω∗, consider ϕt,h = Φ∗u (t + h, t)ϕ− ϕ and pick,

xt,h ∈ J (ϕt,h) , (75)

where J is the normalized duality mapping defined from X∗ to X∗∗ ' X . The family xt,h is clearly bounded
since we have ‖xt,h‖ = ‖ϕt,h‖X∗ ≤ 2 ‖ϕ‖ . Then from (A3) it comes,

lim
h↓0

sup
t≥0

〈xt,h, ϕt,h〉 = lim
h↓0

sup
t≥0

〈Φu (t + h, t)xt,h − xt,h, ϕ〉 = 0 . (76)
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According to (76), the following equality ‖ϕt,h‖2 = 〈xt,h, ϕt,h〉 deduced from (75), implies lim
h↓0

‖ϕt,h‖ = 0 as

required. �
Another formulation of (A4) follows:
(A4’)The convergence un

UT−→ u∞ implies

Φ∗un
(t, s)ϕ

X∗−→ Φ∗u∞ (t, s)ϕ

for all t ≥ 0 and all ϕ ∈ X∗.

Lemma 9.2. Assumption (A4’) is equivalent to (A4).

Proof. Obviously (A4’) implies (A4). For the converse we will proceed as in Lemma 9.1. Assume that (A4)
holds and un

UT−→ u∞. Similarly to Lemma 9.1, let ϕ ∈ X∗ and (t, s) ∈ Ξ ∩ [0, T ]2 and choose

xn ∈ J
(
Φ∗un

(t, s)ϕ− Φ∗u∞ (t, s)ϕ
)
. (77)

We have ‖xn‖ ≤ 2 ‖ϕ‖X∗ . Thus (xn)n is weakly precompact in X. Suppose xnk

w−→ x∞. It follows from (77)

lim supk

∥∥∥Φ∗unk
(t, s)ϕ− Φ∗u∞ (t, s)ϕ

∥∥∥2

X∗
= lim supk

〈
xnk

, Φ∗unk
(t, s)ϕ− Φ∗u∞ (t, s)ϕ

〉
= lim supk

〈
Φunk

(t, s)xnk
, ϕ
〉
− 〈Φu∞ (t, s)x∞, ϕ〉 ·

This last equality together with Assumption (A4) implies

lim
k

∥∥∥Φ∗unk
(t, s)ϕ− Φ∗u∞ (t, s)ϕ

∥∥∥
X∗

= 0,

and clearly (by contradiction) this relation holds for all subsequences (nk)k . So (A4’) is true and the proof is
now complete. �

9.2. General examples covered by assumption (A)

Our assumptions (A1–A4) have a wide field of applications as illustrated in following various examples.

Example 9.1. The bilinear case.

For all t ≥ 0, let Au (t) = A0 + u (t)A1 where A0 is a linear densely defined m-dissipative operator in X ,
and A1 ∈ L (X) is dissipative. We take U ⊆ L∞([0, +∞[) if A1 is skew-adjoint and U ⊆ L∞([0, +∞[ , R+) if A1

is not skew-adjoint. For T > 0, we consider on UT the relative weak∗-topology of L∞([0, T ]). Then clearly (A)
holds in this case.

Example 9.2. Weighted families of operators.

Let X = X1 ⊕ · · · ⊕Xm, where for k = 1, . . . , m, the Banach space Xk is reflexive. The space X is endowed
with the norm ‖·‖X := ‖·‖X1

+ · · ·+‖·‖Xm
. Consider the family of operators Au (t) := u1(t)A1⊕· · ·⊕um(t)Am,

where the operators Ak are linear densely defined maximal dissipative operator in Xk. The space of controls
is U = U1 × · · · × Um, where Uk ⊆ L∞([0, +∞[) if Ak is skew-adjoint and Uk ⊆ L∞([0, T ] , R+) if Ak is not
skew-adjoint. For T > 0, we consider on UT the relative weak∗-topology of L∞([0, +∞[ , Rm). The evolution
operator is clearly given by Φu (t, s) = ea1(t,s)A1 ⊕ · · · ⊕ eam(t,s)Am with

ak(t, s) =
∫ t

s

uk(τ)dτ, and u = (u1, . . . , um). (78)
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So (A1) and (A2) hold. Moreover, we have (see Hille–Philipps [23], p. 426 or Bénilan–Crandall–Pazy [7],
pp. 83–84)

Φ∗u (t, s) = ea1(t,s)A
∗
1 ⊕ · · · ⊕ eam(t,s)A∗m . (79)

In order to check (A3), due to Lemma 9.1, it suffices to prove (A3’). Firstly, notice that Ω∗ := Dom(A∗1)×· · ·×
Dom(A∗m) is dense in X∗ (see [23], or [7]). Secondly, ϕk ∈ Dom(A∗k) leads classically to∥∥∥eak(t+h,t)A∗kϕk − ϕk

∥∥∥
X∗

≤ |ak (t + h, t)| ‖A∗kϕk‖X∗ . (80)

According to (78, 79) and thanks to the uniform integrability of uk, k = 1, . . . , m, the inequality (80) yields, for
all ϕ = (ϕ1, . . . , ϕm) ∈ Ω∗,

lim
h↓0

sup
t≥0

‖Φ∗u (t + h, t)ϕ− ϕ‖X∗ = 0 .

Clearly, because of (79), Assumption (A4’) is satisfied and Lemma 9.2 implies (A4). It thus follows that
Assumption (A) holds.

Example 9.3. Non autonomous operators with unbounded perturbations.

Let Au (t) = A0 + u(t)A1 where A0 and A1 are closed dissipative linear operators satisfying the conditions
Dom (A0) = X and Dom (A0) ⊆ Dom(A1).

We suppose that A−1
1 is bounded and that A0 is m-dissipative. Suppose also that A1etA0 is a bounded linear

operator in X for t > 0, that the map t 7→ A1etA0 is continuous at each t0 > 0 in the norm operator topology,
and that t 7→ ∥∥A1etA0

∥∥ = k (t) is locally integrable on R+. See, for instance, the class β (A0) with A0 dissipative
defined in Hille-Philipps [23] (p. 394). The set of controls is given by U := L∞([0, +∞[) if A1 is skew-adjoint
and U := L∞([0, +∞[ , R+) if A1 is not skew-adjoint. We will take the weak∗ topology on UT . Typical examples
of such systems are given [19], [24], [23]. See also Applications in Section 6.

We postpone in paragraph 9.3 the verification of Assumption (A). Notice that the classical results in Kato [24]
or in Hille–Philipps [23] do not apply directly in this measurable time dependent framework.

Of course our conclusion can be trivially extended to the case of direct sums Au (t)=(A01+u1 (t)A11)⊕· · ·⊕
(A0m + um (t)A1m) in a product of Banach spaces X = X1 × · · · ×Xm.

Some examples below or detailed in Section 6 illustrate the notion of compact evolution operators.

Example 9.4. Affine control operators generating compact semigroups.

Let A be a generator of a linear compact C
0-semigroup eτA for τ > 0 and u ∈ L∞([0, +∞[) satisfying

u (τ) ≥ ε > 0 for almost τ ≥ T1. Then Au (t) = u (t)A generates a compact evolution operator given
by Φu (t, s) = e[a(t)−a(s)]A with a (t) =

∫ t

0
u (τ) dτ . Indeed, as in Example 3.1, we have K (h) = eεhA and

L (t, h) = e(a(t+h)−a(t)−εh)A for t ≥ T1.

Example 9.5. Multi-inputs controlled operators generating compact semigroups (see Examples 3.1 or 9.4
above).

Consider the product of reflexive Banach spaces X = ⊕m
i=1Xi, with the norm ‖·‖X =

∑
i ‖·‖Xi

. Let u =
(u1, · · · , um) ∈ L∞([0, +∞[ ; Rm) be such that ui (τ) ≥ ε > 0, for almost τ ≥ T1, and ai (t) =

∫ t

0 ui (τ) dτ for
i = 1, ..., m. Let Ai be a generator of a C0-semigroup etAi in Xi. Suppose that eσAi , i = 1, ..., m, is compact for
σ > 0. In this case, the evolution operator Φu (t, s) = ⊕m

i=1e
[ai(t)−ai(s)]Ai associated with Au (t) = ⊕m

i=1ui (t)Ai,
is compact.

Example 9.6. Unbounded non autonomous operators generating compact semigroups.

Let Au (t) = A0 + u (t)A1, where u ∈ L∞([0, +∞[), A0, A1 are linear, Dom (A0) ⊆ Dom(A1) and
Dom (A0) = X. Suppose that A0 generates a compact semigroup and that (Au (t)) generates a contractive
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evolution operator Φu, satisfying the following relation,

sup
x0∈Ω, t≥0

∥∥Φu (t + h, t)x0 − ehA0x0
∥∥ ≤ oh (1) (81)

for each bounded subset Ω of X , and h > 0. Then Φu is compact. Indeed, relation (81) implies clearly that⋃
t≥0

Φu (t + h, t)Ω is precompact since ehA0Ω is. This situation is encountered in Example 9.3.

9.3. Proof of Assumption (A) for unbounded perturbations

Let us check assumption (A) for unbounded perturbations in Example 9.3.
Assumption (A1). We start with the following generalized Gronwall’s lemma.

Lemma 9.3. Let 0 < T, p ∈ [1, +∞] and consider the following integral inequation,

f (t) ≤ h1 (t) +
∫ t

0

g (t− τ) f (τ) dτ (82)

with unknown f and data h1 ∈ Lp ([0, T ] , R+) , g ∈ L1 ([0, T ] , R+) . Then (82) has a greatest solution (for the
usual partial order of Lp ([0, T ] , R+)) in Lp ([0, T ] , R+) denoted by mh1,g = mh1 , and the map h1 7→ mh1 is
nondecreasing and Lipschitz-continuous in Lp ([0, T ] , R+) .

Proof. The proof of this Lemma can be derived easily from Lemma 8.10 of Curtain–Pritchard [16]. The maximal
solution mh1 is given by,

mh1 = h1 +
+∞∑
n=1

(Gnh1)

with,

g1 = g and, gn (t) =
∫ t

0

g (t− s) gn−1 (s) ds

(Gnh1) (t) =
∫ t

0

gn (t− s)h1 (s) ds.

Proof of Assumption (A1) for unbounded perturbations (continued). Let δ > 0 x0 ∈ X, 0 ≤ s ≤ t ≤ T and
x0

δ = eδA0x0 ∈ Dom(A0) . Then define the operator P in the space C ([0, T ] , X) of continuous X-valued functions
on [0, T ] by

(Px) (t) = A1e(t−s)A0x0
δ +

∫ t

s

u (τ) A1e(t−τ)A0x (τ) dτ.

After computing χ (P (Ω)) and the modulus of continuity of P (Ω) for bounded subsets Ω of C ([s, T ] , X) a
suitable application of the Schauder fixed point theorem gives fixed points of P on C ([s, T0] , X) for T0 − s ≥ 0
sufficiently small. Since the generalized Gronwall’s Lemma 9.3 provides an a priori upper bound for the fixed
points of P on [s, T0] with T0 ≤ T , it easy to see that there exists at least one fixed point of P in C ([s, T ] , X).
Thus we have

yδ (t) = A1e(t−s)A0x0
δ +

∫ t

s

u (τ) A1e(t−τ)A0yδ (τ) dτ. (83)

According to the local integrability on R+ of k (t) =
∥∥A1etA0

∥∥ , and using for instance Lemma 9.3 we see that
there is a unique function yδ solution of (83) in C ([s, T ] , X) . Set now xδ (t) = A−1

1 yδ (t). Since A−1
1 is linear

continuous, it comes from (83)

xδ (t) = e(t−s)A0x0
δ +

∫ t

s

u (τ) e(t−τ)A0A1xδ (τ) dτ . (84)
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Moreover xδ in C ([s, T ] , X) satisfies (84) if and only if xδ (t) ∈ Dom(A1) for all t ∈ [s, T ] and yδ (.) = A1xδ (.) is
the solution in C ([s, T ] , X) of (83), since from the Proposition 3.1 and the dissipativity of A1 the equation (84)
cannot have more than one continuous solution. In addition this Lemma and the dissipativity of A0 show that
we have

‖xδ (t)‖ ≤ ∥∥x0
δ

∥∥ ≤ ∥∥x0
∥∥ .

Thus since the set Ω =
{
eδA0x0 ; δ ∈ ]0, 1] , x0 ∈ X

}
is dense in X, the linear operator defined by

Φu (t, s)x0
δ = xδ (t)

has a unique linear extension to the whole space such that∥∥Φu (t, s)x0
∥∥ ≤ ∥∥x0

∥∥
for all x0 ∈ X.

Now according to the following inequality∥∥Φu (t, s)x0 − Φu (t, s) eδA0x0
∥∥ ≤ ∥∥x0 − eδA0x0

∥∥
for 0 ≤ s ≤ t ≤ T, the continuity of (t, s) 7→ Φu (t, s)x0 on Ξ comes from the continuity of (t, s) 7→ Φu (t, s) eδA0x0

on Ξ for all δ > 0.
Let k (σ) =

∥∥A1etA0
∥∥
L(X)

and h̃ (σ) = k (σ) supδ∈[0,1]

∥∥x0
δ

∥∥ and g (σ) = ‖u‖∞ k (σ) for σ ∈ ]0, T − s] . Then
Lemma 9.3 gives a function mh̃,g = mh̃ satisfying

‖yδ‖ ≤ mh̃ (.− s) on [s, T ] (85)

for δ ∈ ]0, 1] . Let γ > 0. Set zδ (σ) = yδ (s + σ) , and ∆δ,γ (σ) = ‖zδ (σ)− zγ (σ)‖ for σ ∈ [0, T − s] . From (83)
it comes for σ ∈ ]0, T − s] ,

∆δ,γ (σ) ≤ k (σ)
∥∥x0

δ − x0
γ

∥∥+ ‖u‖∞
∫ σ

0

k (σ − τ) ∆δ,γ (τ) dτ. (86)

So suitable applications of Lemma 9.3 show that the family of continuous functions (yδ (.))δ>0 converges uni-
formly towards a continuous function y0 on each compact subset of ]s, T ] when δ decreases to zero. Moreover
by setting

hδ (.) = k (·+ δ)
∥∥x0
∥∥ on [0, T − s] for δ ≥ 0. (87)

Lemma 9.3 gives as in (89), ‖yδ‖ ≤ mhδ
(· − s) and we deduce

‖y0‖ ≤ mh0 (· − s) (88)

in L
1 ([s, T ]) . Consequently, for instance according to (85), the Lebesgue dominated theorem insures that

y0 = lim
δ↓0

yδ in L1 ([s, T ] , X) satisfies the following integral equation

y0 (t) = A1e(t−s)A0x0 +
∫ t

s

u (τ)A1e(t−τ)A0y0 (τ) dτ (89)

in L1 ([s, T ] , X) .
Setting x0 = Φu (·, s)x0 it follows from (89) the relation

x0 (t) = e(t−s)A0x0 +
∫ t

s

u (τ) e(t−τ)A0A1x0 (τ) dτ . (90)
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We can check from this last conclusions, from the definition of Φu and from the closedness of the linear opera-
tor A1 the following claims

Φu (τ, s)x0 ∈ Dom(A1) , τ > s,

y0 (τ) = A1

(
Φu (τ, s)x0

)
,

A1

(
Φu (·, s)x0

) ∈ L1 ([s, T ] , X) .

(91)

It is now obvious to show that Φu (τ, s) is an evolution operator and Assumption (A1) is satisfied.
Consider the weak-star topology on the controls and let

un
w∗−→ u∞ in L

∞ ([0, T ]) . (92)

Similarly to [2] (see also [19]), we are going to prove the continuity of the evolution operator w.r.t. the controls u.

Lemma 9.4. Let u ∈ U := L∞([0, +∞[), we have Φun (t, s)x0 → Φu∞ (t, s)x0 for all x0 ∈ X and (t, s) ∈ Ξ.

Proof. Let us set xn (t) = Φun (t, s)x0, x∞ (t) = Φu∞ (t, s)x0, and zn (t) = x∞ (t)− xn (t) for t ∈ [s, T ].
Since xn (t) and x∞ (t) are Duhamel’s solutions, it comes,

zn (t) =
∫ t

s

u∞ (τ) e(t−τ)A0A1x∞ (τ) − un (τ) e(t−τ)A0A1xn (τ) dτ .

Thus,

zn (t) =
∫ t

s

[u∞ (τ) − un (τ)] e(t−τ)A0A1x∞ (τ) dτ +
∫ t

s

un (τ) e(t−τ)A0A1zn (τ) dτ.

In view of (83) the following equality holds

A1zn (t) =
∫ t

s

[u∞ (τ) − un (τ)] A1e(t−τ)A0A1x∞ (τ) dτ +
∫ t

s

un (τ) A1e(t−τ)A0A1zn (τ) dτ.

Then the usual Gronwall’s lemma gives

‖A1zn (t)‖ ≤ εn exp
∫ t

s

|un (τ)|
∥∥∥A1e(t−τ)A0

∥∥∥dτ (93)

with

εn = sup
t∈[s,T ]

∣∣∣∣∣
∫ T

s

[u∞ (τ)− un (τ)] A1e(t−τ)A0A1x∞ (τ) 1[s,t] (τ) dτ

∣∣∣∣∣ .
Using suitable piecewise constant approximations of e(t−τ)A0A1x∞ (τ) (see also [2] or [19]) in the relative strong
topology of L1 ([s, T ] , X) in L∞ ([s, T ] , X) from (92) we deduce (with suitable tn ∈ [s, T ])

εn =
∫ tn

s

[u∞ (τ) − un (τ)] A1e(tn−τ)A0A1x∞ (τ) dτ → 0. (94)

Thus, the relation (93) provides A1zn (t) → 0 and the continuity of A−1
1 gives zn (t) → 0 which ends the proof.

�
From the dissipativity of A0 and A1 the relation

∥∥Φu (t, s)x0
∥∥ ≤ ∥∥x0

∥∥ is clear if u is a step function. But
such functions are dense in L∞ ([s, T ]) equipped with the strong relative topology of L1 ([s, T ]) (and therefore in
the weak∗-topology of L∞ ([s, T ])). And therefore the contractive aspect of the evolution operator (previously
established) can be deduced immediately from Lemma 9.4.

Assumption (A2). The control-translation property (A2) is obvious.
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Assumption (A3). Let Ω1 be a bounded subset of X. Using (84) it comes for ϕ ∈ Ω∗ = Dom(A∗0), x0 ∈
Ω1, and h ∈ [0, T ] ,

∣∣〈Φu (t + h, t)x0 − x0, ϕ
〉∣∣ ≤ ∣∣〈x, ehA∗0ϕ− ϕ

〉∣∣+ ‖u‖∞ ‖ϕ‖
∫ t+h

t

‖A1x (σ)‖ dτ

≤ h ‖x‖ ‖A∗0ϕ‖+ ‖u‖∞ ‖ϕ‖
∫ t+h

t

‖A1x (σ)‖ dτ.

According to the last inequality the property (A3) follows from the density of Ω∗ in X∗, the boundedness of
the set

{
Φu (t + h, t)x0 − x0 ; t, h ≥ 0, x0 ∈ Ω1

}
, the inequality (88) and the Lipschitz aspect in L1 ([0, T ])

of h1 7→ mh1 (·) .

Assumption (A4). Let un
w∗−→ u∞ in L∞ ([0, T ]) and x0

n
w−→ x0

∞ in X . Let 0 ≤ s < t ≤ T. For n ∈ N ∪ {∞}
set xn (τ) = Φun (τ, s)x0

n and yn (τ) = A1 (xn (τ)) , τ ∈ [s, T + s] . Of course, it may happen that yn is not
defined at τ = s. In fact, from Assumption (A2) we can suppose s = 0, by eventually changing T into T − s.

Let us remark first that (xn)n is bounded on [0, T ] since by the contractive property of Φu we have

‖xn (σ)‖ ≤ sup
k

∥∥x0
k

∥∥ < +∞.

Thus (xn (σ))n is relatively compact in the reflexive space X for all σ ∈ [0, T ] . Moreover the sequence of functions
(xn)n is weakly-equicontinuous on [0, T ] . This point can be easily verified by computing
supn,σ |〈Φun (σ + h, σ)xn (σ)− xn (σ) , ϕ〉| for ϕ ∈ X∗, similarly to the proof of Assumption (A3) above, since
the boundedness of (xn)n allows the restriction to a dense subset of X∗ for the functionals ϕ. A direct calculation
can be also given in view of the inequality (96) given later.

Consequently by the weak Ascoli–Arzelà Theorem (see Vrabie [36], Th. 1.3.2, p. 10) the sequence (xn (.))n is
relatively compact in C ([0, T ] , Xw) . Let z∞ be a cluster point in C ([0, T ] , Xw) of (xn (.))n . In order to simplify
the notation we shall write z∞ = limn xn.

At this stage it remains to prove that we have z∞ = x∞. the main point is to show that (yn)n is dominated
in L

1 ([0, T ]). In this goal let us introduce h̃ (ξ) = k (ξ) supn

∥∥x0
n

∥∥ , M = supn ‖un‖∞ , and

g (ξ) = Mk (ξ) , m̃ (ξ) = mh̃,g (ξ) (95)

for ξ ∈ [0, T ] . We have h̃, m̃ ∈ L1 ([0, T ]) , and by (88)

‖yn (σ)‖ ≤ m̃ (σ) (96)

a.e. σ ∈ [0, T ] . Let ϕ ∈ X∗. Thanks to (90) we have,

〈xn (t) , ϕ〉 =
〈
e(t)A0x0

n, ϕ
〉

+
∫ t

0

un (τ)
〈
yn (τ) , e(t−τ)A∗0ϕ

〉
dτ. (97)

The first term of the right hand side of (97) converges clearly towards

lim
n

〈
etA0x0

n, ϕ
〉

=
〈
etA0x0

∞, ϕ
〉 · (98)

Let us write ∫ t

0

un (τ)
〈
yn (τ) , e(t−τ)A∗0ϕ

〉
dτ =

∫ t

0

un (τ)
〈
xn (τ) , A∗1e

δA∗1e(t−τ)A∗0ϕ
〉

dτ

+
∫ t

0

un (τ)
〈
yn (τ) ,

(
I − eδA∗1

)
e(t−τ)A∗0ϕ

〉
dτ.

(99)
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The first term of the right hand side of (99) converges towards∫ t

0

u∞ (τ)
〈
z∞ (τ) , A∗1e

δA∗1e(t−τ)A∗0ϕ
〉

dτ

and we have

lim
δ↓0

∫ t

0

u∞ (τ)
〈
z∞ (τ) , A∗1e

δA∗1e(t−τ)A∗0ϕ
〉

dτ =
∫ t

0

u∞ (τ)
〈
z∞ (τ) , A∗1e

(t−τ)A∗0ϕ
〉

dτ.

But A1 being weakly-closed (since it is strongly closed and linear) we can claim z∞ (τ) ∈ Dom(A1) for τ ∈ ]0, t]
and,

lim
δ↓0

∫ t

0

u∞ (τ)
〈
z∞ (τ) , A∗1e

δA∗1e(t−τ)A∗0ϕ
〉

dτ =
∫ t

0

u∞ (τ)
〈
e(t−τ)A0A1z∞ (τ) , ϕ

〉
dτ. (100)

In order to estimate the second term in the right hand side of (99) notice that from (96) it follows∣∣∣un (τ)
〈
yn (τ) ,

(
I − eδA∗1

)
e(t−τ)A∗0ϕ

〉∣∣∣ ≤ Mm̃ (τ)
∥∥∥(I − eδA∗1

)
e(t−τ)A∗0ϕ

∥∥∥
a.e. τ ∈ [0, T ] . Then the Lebesgue dominated convergence theorem gives for t ∈ [0, T ] ,

lim
δ↓0

lim sup
n

∥∥∥∥∫ t

0

un (τ)
〈
yn (τ) ,

(
I − eδA∗1

)
e(t−τ)A∗0ϕ

〉
dτ

∥∥∥∥ = 0. (101)

Consequently, from (99, 98, 100) and (101) we deduce

z∞ (t) = Φu∞ (t, s)x0
∞

on [0, T ] . �

The authors want to thank Pr J.P. Gauthier, Pr W. Respondek and professor G. Sallet for stimulating discussions on
this work.
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