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A SINGULAR PERTURBATION PROBLEM IN EXACT CONTROLLABILITY
OF THE MAXWELL SYSTEM ∗

John E. Lagnese
1

Abstract. This paper studies the exact controllability of the Maxwell system in a bounded domain,
controlled by a current flowing tangentially in the boundary of the region, as well as the exact con-
trollability the same problem but perturbed by a dissipative term multiplied by a small parameter in
the boundary condition. This boundary perturbation improves the regularity of the problem and is
therefore a singular perturbation of the original problem. The purpose of the paper is to examine the
connection, for small values of the perturbation parameter, between observability estimates for the two
systems, and between the optimality systems corresponding to the problem of norm minimum exact
control of the solutions of the two systems from the rest state to a specified terminal state.
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1. Introduction

Let Ω be a bounded, open, connected set in R3 with smooth boundary Γ, and let T > 0. We consider the
Maxwell system {

εEt − rotH = 0
µHt + rotE = 0 in Q := Ω× (0, T )

ν ∧E = J on Σ := Γ× (0, T )

E(0) = E0, H(0) = H0 in Ω,

(1.1)

as well as the perturbed system {
εEδt − rotHδ = 0
µHδ

t + rotEδ = 0 in Q
ν ∧Eδ − δ ν ∧ (Hδ ∧ ν) = J on Σ, δ > 0,

Eδ(0) = E0, Hδ(0) = H0 in Ω.

(1.2)
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Here ∧ denotes vector cross product, ν is the exterior pointing unit normal vector to Γ and ε = (εjk(x)),
µ = (µjk(x)) are positive definite 3×3 Hermitian matrices with C∞(Ω) entries. The function J is taken from
the class

U = L2
τ (Σ) := {J |J ∈ L2(0, T ;L2(Γ)), ν · J(t) = 0 for a.a. x ∈ Γ and a.a. t ∈ (0, T )} ·

Function spaces of C-valued functions are denoted by capital roman letters, while function spaces of C3-valued
functions are denoted by capital script letters. We use α · β to denote the natural scalar product in C3, i.e.,
α · β =

∑3
j=1 αjβj , and write 〈·, ·〉 for the natural scalar product in various function spaces such as L2(Ω) and

L2(Ω). A subscript may sometimes be added to avoid confusion. The spaces L2(Ω) and L2(Ω) denote the usual
spaces of Lebesque square integrable C-valued functions and C3-valued functions, respectively.

Set H = L2(Ω)×L2(Ω) with weight matrix M = diag(ε, µ). Thus

‖(φ, ψ)‖2H = 〈εφ, φ〉 + 〈µψ, ψ〉·

It will be proved below that for J ∈ U and (E0,H0) ∈ H, equation (1.2) has a unique solution with regularity
(Eδ,Hδ) ∈ C([0, T ];H), ν ∧Eδ|Σ ∈ L2

τ (Σ), ν ∧ (Hδ ∧ ν)|Σ ∈ L2
τ (Σ). On the other hand, for the same data, the

solution (E,H) of (1.1) has less spatial regularity. Thus there is a loss of regularity as δ → 0 and therefore we
consider (1.2) as a singular perturbation of (1.1).

For a scalar function a ∈ L∞(Ω) we define

Da,0(Ω) = {χ ∈ L2(Ω) : div(aχ) = 0},

and we set

H0 = Dε,0(Ω)×Dµ,0(Ω),

which is a closed subspace of H. We note that (E0,H0) ∈ H0 implies that (Eδ,Hδ) ∈ C([0, T ];H0) for δ > 0.
Consider the problem of exact controllability of the solution of (1.1) to the space H0 at time T : given fixed but
arbitrary (E0,H0), (E1,H1) ∈ H0, find a control J0 ∈ U such that the solution (1.1) satisfies

E(T ) = E1, H(T ) = H1. (1.3)

Without loss of generality, one may assume that E0 = H0 = 0. It is known that the exact controllability
problem has a solution if and only if H0 is continuously observable, that is, there is a constant C0

T > 0 such that

‖(φ0, ψ0)‖2H ≤ C0
T

∫
Σ

|ψτ |2dΣ, ∀(φ0, ψ0) ∈ F0, (1.4)

where

ψτ := ν ∧ (ψ ∧ ν) = ψ − (ψ · ν)ν,

F0 = F ∩H0, F = {(φ0, ψ0) ∈ H : ψτ |Σ ∈ L2
τ (Σ)},

and where (φ, ψ) is the solution of the problem{
εφt − rotψ = 0
µψt + rotφ = 0 in Q

ν ∧ φ = 0 on Σ

φ(T ) = φ0, ψ(T ) = ψ0 in Ω.

(1.5)
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Indeed, it follows from Green’s formula (2.1) below that formally

〈(E(T ),H(T )), (φ0, ψ0)〉H = −
∫

Σ

J · ψτdΣ, ∀(φ0, ψ0) ∈ F0.

When (1.4) holds, the control of minimum norm in L2
τ (Σ) such that the state constraint (1.3) is satisfied is

given by

J0 = −ψτ |Σ (1.6)

where (φ, ψ) is the solution of (1.5) with final data (φ0, ψ0) ∈ F0 given by

〈(E1,H1), (φ0, ψ0)〉H =
∫

Σ

|ψτ |2dΣ. (1.7)

Therefore, the optimality system for the problem of norm minimum control of the system (1.1) from the rest
state (0, 0) to the state (E1,H1) at time T is given by (1.1) and (1.5), where the final data is given by (1.7),
and the norm minimum control J0 is given by (1.6).

Similarly, consider the problem of exact controllability of the solution of (1.2) to the space H0 at time T :
with E0 = H0 = 0 and given fixed but arbitrary (E1,H1) ∈ H0, find a control Jδ ∈ U such that the solution
(1.2) satisfies

Eδ(T ) = E1, H
δ(T ) = H1. (1.8)

This problem has a solution if and only if there is a constant CδT > 0 such that

‖(φ0, ψ0)‖2H ≤ CδT
∫

Σ

|ψδτ |2dΣ, ∀(φ0, ψ0) ∈ H0, (1.9)

where (φδ, ψδ) is the solution of {
εφδt − rotψδ = 0
µψδt + rotφδ = 0 in Q
ν ∧ φδ + δψδτ = 0 on Σ

φδ(T ) = φ0, ψδ(T ) = ψ0 in Ω.

(1.10)

Indeed, for the solution of (1.2) one has

〈(Eδ(T ),Hδ(T )), (φ0, ψ0)〉H = −
∫

Σ

J · ψδτdΣ, ∀(φ0, ψ0) ∈ H0. (1.11)

Remark 1.1. From the easily verified equality

‖(φδ(t), ψδ(t))‖2H + 2δ
∫ T

t

∫
Γ

|ψδτ |2dΓdt = ‖(φ0, ψ0)‖2H,∀(φ0, ψ0) ∈ H, 0 ≤ t ≤ T, (1.12)

one has the reverse inequality of (1.9)∫
Σ

|ψδτ |2dΣ ≤ 1
2δ
‖(φ0, ψ0)‖2H, ∀(φ0, ψ0) ∈ H. (1.13)
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It follows from (1.11) and (1.13) that the control-to-state map LδTJ := (Eδ(T ),Hδ(T )) is bounded from U into
H0, and one sees that (1.9) is equivalent to the bounded invertibility of (LδT )∗, which in turn is equivalent to
Rg(LδT ) = H0.

When (1.9) holds, the control of minimum norm in L2
τ (Σ) such that the state constraint (1.8) is satisfied is

given by

Jδ = −ψδτ |Σ (1.14)

where (φδ, ψδ) is the solution of (1.10) with final data (φδ0, ψ
δ
0) ∈ H0 given by

〈(E1,H1), (φδ0, ψ
δ
0)〉H =

∫
Σ

|ψδτ |2dΣ. (1.15)

Therefore, the optimality system for the problem of norm minimum control of the system (1.2) from the rest
state (0, 0) to the state (E1,H1) at time T is given by (1.2) and (1.10), where the final data is given by (1.15),
and the norm minimum control is given by (1.14).

The purpose of this paper is to examine the connection between the observability estimates (1.4) and (1.9),
and between the corresponding optimality systems for small values of δ. Specifically, we shall prove the following
results:

Theorem 1.1. For δ ≥ 0, let (φδ, ψδ) be the solution of (1.10) if δ > 0, or the solution of (1.5) if δ = 0, where
(φ0, ψ0) ∈ H if δ > 0, and (φ0, ψ0) ∈ F if δ = 0. The map δ 7→ ‖ψδτ‖L2

τ (Σ) : R+ 7→ R+ is nonincreasing.

Corollary 1.1. If (1.9) holds for some δ0 > 0, then it hold for all δ ∈ (0, δ0] with the same constant Cδ0T , and
(1.4) holds with C0

T = Cδ0T .

Theorem 1.2. Assume that (1.9) holds for some δ0 > 0. Let (E1,H1) ∈ H0, and (φδ, ψδ) be the solution of
(1.10), where (φδ0, ψ

δ
0) ∈ H0 is given by (1.15). Then as δ → 0,

(φδ(·), ψδ(·))→ (φ(·), ψ(·)) weakly* in L∞(0, T ;H)

(φδ0, ψ
δ
0)→ (φ0, ψ0) weakly in H,

where {
εφ′ − rotψ = 0
µψ′ + rotφ = 0 in Q
ν ∧ φ = 0 on Σ

φ(T ) = φ0, ψ(T ) = ψ0 in Ω.

Further, (φ0, ψ0) ∈ F0, ψδτ |Σ → ψτ |Σ strongly in L2
τ (Σ) and

〈(E1,H1), (φ0, ψ0)〉H =
∫

Σ

|ψτ |2dΣ.

Theorem 1.3. Assume that (1.9) holds for some δ0 > 0. Let E0 = H0 = 0, (E1,H1) ∈ H0, and (Eδ,Hδ) be
the solution of (1.2) with J = −ψδτ |Σ (thus (1.8) holds). Then (Eδ,Hδ) → (E,H) weakly∗ in L∞(0, T ;X ′),
where (E,H) is the solution of (1.1) with J = −ψτ |Σ (thus (1.3) holds) and where X ↪→ H ↪→ X ′ is given by
(2.7) below.

Remark 1.2. The validity of (1.9) for some δ0 > 0 is equivalent to

‖(φδ(0), ψδ(0))‖2H ≤ CδT
∫

Σ

|ψδτ |2dΣ, ∀(φ0, ψ0) ∈ H0
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for some δ > 0. The latter is equivalent to the following stability estimate for the system (1.2) with J = 0:

‖(Eδ(T ),Hδ(T ))‖2H ≤ CδT
∫

Σ

|Hδ
τ |2dΣ, ∀(E0,H0) ∈ H0. (1.16)

Inequality (1.16) is equivalent to the uniform exponential stability in H0 of the system (1.2) with J = 0.
Therefore, Corollary 1.1 implies that (1.1) is exactly controllable to H0 at time T if (1.2) with J = 0 is
uniformly exponentially stable in H0 for some δ0 > 0. Of course, this implication may also be proved by using
the “forward – backwards” argument of Russell [14], which is based on the contraction mapping principle.
However, Theorem 1.1 shows that this conclusion follows automatically from the observability estimate (1.9) (or
the stability estimate (1.16)). A similar observation has recently been made in a general framework by Ammari
and Tucsnak [1] for a class of second order evolution equations; see also Tucsnak and Weiss [15].

Remark 1.3. Theorems 1.2 and 1.3 show that the solution of the optimality system for the problem of norm
minimum control of the system (1.2) from the rest state (0, 0) to the state (E1,H1) at time T converges
in the sense described to the solution of the optimality system for the problem of norm minimum control
of the system (1.1) from the rest state (0, 0) to the state (E1,H1) at time T . In particular, the optimal
control for (1.2) converges strongly in L2

τ (Σ) to the optimal control for (1.1). Further, the optimal trajectory
(E(·),H(·)) ∈ L∞(0, T ;X ′) that joins (0, 0) to (E1,H1) at time T is approximated in L∞(0, T ;X ′) by the more
regular optimal trajectories (Eδ(·),Hδ(·)) ∈ C([0, T ];H0).

Remark 1.4. When ε and µ are positive scalars, the estimate (1.9) was (implicitly) established by multiplier
methods for δ = 1 by Komornik [7], who showed that (1.2) with J = 0 is exponentially stable provided Γ
is star-shaped with respect to some point x0 ∈ Ω and T is suitably large depending on the geometry of Ω.
These results were greatly extended by Phung [13], who used results on the propagation of singularities of
electromagnetic fields to obtain (1.9) for general regions. Very recently Eller [3] has established (1.9) in the
case of C∞(Ω) positive scalar functions ε and µ, provided Ω is simply connected, T is suitably large, and ε, µ
satisfy the technical condition M · ∇(1/εµ) ≤ 0 for all x ∈ Ω, where M(x) = x − x0 and x0 is some point in
R3. On the other hand, when ε and µ are positive scalars the observability estimate (1.4) was established in [8]
by multiplier methods provided Γ is star-shaped with respect to some point x0 ∈ Ω and T is sufficiently large.
These results were later extended by Nalin [12] and, especially, by Phung [13] to general regions, and then by
Eller [4] to the case of C∞(Ω) positive scalar functions ε and µ under the same conditions mentioned above.

Remark 1.5. The proofs of Theorems 1.1 and 1.2 extend with only minor changes to the Maxwell system

εEt − rotH + σE = 0, µHt + rotE = 0,

where σ is a nonnegative Hermitian matrix with L∞(Ω) entries that represent the resistivity of the electromag-
netic material. However, the author is unaware of any result that establishes either observability estimate (1.4)
or (1.9) for this system, even when σ is a nonnegative constant.

Remark 1.6. Although the above results are stated in the context of the Maxwell system, our arguments apply
equally to many other singular perturbations problems. One may consider, for example, the elasticity system
with traction boundary conditions:

wi,tt − σij,j = 0 in Q
σijνj = fi on Σ

wi(0) = wi0, wi,t(0) = wi1 in Ω,

and its singular perturbation

wδi,tt − σδij,j = 0 in Q
σδijνj + δwδi,t = fi on Σ, δ > 0

wδi (0) = wi0, wδi,t(0) = wi1 in Ω,
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where i = 1, 2, 3,

σδij = aijklε
δ
kl, εδkl =

1
2

(wδk,l + wδl,k), δ ≥ 0, w0
i := wi,

and {aijkl} is the elasticity tensor. Assume that each aijkl ∈ L∞(Ω). Then if fi ∈ L2(Σ) and (wi0, wi1) ∈
H1(Ω)× L2(Ω), for δ > 0 one has the a priori estimate (cf. Lem. 2.3 below)

Eδ(T ) +
3∑
i=1

∫
Σ

[
1
δ
|σδijνj |2 + δ|wδi,t|2

]
dΣ = E(0) +

1
δ

3∑
i=1

∫
Σ

|fi|2sΣ,

where

Eδ(t) =
∫

Ω

[|wδ
,t|2 + σδijε

δ
ij ]dx,

thus (wδi , w
δ
it) ∈ C([0, T ];H1(Ω)×L2(Ω)), σδijνj |Σ ∈ L2(Σ), wδi,t|Σ ∈ L2(Σ). On the other hand, for such data the

solution has less spatial regularity when δ = 0; in general (wi(t), wi,t(t)) /∈ H1(Ω)× L2(Ω) and wi,t|Σ /∈ L2(Σ).
All of the results for the Maxwell system stated above have analogs for the elasticity system (and for many
others), with similar proofs.

Remark 1.7. Apropos to the last remark, after reading this manuscript Lasiecka has written in a private
communication that techniques developed in Hendrickson and Lasiecka [5, 6] for purposed entirely different
than those of the present paper may be employed to prove a general result closely related to Theorem 1.2.
Consider the second order system

xδtt +Axδ + δBB∗xδt = 0, δ > 0, (1.17)

where A is a positive self-adjoint operator in a Hilbert space H and B : U 7→ D(A1/2)′ is bounded. Write (1.17)
as the first order system in H := D(A1/2)×H

yδt = Ayδ − δBB∗yδ := Aδy
δ

with the standard definitions of A, B. Suppose that (Aδ0 , B) is exactly controllable to H at time T for some
δ0 > 0. (It is then easy to see that (Aδ, B) is exactly controllable to H at time T for 0 ≤ δ ≤ δ0.) One then has
the following result: if uδ is the minimum L2(0, T ;U) norm control corresponding to the dynamics (Aδ, B) that
steers the origin to y0 ∈ H at time T , then uδ → u strongly in L2(0, T ;U), where u is the minimum L2(0, T ;U)
norm control corresponding to the dynamics (A,B) that steers the origin to y0 at time T .

Theorems 1.1–1.3 are proved in Section 3. Well-posedness of problems (1.1) and (1.2) is considered in the
next section.

2. Existence and uniqueness of solutions

We set

H1
τ (Ω) = {φ ∈ H1(Ω) : ν · φ|Γ = 0}
R = {φ ∈ L2(Ω) : rotφ ∈ L2(Ω)}

‖φ‖2R =
∫

Ω

(|φ|2 + | rotφ|2) dx.
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It is well known ([2], Lem. VII.4.2) that C1(Ω) is dense in R and that the map φ 7→ ν ∧ φ|Γ : C1(Ω) 7→ C1(Γ)
extends by continuity to a continuous linear map R 7→ H−1/2

τ (Γ) := (H1/2
τ (Γ))′. That is to say, for each φ ∈ R

there exists a g ∈ H−1/2
τ (Γ) such that

〈φ, rotχ〉 = 〈rotφ, χ〉 − 〈g, χ〉Γ, ∀χ ∈ H1
τ (Ω),

and the map φ 7→ g := ν∧φ|Γ is linear and continuous, where 〈·, ·〉Γ denotes the pairing in theH−1/2
τ (Γ)−H1/2

τ (Γ)
duality. Set

V = {φ ∈ L2(Ω) : rotφ ∈ L2(Ω), ν ∧ φ ∈ L2
τ (Γ)},

‖φ‖2V =
∫

Ω

(|φ|2 + | rotφ|2)dx+
∫

Γ

|ν ∧ φ|2dΓ,

and define

A = M−1

(
0 rot
− rot 0

)
,

D(A) = {(φ, ψ) ∈ V × V : ν ∧ φ− δ ψτ = 0 on Γ} ·

Lemma 2.1. If δ > 0, A is the infinitesimal generator of a C0-semigroup of contractions on H. If δ = 0, A is
the infinitesimal generator of a C0 unitary group on H.

Proof. The conclusion for δ = 0 is well-known; see, e.g. [11] (Chap. 8). Suppose that δ > 0. The linear operator
A is densely defined, and from the Green’s formula

〈ψ, rotφ〉 = 〈rotψ, φ〉 −
∫

Γ

(ν ∧ ψ) · φτ dΓ = 〈rotψ, φ〉+
∫

Γ

ψτ · (ν ∧ φ) dΓ, (φ, ψ) ∈ V × V, (2.1)

we obtain

〈AU,U〉H = −
∫

Γ

ψτ · (ν ∧ φ) dΓ + 2
√
−1 Im〈rotψ, φ〉

= −δ
∫

Γ

|ψτ |2dΓ + 2
√
−1 Im〈rotψ, φ〉, ∀U =

(
φ
ψ

)
∈ D(A),

so Re〈AU,U〉H ≤ 0.
Let (f, g) ∈ H and let φ be the unique solution in V of the variational equation

〈εφ, χ〉 + 〈µ−1 rotφ, rotχ〉+
1
δ

∫
Γ

(ν ∧ φ) · (ν ∧ χ) dΓ = 〈g, rotχ〉+ 〈εf, χ〉, ∀χ ∈ V. (2.2)

Set ψ = g − µ−1 rotφ ∈ L2(Ω). Then (2.2) reads

〈ψ, rotχ〉 = 〈εφ, χ〉 − 〈εf, χ〉+
1
δ

∫
Γ

(ν ∧ φ) · (ν ∧ χ) dΓ, ∀χ ∈ V.

It follows that rotψ ∈ L2(Ω) and that

εφ− rotψ = εf in Ω, δ ψτ = ν ∧ φ on Γ.

Therefore
(
φ
ψ

)
∈ D(A) and (I −A)

(
φ
ψ

)
=
(
f
g

)
.
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Now consider the problem {
εΦδt − rot Ψδ = εf

µΨδ
t + rot Φδ = µg in Q

ν ∧ Φδ + δΨδ
τ = 0 on Σ

Φδ(T ) = Φ0, Ψδ(T ) = Ψ0 in Ω.

(2.3)

As a consequence of Lemma 2.1 we have the following result:

Corollary 2.1. Let δ ≥ 0.

(1) If (Φ0,Ψ0) ∈ H and (f, g) ∈ L1(0, T ;H), then (2.3) has a unique mild solution (Φδ,Ψδ) ∈ C([0, T ];H) and

‖(Φδ,Ψδ)‖L∞(0,T ;H) ≤ C
(
‖(Φ0,Ψ0)‖H + ‖(f, g)‖L1(0,T ;H)

)
.

(2) If (Φ0,Ψ0) ∈ D(A) and (f, g) ∈ C1([0, T ];H), then (Φδ,Ψδ) ∈ C([0, T ];D(A)).

Lemma 2.2. Suppose that δ > 0. Let (Φ0,Ψ0) ∈ H and (f, g) ∈ L1(0, T ;H). Then the solution of (2.3)
satisfies ν ∧ Φδ|Σ ∈ L2

τ (Σ).

Proof. First suppose that (Φ0,Ψ0) ∈ D(A) and (f, g) ∈ C1([0, T ];H). We then have

− 1
2
‖(Φδ(t),Ψδ(t))‖2H +

1
2
‖(Φ0,Ψ0)‖2H +

∫ T

t

∫
Γ

Ψδ
τ · (ν ∧ Φδ) dΓdt

− 2
√
−1 Im

∫ T

t

〈Ψδ, rot Φδ〉dt =
∫ T

t

〈(f, g), (Φδ,Ψδ)〉Hdt.

It follows easily that

‖(Φδ,Ψδ)‖2L∞(0,T ;H) +
1
δ

∫
Σ

|ν ∧ Φδ|2dΣ ≤ C
{
‖(Φ0,Ψ0)‖2H + ‖(f, g)‖2L1(0,T ;H)

}
·

The result now follows by density.

By transposition, we have:

Theorem 2.1. If (E0,H0) ∈ H and J ∈ L2
τ (Σ), (1.2) has a unique solution (Eδ,Hδ) ∈ C([0, T ];H).

Proof. By using Green’s formula one finds that (Eδ,Hδ) formally satisfies

〈(Eδ(T ),Hδ(T )), (Φ0,Ψ0)〉H −
∫
Q
〈(Eδ,Hδ), (f, g)〉Hdxdt = 〈(E0,H0), (Φδ(0),Ψδ(0))〉H

−
∫

Σ

J ·Ψδ
τ dΣ,∀(Φ0,Ψ0) ∈ H, ∀(f, g) ∈ L1(0, T ;H), (2.4)

where (Φδ,Ψδ) is the solution of (2.3). From Lemma 2.2, for each (E0,H0) ∈ H and J ∈ L2
τ (Σ) the right

side of (2.4) is a continuous linear functional on H × L1(0, T ;H). Thus there are unique pairs (EδT ,H
δ
T ) ∈ H,

(Eδ,Hδ) ∈ L∞(0, T ;H), such that

〈(EδT ,Hδ
T ), (Φ0,Ψ0)〉H −

∫
Q
〈(Eδ,Hδ), (f, g)〉Hdxdt = 〈(E0,H0), (Φδ(0),Ψδ(0))〉H

−
∫

Σ

J ·Ψδ
τ dΣ,∀(Φ0,Ψ0) ∈ H, ∀(f, g) ∈ L1(0, T ;H).



SINGULAR PERTURBATION OF THE MAXWELL SYSTEM 283

By definition, we set (Eδ(T ),Hδ(T )) = (EδT ,H
δ
T ). This is justified by the fact that it holds if (Eδ,Hδ) ∈

C([0, T ];H) rather than just L∞(0, T ;H) (cf. [9], Prop. 2.3). The passage from L∞(0, T ;H) to C([0, T ];H) is
somewhat tedious but standard, and we omit this part of the argument which, in any case, is inessential to
what follows.

Lemma 2.3. If (E0,H0) ∈ H and J ∈ L2
τ (Σ), the solution of (1.2) satisfies ν ∧Eδ|Σ ∈ L2

τ (Σ) and

‖(Eδ(t),Hδ(t))‖2H +
∫ t

0

∫
Γ

(
1
δ
|ν ∧Eδ|2 + δ|Hδ

τ |2
)

dΓdt = ‖(E0,H0)‖2H +
1
δ

∫ t

0

∫
Γ

|J |2dΓdt. (2.5)

Proof. First assume that (E0,H0) and J are such that (Eδ,Hδ) ∈ C([0, T ];V ×V ). This will hold if, for example
(E0,H0) ∈ V × V , J = ν ∧ Ĵ |Σ, where Ĵ ∈ C2([0, T ];L2(Ω)) ∩ C1([0, T ];H1(Ω)), and ν ∧ E0 −H0τ = J(0) on
Γ. As may be seen by making the change of variables Ê = Eδ − Ĵ , Ĥ = Hδ, one has (Ê, Ĥ) ∈ C([0, T ];D(A))
and therefore (Eδ,Hδ) ∈ C([0, T ];V × V ). By calculating as in Lemma 2.2 we obtain

1
2
‖(Eδ(t),Hδ(t))‖2H +

1
δ

∫ t

0

∫
Γ

|ν ∧Eδ|2dΓdt =
1
2
‖(E0,H0)‖2H +

1
δ

Re
∫ t

0

∫
Γ

J · (ν ∧Eδ) dΓdt.

From the boundary condition we have

Re J · (ν ∧Eδ) =
1
2
(
|ν ∧Eδ|2 + |J |2 − δ2|Hδ

τ |2
)
,

which leads to (2.5). The result now follows by density.

The solution of (1.1) is also defined by transposition. To that end, consider the system (2.3) with δ = 0:{
εΦt − rot Ψ = εf

µΨt + rot Φ = µg in Q
ν ∧Φ = 0 on Σ

Φ(T ) = Φ0, Ψ(T ) = Ψ0 in Ω.

(2.6)

By Corollary 2.1, if (Φ0,Ψ0) ∈ H and (f, g) ∈ L1(0, T ;H), (2.4) has a unique solution (Φ,Ψ) ∈ C([0, T ];H).
Also, in this case the domain of the generator is

D(A) = R0 ×R,

where

R0 = {χ ∈ R : ν ∧ χ|Γ = 0}·

Thus, if (Φ0,Ψ0) ∈ R0 ×R and (f, g) ∈ L1(0, T ;R0 ×R), then (Φ,Ψ) ∈ C([0, T ];R0 ×R) and

‖(Φ,Ψ)‖L∞(0,T ;R0×R) ≤ C
(
‖(Φ0,Ψ0)‖R0×R + ‖(f, g)‖L1(0,T ;R0×R)

)
.

Set

Dµ = {χ ∈ L2(Ω) : div(µχ) ∈ L2(Ω)}
D0
µ = {χ ∈ D : ν · (µχ)|Γ = 0} ·
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Remark 2.1. It is known that the map χ 7→ ν · (µχ) : C1(Ω) 7→ C1(Γ) extends by continuity to a continuous
linear mapping Dµ 7→ H−1/2(Γ) ([2], Lem. VII.5.2).

Set

X = R0 × (R∩D0
µ)

‖(χ, ζ)‖2X =
∫

Ω

(|χ|2 + |ζ|2 + | rotχ|2 + | rot ζ|2 + |div(µζ)|2) dx

= ‖(χ, ζ)‖2R0×R +
∫

Ω

|div(µζ)|2dx.

(2.7)

Lemma 2.4. Assume that (Φ0,Ψ0) ∈ X and (f, g) ∈ L1(0, T ;X ). Then (Φ,Ψ) ∈ C([0, T ];X ) and

‖(Φ,Ψ)‖L∞(0,T ;X ) ≤ C
(
‖(Φ0,Ψ0)‖X + ‖(f, g)‖L1(0,T ;X )

)
. (2.8)

In fact, from the second equation in (2.6)

div(µΨ(t)) = div(µΨ0)−
∫ T

t

div(µg(s))ds

and

ν · (µΨ(t))|Γ = ν · (µΨ0)|Γ −
∫ T

t

ν · (µg(s))|Γds = 0

since ν · rot Φ|Γ is a tangential differentiation on Γ of ν ∧ Φ (see [2], p. 358).

Lemma 2.5. R∩D0
µ ↪→ H1(Ω).

Proof. See Leis [11] (Th. 8.6).

We identify H with its dual space, so that X ↪→H ↪→ X ′. The scalar product in the X ′−X duality is denoted
by 〈·, ·〉X . It follows from Lemmas 2.4 and 2.5 that for (Φ0,Ψ0) ∈ X and (f, g) ∈ L1(0, T ;X ) the solution of
(2.6) satisfies

‖(Φ(0),Ψ(0))‖2X +
∫

Σ

|Ψτ |2 ≤ C
(
‖(Φ0,Ψ0)‖X + ‖(f, g)‖L1(0,T ;X )

)
. (2.9)

By duality, we then have the following result:

Theorem 2.2. If (E0,H0) ∈ X ′ and J ∈ L2
τ (Σ), (1.1) has a unique solution (E,H) ∈ C([0, T ];X ′) defined by

〈(E(T ),H(T )), (Φ0,Ψ0)〉X −
∫
Q
〈(E,H), (f, g)〉Xdxdt = 〈(E0,H0), (Φ(0),Ψ(0))〉X −

∫
Σ

J ·Ψτ dΣ (2.10)

for all (Φ0,Ψ0) ∈ X and (f, g) ∈ L1(0, T ;X ), where (Φ,Ψ) is the solution of (2.6).

Indeed, from (2.9) there exists unique (E,H) ∈ L∞(0, T ;X ′), (E(T ),H(T )) ∈ X ′ satisfying (2.10). One may
use a lifting theorem of Lasiecka and Triggiani [10] to obtain (E,H) ∈ C([0, T ];X ′), and one may prove that
the value (E,H) at t = T is exactly (E(T ),H(T )) (see [9], Prop. 2.3).
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3. Proofs of Theorems 1.1–1.3

Proof of Theorem 1.1. Let 0 ≤ δ1 < δ2 and set

Φ = φδ1 − φδ2 , Ψ = ψδ1 − ψδ2 .

Assume that (φ0, ψ0) ∈ H if δ1 > 0, else that (φ0, ψ0) ∈ F , where

F = completion of X in the norm
∫

Σ

|ψτ |2dΣ

(φ, ψ) denoting the solution of (1.5). Then ψδ1τ |Σ ∈ L2
τ (Σ) and (Φ,Ψ) satisfy{

εΦt − rot Ψ = 0
µΨt + rot Φ = 0 in Q

ν ∧ Φ + δ2Ψτ = (δ2 − δ1)ψδ1τ on Σ
Φ(T ) = Ψ(T ) = 0 in Ω.

From Lemma 2.3 we have

‖(Φ(0),Ψ(0))‖2H +
∫

Σ

(
1
δ2
|ν ∧ Φ|2 + δ2|Ψτ |2

)
dΣ =

(δ2 − δ1)2

δ2

∫
Σ

|ψδ1τ |2dΣ.

On Σ we have

ψδ2τ = −Ψτ + ψδ1τ =
1
δ2
ν ∧ Φ− δ2 − δ1

δ2
ψδ1τ + ψδ1τ =

1
δ2
ν ∧ Φ +

δ1
δ2
ψδ1τ .

Therefore

‖ψδ2τ ‖L2
τ (Σ) ≤

1
δ2
‖ν ∧Φ‖L2

τ (Σ) +
δ1
δ2
‖ψδ1τ ‖L2

τ (Σ) ≤
δ2 − δ1
δ2

‖ψδ1τ ‖L2
τ (Σ) +

δ1
δ2
‖ψδ1τ ‖L2

τ (Σ) = ‖ψδ1τ ‖L2
τ(Σ).

Proof of Theorem 1.2. For 0 < δ ≤ δ0 we have

‖(φδ0, ψδ0)‖2H ≤ Cδ0T
∫

Σ

|ψδτ |2dΣ. (3.1)

Thus, for α > 0, ∫
Σ

|ψδτ |2dΣ ≤ ‖(E1,H1)‖H‖(φδ0, ψδ0)‖H ≤
1

2α
‖(E1,H1)‖2H +

α

2
‖(φδ0, ψδ0)‖2H

≤ 1
2α
‖(E1,H1)‖2H +

α

2
Cδ0T

∫
Σ

|ψδτ |2dΣ.

By choosing α sufficiently small it follows that∫
Σ

|ψδτ |2dΣ ≤ C‖(E1,H1)‖2H. (3.2)
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Since ‖(φδ(t), ψδ(t))‖H ≤ ‖(φδ0, ψδ0)‖H we then obtain

(φδ(·), ψδ(·)) is bounded in L∞(0, T ;H)

(φδ0, ψ
δ
0) is bounded in H,

ψδτ |Σ is bounded in L2
τ (Σ).

Thus, on a sequence δ = δn tending towards zero we have

(φδ(·), ψδ(·))→ (φ(·), ψ(·)) weakly* in L∞(0, T ;H)

(φδ0, ψ
δ
0)→ (φ0, ψ0) weakly in H (3.3)

ψδτ |Σ → g weakly in L2
τ (Σ),

for some (φ0, ψ0) ∈ H0 and g ∈ L2
τ (Σ).

Let (χ, ζ) ∈ C∞(Ω× [0, T ]) such that χ(0) = ζ(0) = 0. We have

0 =
∫ T

0

(〈εφδt − rotψδ, χ〉+ 〈µψδt + rotφδ, ζ〉) dt = −
∫ T

0

(〈φδ , εχt − rot ζ〉+ 〈ψδ, µζt + rotχ〉] dt

+〈(φδ0, ψδ0), (χ(T ), ζ(T ))〉H +
∫

Σ

[ψδτ · (ν ∧ χ) + (ν ∧ φδ) · ζτ ] dΣ.

Upon passing to the limit through δ = δn we obtain∫ T

0

[〈φ, εχ′ − rot ζ〉+ 〈ψ, µζ′ + rotχ〉] dt = 〈(φ0, ψ0), (χ(T ), ζ(T ))〉H +
∫

Σ

g · (ν ∧ χ) dΣ,

It follows that (φ, ψ) satisfy {
εφt − rotψ = 0
µψt + rotφ = 0 in Q

ν ∧ φ = 0 on Σ
φ(T ) = φ0, ψ(T ) = ψ0 in Ω

and that ψτ |Σ = g. Thus (φ0, ψ0) ∈ F0 := F ∩H0, and from (1.15) we have

〈(E1,H1), (φ0, ψ0)〉H = lim
n→∞

∫
Σ

|ψδnτ |2dΣ ≥
∫

Σ

|ψτ |2dΣ. (3.4)

Now consider the system {
εΦt − rot Ψ = 0
µΨt + rot Φ = 0 in Q

ν ∧ Φ = 0 on Σ

Φ(T ) = Φ0, Ψ(T ) = Ψ0 in Ω,

(3.5)

where (Φ0,Ψ0) ∈ F0. Corollary 1.1 implies that the problem (1.1, 1.3) with E0 = H0 = 0 has, for any
(E1,H1) ∈ H0 a solution J ∈ L2

τ (Σ). Further, the control J of minimum L2
τ (Σ) norm that steers (0, 0) to

(E1,H1) in time T is given by

J = −Ψτ |Σ,
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where (Φ,Ψ) is the solution of (3.5) with final data given by

〈(E1,H1), (Φ0,Ψ0)〉F0 =
∫

Σ

|Ψτ |2dΣ = ‖(Φ0,Ψ0)‖2F0
. (3.6)

From (3.6) we have

(E1,H1) = Λ0(Φ0,Ψ0)

where Λ0 is the Riesz isomorphism of F0 onto F0
′ and F ′0 is the dual space of F0 with respect to H0, and

‖(E1,H1)‖F0
′ = ‖(Φ0,Ψ0)‖F0 =

{∫
Σ

|Ψτ |2dΣ
}1/2

·

We now show that ∫
Σ

|Ψτ |2dΣ =
∫

Σ

|ψτ |2dΣ. (3.7)

From (3.4) we have

∫
Σ

|ψτ |2dΣ ≤ 〈(E1,H1), (φ0, ψ0)〉H ≤ ‖(E1,H1)‖F0
′‖(φ0, ψ0)‖F0 ≤

{∫
Σ

|Ψτ |2dΣ
}1/2{∫

Σ

|ψτ |2dΣ
}1/2

and therefore ∫
Σ

|ψτ |2dΣ ≤
∫

Σ

|Ψτ |2dΣ.

On the other hand, J = −Ψτ |Σ is the control of minimum L2
τ (Σ) norm such that the solution of (1.1) with

E0 = H0 = 0 satisfies (1.3), while δHδ
τ + ψδτ |Σ is another L2

τ (Σ) control that has this property. Thus∫
Σ

|Ψτ |2dΣ ≤
∫

Σ

|δHδ
τ + ψδτ |2dΣ =

∫
Σ

|ν ∧Eδ|2dΣ ≤
∫

Σ

|ψδτ |2dΣ = 〈(E1,H1), (φδ0, ψ
δ
0)〉H,

where we have used Lemma 2.3 and (1.15). Upon passing to the limit through δ = δn we obtain

∫
Σ

|Ψτ |2dΣ ≤ 〈(E1,H1), (φ0, ψ0)〉H ≤
{∫

Σ

|Ψτ |2dΣ
}1/2{∫

Σ

|ψτ |2dΣ
}1/2

,

hence ∫
Σ

|Ψτ |2dΣ ≤
∫

Σ

|ψτ |2dΣ,

which proves (3.7).
It follows from (3.7) that

〈(E1,H1), (φ0, ψ0)〉H =
∫

Σ

|ψτ |2dΣ. (3.8)
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Indeed, if (3.4) holds with strict inequality, we immediately see that∫
Σ

|ψτ |2dΣ <

∫
Σ

|Ψτ |2dΣ.

It now follows that

(φ0, ψ0) = Λ−1
0 (E1,H1) = (Φ0,Ψ0),

that the convergence in (3.3) is through all δ → 0, and that

lim
δ→0

∫
Σ

|ψδτ |2dΣ =
∫

Σ

|ψτ |2dΣ.

Since also ψδτ |Σ → ψτ |Σ weakly in L2
τ (Σ), it follows that the convergence is in the strong topology as well. This

completes the proof of Theorem 1.2. 2

Proof of Theorem 1.3. From the definitions (2.10) and (2.4) of the solutions of (1.1) and (1.2) with E0 = H0 = 0
and with J = −ψτ |Σ and J = −ψδτ |Σ, respectively, we obtain∫ T

0

〈(Eδ −E,Hδ −H), (f, g)〉Xdt =
∫

Σ

[ψτ ·Ψτ − ψδτ ·Ψδ
τ ] dΣ,∀(f, g) ∈ L1(0, T ;X ), ∀(Φ0,Ψ0) ∈ X ,

where (Φδ,Ψδ) and (Φ,Ψ) are the solutions of (2.3) and (2.6), respectively, and 〈·, ·〉X denotes the scalar product
in the X ′ −X duality. To complete the proof it suffices to show that

lim
δ→0

∫
Σ

ψδτ ·Ψδ
τ dΣ =

∫
Σ

ψτ ·Ψτ dΣ.

Since ψδτ |Σ → ψτ |Σ strongly in L2
τ (Σ), it is sufficient to prove that Ψδ

τ |Σ → Ψτ |Σ weakly in L2
τ (Σ). In fact, we

shall show convergence even in the strong topology. Set

Φ̂δ = Φδ − Φ, Ψ̂δ = Ψδ −Ψ.

These satisfy {
εΦ̂δt − rot Ψ̂δ = 0
µΨ̂δ

t + rot Φ̂δ = 0 in Q
ν ∧ Φ̂δ + δΨ̂δ

τ = −δΨτ on Σ
Φ̂δ(T ) = Ψ̂δ(T ) = 0 in Ω.

Because of our hypotheses on the data, we have Ψτ |Σ ∈ L2
τ (Σ). We apply Lemma 2.3 to this system to obtain

δ‖(Φ̂δ(t), Ψ̂δ(t))‖2H +
∫ T

t

∫
Γ

{|ν ∧ Φ̂δ|2 + δ2|Ψ̂δ
τ |2}dΓdt =

∫ T

t

∫
Γ

δ2|Ψτ |2dΓdt.

It follows that Ψ̂δ
τ |Σ, and hence Ψδ

τ |Σ, is bounded in L2
τ (Σ), that

(Φδ,Ψδ)→ (Φ,Ψ) strongly in L∞(0, T ;H),
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and that Ψδ
τ |Σ → h weakly in L2

τ (Σ) through a sequence of δ’s tending to zero where, in fact, h = Ψτ |Σ (see
the argument in the proof of Th. 1.2). In addition,∫

Σ

|Ψτ |2dΣ ≤ lim inf
δ→0

∫
Σ

|Ψδ
τ |2 ≤

∫
Σ

|Ψτ |2dΣ,

where the last inequality is from Theorem 1.1. Hence Ψδ
τ |Σ → Ψτ |Σ strongly in L2

τ (Σ).
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