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OPTIMAL CONTROL OF STATIONARY, LOW MACH NUMBER,
HIGHLY NONISOTHERMAL, VISCOUS FLOWS ∗

Max D. Gunzburger
1

and O.Yu. Imanuvilov
1

Abstract. An optimal control problem for a model for stationary, low Mach number, highly non-
isothermal, viscous flows is considered. The control problem involves the minimization of a measure of
the distance between the velocity field and a given target velocity field. The existence of solutions of
a boundary value problem for the model equations is established as is the existence of solutions of the
optimal control problem. Then, a derivation of an optimality system, i.e., a boundary value problem
from which the optimal control and state may be determined, is given.

Résumé. Dans cet article, on considère un problème de contrôle optimal pour un fluide visqueux,
stationnaire et fortement non-isothermique, à petit nombre de Mach. On regarde d’abord un problème
de minimisation pour l’écart entre le champ de vitesse et un champ de vitesse donné. On montre
l’existence de solutions pour ce problème ainsi que pour le problème de contrôle optimal initial. On
donne ensuite un système vérifié par les solutions du probléme de contrôle optimal, système qui consiste
en un problème aux limites dont on peut obtenir le contrôle optimal et l’état.
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1. Introduction

In recent times, there has been many studies, both of a mathematical and an engineering nature, of control
and optimization problems for the Navier-Stokes system for incompressible, viscous flows. There have also
been a number computational studies of such problems for compressible flows, including flows with shock waves
and other discontinuities. Here we are concerened with the mathematical analysis of control and optimization
problems for a simplified yet useful model for compressible flows that is valid for low Mach number, highly
nonisothermal, viscous flows. One important application to which this model applies is flows in chemical vapor
deposition reactors; see, e.g. [1, 3, 6].
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Specifically, given the bounded, two-dimensional domain Ω with boundary Γ, the control problem we consider
is in the context of the boundary value problem

−∆u + ρu · ∇u +∇p+ β

(
0
1

)
ρT = f in Ω, (1)

∇ · (ρu) = 0 in Ω, (2)

u|Γ = 0, (3)

−∆T + ρu · ∇T = q in Ω, (4)

ρ(1 + T ) = 1 in Ω, (5)

and

T |Γ = θ, (6)

where u, p, ρ, and T denote the (appropriately nondimensionalized) velocity, pressure, density, and temperature
fields, respectively. In a boundary value problem, the functions q, f , and θ are given as is the constant β = 1/Fr,
where Fr denotes the Froude number. In the control problem we will consider, the function θ will act as a
control and is therefore unknown. We assume, for the boundary value problem, that

q ≥ 0 in Ω (7)

and

θ ≥ 0 on Γ; (8)

the second of these will also be a requirement of candidate optimal controls in the optimization problem we
will consider. In the nondimensional model (1–8), the variables and data functions have been appropriately
rescaled. Also, T actually denotes a temperature difference with respect to a reference temperature.

A detailed derivation of the model (1–8) is given in [6]; see also [4]. Here, we only mention that the model
is derived from the equations for viscous, compressible flows (see, e.g. [7]) under the assumptions that the
Mach number M = V0/a0 and the hydrostatic compressibility gL0/(RT0) is small, where g is the constant
gravitational acceleration, a0 is the speed of sound, R is the gas constant, and L0, V0, and T0 are length,
velocity, and temperature scales, respectively. Specifically, it is assumed that M2 � 1 and gL/(RT0) � 1
in such a way that gL/(M2RT0) = O(1). This model is not useful for describing acoustic phenomena due to
the independence of the pressure from the density and temperature; see (5) which is the simplified ideal gas
equation of state valid in the limits given above.

The essential differences between the model (1–8) and the Navier-Stokes system are evident. Not only is
there coupling between the conservation of energy equation equation (4) and the conservation of momentum
and mass equations (1) and (2), respectively, but we also have the appearance of the density function ρ. Note,
in particular, that from (2), the velocity field u itself is not solenoidal.

The specific control problem we consider is to find a boundary temperature distribution θ and a velocity field
u such that the functional

J(u, θ) =
1
2

∫
Ω

|u− u0|2 dΩ +
1
2

∫
Γ

(
|θ − θ0|2 +

∣∣∣∣∂(θ − θ0)
∂~τ

∣∣∣∣2
)
dΓ, (9)
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is minimized subject to the system (1–8) being satisfied. Here, u0 and θ0 are given functions and ~τ = ~τ(x)
denotes the unit, continuous tangent vector to Γ. The first term in the functional J(·, ·) measures the distance
between the velocity field u and a prescribed velocity field u0. The second term is used to limit the size of the
control function θ.

The plan of the rest of the paper is as follows. In Section 2, we study the existence of solutions of the
boundary value problem, i.e., of the system (1–8) where θ is a prescribed function. In Section 3, we study
the existence of solutions of the optimal control problem, i.e., the problem of finding θ and u such that the
functional of (9) is minimized subject to (1–8). Then, in Section 4, we derive an optimality system, i.e., a
boundary value problem from which the optimal control θ and optimal state (u, T, p) may be determined.

2. The boundary value problem

Let Ω denote a bounded, open set of R2 with boundary Γ ∈ C2. We define the function spaces

H = {v ∈ [L2(Ω)]2 | ∇ · v = 0, (v · n)|Γ = 0},

V = {v ∈ [W 1
2 (Ω)]2 | ∇ · v = 0, v|Γ = 0},

L̃2(Ω) = {p ∈ L2(Ω) |
∫

Ω

p dΩ = 0},

Hs = V ∩ [W s
2 (Ω)]2, s ≥ 1, and W̃ s

2 (Ω) = W s
2 (Ω) ∩ L̃2(Ω), s ≥ 0,

where n denotes the unit outer normal along Γ. We have the following result concerning the existence of
solutions of the boundary value problem (1–6) for which θ as well as f and q are prescribed functions.

Theorem 2.1. Let θ ∈ W s
2 (Γ), s ∈

[
1, 3

2

]
, f ∈ [L2(Ω)]2, q ∈ L2(Ω), and let the conditions (7) and (8) hold

true. Then, the problem (1–6) has at least one solution (u, T, p) ∈
[
W

s+ 1
2

2 (Ω)
]2
× W

s+ 1
2

2 (Ω) × L̃2(Ω) with

ρu ∈ H2. Moreover, if (u, T, p) ∈
[
W 1

2 (Ω)
]2 ×W 3

2
2 (Ω) × L̃2(Ω) is a solution of (1)–(6), then it belongs to the

space [W s+ 1
2

2 (Ω)]2 ×W s+ 1
2

2 (Ω)× L̃2(Ω) and there exists a continuous function M(t) such that every solution to

this problem from the space [W 1
2 (Ω)]2 ×W

3
2

2 (Ω)× L̃2(Ω) satisfies the a priori estimate

‖(u, T, p)‖�
W
s+ 1

2
2 (Ω)

�2

×Ws+ 1
2

2 (Ω)×eL2(Ω)
≤M

(
‖θ‖Ws

2 (Γ) + ‖q‖L2(Ω) + ‖f‖[L2(Ω)]2
)
. (10)

To prove Theorem 2.1, we need some preliminary results, the first of which is a regularity result for solutions
of the generalized Stokes system.

Proposition 2.2. For any f ∈ [L2(Ω)]2 and g ∈ W̃ `
2 (Ω), ` ∈ [0, 1], there exist a solution (u, p) ∈ [W `+1

2 (Ω)]2 ×
W̃ `

2 (Ω) to the generalized Stokes problem

−∆v = ∇p+ f in Ω,

∇ · v = g in Ω, and v|Γ = 0.
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Moreover, this solution is unique in the space [W 1
2 (Ω)]2 × L̃2(Ω) and satisfies the estimate

‖v‖[W `+1
2 (Ω)]2 + ‖p‖W `

2 (Ω) ≤ C1(‖f‖[L2(Ω)]2 + ‖g‖W `
2(Ω)).

Proof. For ` = 0 or 1, the statement of this proposition proved in [8] (Prop. 2.2, p. 33, Th. 2.4, p. 31).
Thus, we need only consider the case when ` ∈ (0, 1). Let T be the linear operator on [L2(Ω)]2 × L̃2(Ω)
such that T (f , g) = (v, p), where the pair (v, p) is the solution to the generalized Stokes system. Obviously,
T ∈ L([L2(Ω)]2 × L̃2(Ω); [W 1

2 (Ω)]2 × L̃2(Ω)) ∩ L([L2(Ω)]2 × W̃ 1
2 (Ω); [W 2

2 (Ω)]2 × W̃ 1
2 (Ω)). Since by definition

(see [5], p. 40), W `
2 (Ω) = [W 1

2 (Ω), L2(Ω)]ξ, (1 − ξ) = `, the theorem on the interpolation of quotient spaces
(see [5], Th. 13.2, p. 90) implies that W̃ `

2 (Ω) = [W 1
2 (Ω) ∩ L̃2(Ω), L̃2(Ω)]ξ, (1 − ξ) = `. Thus, by [5] (Th. 5.1,

p. 27),

T ∈ L
(
[L2(Ω)]2 × W̃ `

2 (Ω); [W 1+`
2 (Ω)]2 × W̃ `

2 (Ω)
)
.

For the next preliminary result, we introduce, for an arbitrary function v ∈ H∩ [L5(Ω)]2, the mapping φ : v→
φ(v), where φ(v) is the solution to the boundary value problem

Lφ = −∆φ+ v · ∇φ = q in Ω and φ|Γ = θ, (11)

where q ∈ L2(Ω) and θ ∈W 1
2 (Γ) satisfy to (7) and (8). φ(v) of (11) from the space L2(Ω) in the following sense:

(φ(v), L∗ψ)L2(Ω) = (q, ψ)L2(Ω) +
(
θ,
∂ψ

∂ν

)
L2(Γ)

∀ψ ∈W 2
2 (Ω) ∩

◦
W 1

2(Ω),

where formally, since ∇ · v = 0, the adjoint operator L∗ has the form

L∗ψ = −∆ψ − v · ∇ψ.

For the problem (11), we have the following result which includes a priori estimates for φ(v) which are inde-
pendent of v. Such estimates will be needed later to apply a fixed point theorem.

Proposition 2.3. The solution of the problem (11) for the mapping φ : H ∩ [L5(Ω)]2 → L2(Ω) exists and is
unique. Moreover, we have that

φ(v) ≥ 0 in Ω, (12)

‖φ(v)‖Lk(Ω) ≤ C2(k)
(
‖q‖L2(Ω) + ‖θ‖W1

2 (Γ)

)
∀k ∈ N+, (13)

and

‖φ(v)‖
W

1
2 +s

2 (Ω)
≤ C3(‖v‖[L5(Ω)]2)

(
‖q‖L2(Ω) + ‖θ‖W1

2 (Γ)

)
, s ∈ (1, 3/2], (14)

where C2(k) is independent of v, q, θ and C3 is independent of q, θ and depends continuously on ‖v‖[L5(Ω)]2 .

Proof. To prove the existence of a solution to (11), we assume v ∈ V ∩
[
W

3
2

2 (Ω)
]2

and rewrite the problem in
the abstract form

P φ(v) = (P1 + P2)φ(v) = (q, θ),
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where P1y = (−∆y , y|Γ) and P2y = (v · ∇y, 0). We now show that the operator P : W s+ 1
2

2 (Ω)→ W
s− 3

2
2 (Ω) ×

W s
2 (Γ) has the property

ImP = W
s− 3

2
2 (Ω)×W s

2 (Γ). (15)

It is well known (see [5]) that (15) holds true for the operator P1, i.e.,

ImP1 = W
s− 3

2
2 (Ω)×W s

2 (Γ). (16)

Moreover, due to the inequality

‖v · ∇φ‖L2(Ω) ≤ C1‖v‖[L5(Ω)]2‖φ‖
W

3
2

2 (Ω)
,

the operator P2 : W s+ 1
2

2 (Ω)→W
s− 3

2
2 (Ω)×W s

2 (Γ) is compact. Hence, instead of (15), it suffices to prove

ImP = W
s− 3

2
2 (Ω)×W s

2 (Γ). (17)

On the other hand (16) implies that (17) is equivalent to the following: for the operator L : W s+ 1
2

2 (Ω)∩
◦
W 1

2(Ω)→
W

s− 3
2

2 (Ω),

ImL = W
s− 3

2
2 (Ω). (18)

Suppose that (18) does not hold true. In that case, there exists a nonzero solution z ∈ L2(Ω) to the boundary
value problem

L∗z = 0 in Ω and z|Γ = 0. (19)

Taking into account the fact that v·∇z ∈W−1
2 (Ω), we obtain from (19) that z ∈W 1

2 (Ω). This regularity implies
immediately v · ∇z ∈ L2(Ω). Hence, z ∈ W 2

2 (Ω) and taking the scalar product of this function with (19), we
obtain

∫
Ω
|∇z|2 dΩ = 0. This, together with the boundary condition in (19), implies that z ≡ 0 which is a

contradiction.
Now, let v ∈H∩ [L5(Ω)]2 be an arbitrary function and the sequence vi ∈ V∩ [C2(Ω)]2 be its approximation

in the space H ∩ [L5(Ω)]2 so that

vi → v in H ∩ (L5(Ω))2 as i→ +∞. (20)

Above we proved that for each vi there exists a solution yi ∈W
s+ 1

2
2 (Ω) to the boundary problem

Liyi = −∆yi + vi · ∇yi = q in Ω and yi|Γ = θ. (21)

By the maximum principle, we have that

yi ≥ 0 in Ω. (22)

We now decompose the function yi into the form yi = y
(1)
i + y

(2)
i , where

Liy
(1)
i = q in Ω and y

(1)
i |Γ = 0 (23)
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and

Liy
(2)
i = 0 in Ω and y

(2)
i |Γ = θ. (24)

Taking the scalar product in L2(Ω) of (23) and the function (y(1)
i )2k+1 we obtain

2k + 1
(k + 1)2

∫
Ω

∣∣∣∇(y(1)
i )k+1

∣∣∣2 dΩ =
∫

Ω

(
y

(1)
i

)2k+1

q dΩ.

This equality and the Sobolev imbedding theorem imply that∥∥∥(y(1)
i )k

∥∥∥
W1

2 (Ω)
≤ C3(k)‖q‖kL2(Ω) ∀ k ≥ 1 , (25)

where the constant C3(k) is independent of v. From (24), by the maximum principle and the Sobolev imbedding
theorem, we obtain ∥∥∥y(2)

i

∥∥∥
L∞(Ω)

≤ C3‖θ‖W1
2 (Γ), (26)

where C3 is independent of v. Moreover, due to the inequality

‖yi‖
W
s+ 1

2
2 (Ω)

≤ C4

(
‖q‖L2(Ω) + ‖θ‖Ws

2 (Γ) + ‖v‖[L5(Ω)]2‖yi‖
W

7
5

2 (Ω)

)
and standard a priori estimates for the Laplace operator, we have

‖yi‖
W

1
2 +s

2 (Ω)
≤ C5(‖vi‖[L5(Ω)]2)

(
‖q‖L2(Ω) + ‖θ‖Ws

2 (Γ)

)
. (27)

Hence, without the loss of generality, taking if necessary a subsequence, we can assume that

yi → y weakly in W
1
2 +s

2 (Ω) , s ∈
(

1,
3
2

]
· (28)

In particular (22) and (28) imply that

y ≥ 0 in Ω. (29)

Furthermore (28) and the inequalities (25–27) imply that

‖y‖Lk(Ω) ≤ C6(k)
(
‖q‖L2(Ω) + ‖θ‖W1

2 (Γ)

)
∀k ∈ N+, (30)

where the constant C6 is independent of v, and

‖y‖
W

1
2 +s

2 (Ω)
≤ C7(‖v‖[L5(Ω)]2)

(
‖q‖L2(Ω) + ‖θ‖W1

2 (Γ)

)
. (31)

By (20) and (23), we can pass to the limit in (21) to obtain

Ly = −∆y + v · ∇y = q in Ω and y|Γ = θ.

Thus, we established the existence of a solution to problem (11).
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Now let us prove the uniqueness of this solution in L2(Ω). Suppose that problem (11) has two solutions
yj ∈ L2(Ω), j = 1, 2. Obviously, the function w = y1 − y2 is the solution to the boundary value problem

Lw = 0 in Ω and w|Γ = 0. (32)

Suppose that there exists a nonzero solution to (32). Then,

(w,L∗z)L2(Ω) = 0 ∀ z ∈W 2
2 (Ω) ∩

◦
W 1

2(Ω). (33)

On the other hand, as we showed above, there exists a solution z̃ ∈W 2
2 (Ω) to the problem

L∗z̃ = w in Ω and z̃|Γ = 0;

to obtain this solution, one merely has to exchange v for −v in (21). If we substitute z̃ in (33), we obtain w ≡ 0.
Hence, we have that φ(v) = y and by (29–31), we have obtained the estimates (12–14).

We next consider the solution (u, p) ∈ [W 1
2 (Ω)]2 × L̃2(Ω) of the boundary value problem

−∆u + v · ∇u + ωωω(v) +∇p = f in Ω, (34)

∇ ·
(

u
1 + φ(v)

)
= 0 in Ω, (35)

and

u|Γ = 0, (36)

where φ(v) is the solution of (11) and

ωωω(v) = β

(
0
1

)
φ(v)

1 + φ(v)
·

By (12) and (13),

‖ωωω(v)‖[L2(Ω)]2 ≤ C10

(
‖θ‖W1

2 (Γ) + ‖q‖L2(Ω)

)
. (37)

For the boundary value problem (34–36), we have the following result.

Proposition 2.4. Let v ∈ H ∩ [L5(Ω)]2 and f ∈ H. Then, (34–36) has a unique solution (u, p) ∈ [W 1
2 (Ω)]2 ×

L̃2(Ω). Moreover, the estimate∥∥∥∥ u
1 + φ(v)

∥∥∥∥
[W1

2 (Ω)]2
≤ C8

(
‖f‖H + ‖θ‖W1

2 (Γ) + ‖q‖L2(Ω)

)
, (38)

where the constant C8 is independent of v, holds.
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Proof. We first show that if a solution (u, p) ∈ [W 1
2 (Ω)]2 × L̃2(Ω) exists, it is unique. To see this, suppose

that (34–36) has two solutions (u1, p1), (u2, p2) ∈ [W 1
2 (Ω)]2 × L̃2(Ω). Then, the pair w = u1 − u2 and

r = p1 − p2 satisfies the system of equations

−∆w + v · ∇w +∇r = 0 in Ω, (39)

∇ ·
(

w
1 + φ(v)

)
= 0 in Ω, (40)

and

w|Γ = 0. (41)

Multiplying (39) by w̃ = w/(1 + φ(v)), integrating over Ω, and then integrating by parts, we obtain

0 =
∫

Ω

{
∇
(

1 + φ(v)
)
w̃ · ∇w̃ +

1
2
|w̃|2v · ∇

(
1 + φ(v)

)}
dΩ

=
∫

Ω

{(
1 + φ(v)

)
|∇w̃|2 +

1
2
∇
(

1 + φ(v)
)
· ∇|w̃|2 +

1
2
|w̃|2v · ∇φ(v)

}
dΩ

=
∫

Ω

(
(1 + φ(v))|∇w̃|2 − 1

2
|w̃|2∆φ(v) +

1
2
|w̃|2v · ∇φ(v)

)
dΩ. (42)

Then, by (11), ∫
Ω

(
(1 + φ(v))|∇w̃|2 + q|w̃|2

)
dΩ = 0

and our statement, i.e., w = 0, follows from (7) and (12).
The next step is to prove that the problem (34–36) has a solution for all f ∈H. We define the linear operator

A by

A(u, p) =
(
−∆u + v · ∇u +∇p , ∇ · u

1 + φ(v)
− u · ∇φ(v)

(1 + φ(v))2

)
· (43)

Obviously, for any nonnegative function φ(v) ∈W
3
2

2 (Ω), we have

A ∈ L
(

[W 2
2 (Ω)]2 × W̃ 1

2 (Ω); [L2(Ω)]2 × W̃ 1
2 (Ω)

)
. (44)

Let us now show that

Im(A) ⊃ [L2(Ω)]2 × {0} · (45)

First, we claim

Im Ã = V∗ × L̃2(Ω), (46)

where (·)∗ denotes the dual space,

Ã(u, p) =
(

P(−∆u + v · ∇u +∇p) , ∇ · u
1 + φ(v)

− u · ∇φ(v)
(1 + φ(v))2

)
,
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and the operator P is orthoprojector from [L2(Ω)]2 to H. Our proof is by contradiction. Suppose that Im Ã 6=
V∗ × L̃2(Ω). Then, there exists an element of the space V × L̃2(Ω) which we denote by (z, ζ) such that

〈A(u, p), (z, ζ)〉 = 0 ∀ (u, p) ∈ [W 2
2 (Ω)]2 × W̃ 1

2 (Ω) (47)

which immediately implies that

−∆z− v · ∇z =
1

1 + φ(v)
∇ζ in Ω, (48)

∇ · z = 0 in Ω, (49)

and

z|Γ = 0. (50)

Then, multiplying (48) by (1 + φ(v))z, integrating over Ω, and then integrating by parts, we have

0 =
∫

Ω

{
(1 + φ(v))|∇z|2 − 1

2
∆φ(v)|z|2 +

1
2

(v · ∇φ(v))|z|2
}
dΩ

=
∫

Ω

(
(1 + φ(v))|∇z|2 + q|z|2

)
dΩ

and, by (7) and (12), z ≡ 0. Then (47) yields ∇ζ = 0. Hence, ζ ≡ 0. Thus, we have reached the contradiction.
Now, we let f be an arbitrary element from H. Then, by (45), there exists a sequence {(fi, ri,ui, pi)} ⊂

H× L̃2(Ω)× [W 2
2 (Ω)]2 × W̃ 1

2 (Ω) such that

(fi, ri)→ (f , 0) in H× W̃ 1
2 (Ω),

−∆ui + v · ∇ui + ωωω(v) +∇pi = fi in Ω, (51)

∇ ·
(

ui
1 + φ(v)

)
= ri in Ω, (52)

and

ui|Γ = 0. (53)

Multiplying (51) by ũi = ui/(1 + φ(v)), integrating over Ω, and then integrating by parts, we obtain, similarly
to (42), ∫

Ω

(
(1 + φ(v))|∇ũi|2 + q|ũi|2 +

ωωω(v) · ui
(1 + φ(v))

)
dΩ−

∫
Ω

fi · ũi dΩ−
∫

Ω

ripi dΩ = 0. (54)

From (51) we obtain

‖pi‖L2(Ω) ≤ C11

(
‖ui‖[W1

2 (Ω)]2 + ‖ωωω(v)‖[L2(Ω)]2 + ‖fi‖H + ‖v‖[L5(Ω)]2‖ui‖[W1
2 (Ω)]2

)
.
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This equality (37), and (54) imply the estimate

‖ui‖2[L2(Ω)]2 +
∥∥∥∥ ui

1 + φ(v)

∥∥∥∥2

[W1
2 (Ω)]2

≤ C12

(
‖f‖2H + ‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + 1
)
, (55)

where the constant C12 is independent of v. In particular, since φ(v) ∈W
3
2

2 (Ω), the estimate (55) implies that

‖ui‖2[W1
2 (Ω)]2 ≤ C13

(
‖f‖2H + ‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + 1
)
. (56)

Thus, we have that, taking if it is necessary a subsequence,

(ui, pi)→ (u, p) in [W 1
2 (Ω)]2 × L̃2(Ω).

Passing to the limit in (51) and (53), we obtain that (u, p) is the solution to problem (34–36). Passing to the
limit in (55), we obtain (38).

We are now in a position to prove Theorem 2.1 by a fixed point argument.

Proof of Theorem 2.1. We first prove the theorem under the assumption that θ ∈W s
2 (Γ), s ∈ (1, 3

2 ].
We define the mapping G(v) by

G(v) =
u

1 + φ(v)
, (57)

where φ(v) is the solution of (11) and (u, p) ∈ [W 1
2 (Ω)]2 × L̃2(Ω) is the solution of the boundary value prob-

lem (34–36). Note that by (36) and (55), G(v) ∈ V. Obviously, if ṽ is the fixed point of the mapping G, then
the pair ((1 + φ(ṽ))ṽ, φ(ṽ)) is the solution to problem (1–6).

Let us now prove that

G ∈ C(H ∩ [L5(Ω)]2; H ∩ [L5(Ω)]2). (58)

To prove (58), let us establish the continuity of the mapping φ, i.e.,

φ ∈ C(H ∩ [L5(Ω)]2;L2(Ω)). (59)

Suppose the contrary. In that case, there exists a sequence vi such that

vi → v in H ∩ [L5(Ω)]2 (60)

and

φ(vi) 6→ φ(v) in L2(Ω).

By (14) and (60), we can assume

φ(vi)→ ỹ in W 1
4 (Ω). (61)

Passing to the limit in (11), keeping in mind (60) and (61), we have that

Lỹ = q in Ω and ỹ|Γ = θ.
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Then, the uniqueness of the solution to problem (11) in L2(Ω) implies immediately that ỹ = φ(v). We have
reached the contradiction.

By (59), to prove (58) it now suffices to show that the mapping G1(v) = u, where u is the solution of (34–36),
belongs to C(H∩ [L5(Ω)]2; [L5(Ω)]2). Suppose the contrary. In that case, there exists the sequence vi such that

vi → v in H ∩ [L5(Ω)]2 (62)

and

G1(vi) 6→ G1(v) in [L2(Ω)]2.

By (55, 59), and (62), we can assume that

G1(vi)→ ũ in [W 1
2 (Ω)]2 (63)

and

ωωω(vi)→ ωωω(v) in [L2(Ω)]2.

Thus, passing to the limit in (57–34), we obtain that

−∆ũ + v · ∇ũ + ωωω(v) +∇p̃ = f in Ω,

∇ ·
(

ũ
1 + φ(v)

)
= 0 in Ω,

and

ũ|Γ = 0.

On the other hand, for the element u = G1(v) one can find the pressure p ∈ L2(Ω) such that the pair (u, p)
satisfies (34–36). Then, Proposition 2.4 implies that ũ = G1(v). Thus, we have arrived at a contradiction.

Let Bγ be the ball in H∩ [L5(Ω)]2 of radius γ centered at zero. By (38) and the Sobolev embedding theorem,
for all γ large enough,

G(Bγ) ⊂ Bγ .

Moreover, (45) and the compactness of the embedding of V ⊂ H ∩ [L5(Ω)]2 implies that

ImG is compact in H ∩ [L5(Ω)]2.

Thus, all conditions of the Leray-Shauder fixed point theorem hold true and there exists a fixed point of the
mapping G. By (14), the temperature component of our solution T ∈W

1
2 +s

2 (Ω).
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Now let us prove that the component u of our solution belongs to
[
W

s+ 1
2

2 (Ω)
]2

. First, we rewrite the
system (1–3) in the form

−∆u +∇p = f̃ in Ω, (64)

∇ · u = m̃ in Ω, (65)

u|Γ = 0, (66)

where

f̃ = −ρu · ∇u− β
(

0
1

)
ρT

and m̃ = −(u · ∇ρ)/ρ. By (14) and (38),

‖f̃‖[W−1
4 (Ω)]2 + ‖m̃‖L4−ε(Ω) ≤ C14(ε)

(
‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + ‖f‖2H + 1
)
∀ε > 0. (67)

Then, by the theorem on regularity of the Stokes system (see [8], Prop. 2.3.3, p. 35) we have

‖u‖[W1
4−ε(Ω)]2 + ‖p‖L4−ε(Ω) ≤ C14(ε)

(
‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + ‖f‖2H + 1
)

∀ε > 0. (68)

This improved regularity implies immediately that

‖f̃‖[L2(Ω)]2 + ‖m̃‖
W
s− 1

2
2 (Ω)

≤ C15(ε)
(
‖θ‖4Ws

2 (Γ) + ‖q‖4L2(Ω) + ‖f‖4H + 1
)
. (69)

Hence by regularity results for the Stokes system (see, e.g. [8], Prop. 2.2, p. 33), we have

‖u‖�
W
s+ 1

2
2 (Ω)

�2 + ‖p‖
W
s− 1

2
2 (Ω)

≤ C16

(
‖θ‖4Ws

2 (Γ) + ‖q‖4L2(Ω) + ‖f‖4H + 1
)
. (70)

To establish the [W 2
2 (Ω)]2 regularity of the function w = ρu, we rewrite (1–3) in terms of (w, ζ) that satisfies

the equations

−∆w +∇ζ = g in Ω, (71)

∇ ·w = 0 in Ω, (72)

and

w|Γ = 0, (73)

where

g = ρ

(
−ρu · ∇u− β

(
0
1

)
ρT + f + 2∇T · ∇w− (q − ρu · ∇T )w

)
+ p∇ρ.
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Since by (14, 70) g ∈ [L2(Ω)]2, Proposition 2.2 yields w ∈H2.
Now, let us prove the estimate (10). Let u be an arbitrary solution to problem (1–6) and the parameter

s ∈
[
1, 3

2

]
. Since ρu ∈ H ∩ [L5(Ω)]2 and ∇ · (ρu) = 0, we can use the a priori estimate (13) for the boundary

problem (11), i.e.,

‖T‖L2(Ω) ≤ C17

(
‖q‖L2(Ω) + ‖θ‖W1

2 (Γ)

)
. (74)

Thus, for the function w1 = −β
(

0
ρT

)
, the analog of (37) holds true, i.e.,

‖w1‖[L2(Ω)]2 ≤ C18

(
‖θ‖W1

2 (Γ) + ‖q‖L2(Ω) + 1
)
. (75)

Taking the scalar product in L2(Ω) of (1) and the function ρu, similar to (54), we have∫
Ω

(
1
ρ
|∇(ρu)|2 + ρu ·w1

)
dΩ−

∫
Ω

ρu · f dΩ = 0.

From (1.64) and this equality we have

‖u‖2[W1
2 (Ω)]2 ≤ C19

(
‖f‖2H + ‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + 1
)
. (76)

We decompose the function T in the form T = τ1 + τ2, where

−∆τ2 = q in Ω and τ2|Γ = θ. (77)

By (63) and standard a priori estimates for the Laplace operator (see, e.g. [5]),

‖τ2‖Ws+1/2
2 (Ω)

≤ C20

(
‖θ‖Ws

2 (Γ) + ‖q‖L2(Ω)

)
. (78)

By (4) and (64), the function τ1 satisfies

−∆τ1 + ρu · ∇τ1 = −ρu · ∇τ2 in Ω and τ1|Γ = 0. (79)

Due to the inequality ‖ρu · ∇τ2‖L2(Ω) ≤ C21‖u‖[W1
2 (Ω)]2‖τ2‖

W
5
4

2 (Ω)
and standard a priori estimates for elliptic

equations, we have

‖τ1‖W2
2 (Ω) ≤ C22‖u‖[W1

2 (Ω)]2‖τ2‖
W

5
4

2 (Ω)
. (80)

The inequalities (76–80) yield

‖T‖
W

1
2 +s

2 (Ω)
≤ C23

(
‖f‖2H + ‖θ‖2W1

2 (Γ) + ‖q‖2L2(Ω) + 1
)
. (81)

Finally, repeating the argument extending over (64–70), we obtain from (10) and (81) the W
s+ 1

2
2 (Ω)-norm

estimate for the function u.
Now let θ be an arbitrary nonnegative function from the space W 1

2 (Γ). Due to the continuous embedding of
the space W 1

2 (Γ) in C0(Γ), we can approximate this function by the nonnegative functions θi ∈W 2
2 (Γ), i.e.,

θi → θ in W 1
2 (Γ).
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For each element (f , q, θi), there exists at least one solution (ui, Ti, pi) ∈
[
W 2

2 (Ω)
]2 ×W 2

2 (Ω) × W̃ 1
2 (Ω) to the

problem (1–6). Moreover, by (10), the sequence {(ui, Ti, pi)}∞i=1 is bounded in
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× W̃
1
2

2 (Ω).

Taking the subsequence which converges weakly in
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× W̃
1
2

2 (Ω) to some element (u, T, p) and
passing to the limit in (1–6), we can show that this element is solution to (1–6). The proof of Theorem 2.1 is
complete.

3. The optimal control problem

In this section, we consider the optimal control problem

J(u, θ) =
1
2
‖u− u0‖2[L2(Ω)]2 +

1
2
‖θ − θ0‖2W1

2 (Γ) −→ inf (82)

(u, p, T, θ) satisfies (1–7) (83)

and

θ ∈ K, (84)

where K ⊂ {θ ∈W 1
2 (Ω) | θ(x) ≥ 0 ∀x ∈ Γ} is a convex, closed, nonempty set in W 1

2 (Γ) and

‖θ‖2W1
2 (Γ) = ‖θ‖2L2(Γ) +

∥∥∥∂θ
∂~τ

∥∥∥2

L2(Γ)

with ~τ denoting the unit, continuous tangent vector to Γ. The functions u0 ∈ [L2(Ω)]2 and θ0 ∈ W 1
2 (Γ) are

given; the function θ is the control to be determined as part of the solution of the optimal control problem.
We say that (u, T, p, θ) ∈

[
W 2

2 (Ω)
]2 ×W 3

2
2 (Ω) × L̃2(Ω) × L2(Γ) is an admissible element to the extremal

problem (82–84) if (83–84) hold true. We denote the all set of admissible elements to the problem (82–84) by
Uad.

We say that an admissible element (û, T̂ , p̂, q̂) ∈
[
(W 2

2 (Ω)
]2 ×W 3

2
2 (Ω)× L̃2(Ω)× L2(Γ) is a global minimizer

of the problem (82–84) if

J(û, ĝ) ≤ J(u, g) ∀ (u, T, p, g) ∈ Uad.

We have the following result.

Theorem 3.1. Let f ∈ [L2(Ω)]2, q ∈ L2(Ω), u0 ∈ [L2(Ω)]2, and θ0 ∈ W 1
2 (Γ) be given and let condition (7)

hold true. Then, there exists a solution (û, T̂ , p̂, ĝ) of the problem (82–84) belonging to
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω) ×
L̃2(Ω)× L2(Γ) such that û/(1 + T̂ ) ∈H2.

Proof. By Theorem 2.1, there exists at least one admissible element (u, T, p, θ) ∈
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)×L̃2(Ω)×
W 1

2 (Γ) to problem (82–84) with ρu ∈ H2. Thus, there exists a minimizing sequence {(ui, Ti, pi, θi)}∞i=1 ∈[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× L̃2(Ω) ×W 1
2 (Γ) such that ρiui ∈ H2. Let vi = ρiui ∈ H2. Then, by Theorem 2.1, the

sequence

{(vi,ui, Ti, pi, θi)}∞i=1 is bounded in H2 ×
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× L̃2(Ω)× L2(Γ). (85)
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Thus, taking if necessary a subsequence, we have that

(vi,ui, Ti, pi, θi)→ (v̂, û, T̂ , p̂, θ̂) weakly in H2 ×
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× L̃2(Ω)× L2(Γ). (86)

Obviously, (û, T̂ , p̂, θ̂) satisfies the system (1–4). Moreover, since the set K is closed in the weak topology in
W 1

2 (Γ), the function θ̂ belongs to the set K. Hence, (û, p̂, θ̂) is the admissible element to problem (82–84).
Then, the lower semicontinuity of the functional J respect to weak convergence in [L2(Ω)]2 ×L2(Γ) yields that
(û, T̂ , p̂, θ̂) is the solution to problem (82–84).

Now we would like to study the question of the uniqueness of the solution to problem (82–84). First, let us
reformulate the extremal problem (82–84) as a problem of finding the point of least distance between (u0, θ0)
and some set in the space [L2(Ω)]2 ×W 1

2 (Γ). Let us introduce the set

T = { (u, θ) ∈ [W 1
2 (Ω)]2 ×W 1

2 (Γ) | θ ∈ K, and there exist a pair (T, p) ∈W 1
2 (Ω)× L̃2(Ω)

such that (u, p, T ) satisfies (1)–(4), T |Γ = θ, and ρ(1 + T ) = 1 }·

Obviously, if the element (û, p̂, T̂ , θ̂) is a solution to problem (82–84), then the pair (û, θ̂) is solution to the
following problem:

‖(u, θ)− (u0, θ0)‖[L2(Ω)]2×W1
2 (Γ) → inf , (u, θ) ∈ T . (87)

Let us recall some facts about problems of the type (87). First, let X be a Banach space and M ⊂ X . We
say that the set M is sequentially weakly closed if every point in the space X that is the weak limit of some
sequence of elements {yn}∞1 ⊂ M belongs to M . Second, let X be a Banach space and M ⊂ X . We call
a set M a Tchebycheff set if for any f ∈ X there exists a unique element x̂ ∈ M satisfying the condition
‖f − x̂‖ = infx∈M ‖f − x‖.

We will need the following particular case of Efimov-Stechkin theorem (see, e.g. [2]).

Theorem 3.2. Let X be a Hilbert space and let M ⊂ X be a Tchebycheff set. Then, if M is sequentially weakly
closed, it is convex.

We then have the following result.

Theorem 3.3. Let f ∈ [(L2(Ω)]2 and q ∈ L2(Ω). Then, there exists a set O ⊂ [L2(Ω)]2 ×W 1
2 (Γ) such that for

all (u0, θ0) ∈ O, the problem (82–84) has a unique solution. On the other hand, if the set T is not convex, there
exists a pair (u0, θ0) such that the problem (82–84) has more than one solution.

Proof. Let {(ui, θi)}∞i=1 ⊂ T be an arbitrary sequence in [L2(Ω)]2 ×W 1
2 (Γ) such that

(ui, θi)→ (u, θ) weakly in [L2(Ω)]2 ×W 1
2 (Γ).

By the definition of the set T , there exists a sequence {Ti, pi} ∈ W 1
2 (Ω) × L̃2(Ω) such that the element

(ui, Ti, pi, θi) satisfies (1–4) and Ti|Γ = θi. On the other hand, by the a priori estimate (10), the sequence

{(ui, Ti, pi, θi)} is bounded in [W
3
2

2 (Ω)]2 ×W
3
2

2 (Ω)× L̃2(Ω)×W 1
2 (Γ) and, taking if necessary a subsequence, we

have that

(ui, Ti, pi, θi)→ (u, T, p, θ) weakly in
[
W

3
2

2 (Ω)
]2
×W

3
2

2 (Ω)× L̃2(Ω)×W 1
2 (Γ). (88)

Exacty in the same way as was done in the proof of Theorem 3.1, one can show that (u, T, p, θ) is an admissible
element to the extremal problem (82–84). Thus, (u, θ) ∈ T and the set T is sequentially weakly closed. Then,
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if the set T is not convex, by Theorem 3.2 there exists the pair (u0, θ0) ∈ [L2(Ω)]2 ×W 1
2 (Γ) such that the

problem (87) has at least two optimal solutions (ûj , θ̂j), j = 1, 2. Then, by the definition of the set T , there
exist (T̂j, p̂j), j = 1, 2, such that the elements (ûj , T̂j, p̂j , θ̂j) are admissible elements to problem (82–84).
Obviously, these elements are also solutions to (82–84).

In [9], it is proved that a dense set O in [L2(Ω)]2×W 1
2 (Γ) exists such that problem (87) has a unique solution.

Let (u0, θ0) ∈ O be an arbitrary point. Suppose that the problem (82–84) has two solutions (ûj , T̂j, p̂j , θ̂j),
j = 1, 2. In that case, û1 = û2 and θ̂1 = θ̂2. Also, we can rewrite the equation ∇ · (ujρj) = 0 in the form
∇ · uj = ρjuj · ∇Tj. Thus, by (3), ∆T1 = ∆T2 and the uniqueness of the solution to Dirichlet problem for the
Laplace operator implies that T1 = T2. Then (1) yields p1 = p2.

4. The optimality system

To write out the optimality system for the problem (82–84), it is convienient for us to rewrite this problem
in a slightly different form. Instead of the variable u, we introduce the new variable v = ρu. Then, (82–84) are
transformed into

F1(v, T, p) = −(1 + T )∆v− 2∇T · ∇v + (1 + T )v · ∇v + β

(
0
1

)
ρT +∇p+ qv− f = 0 in Ω, (89)

∇ · v = 0 in Ω, (90)

ρ(1 + T ) = 1 in Ω, (91)

v|Γ = 0, (92)

F2(v, T, p) = −∆T + v · ∇T − q = 0 in Ω, (93)

T |Γ = θ, (94)

and

θ ∈ K. (95)

In terms of the new variables, the functional J has the form

J̃(v, T, θ) =
1
2
‖(1 + T )v− u0‖2[L2(Ω)]2 +

1
2
‖θ − θ0‖2W1

2 (Γ). (96)

We then have the following result:
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Theorem 4.1. Suppose that f ∈ (L2(Ω))2, q ∈ L2(Ω), u0 ∈ [L2(Ω)]2, θ0 ∈ W 1
2 (Γ), and condition (8) holds

true. Let (û, T̂ , p̂, ĝ) be the optimal solution to the problem (82–84). Then, there exists a Lagrange multiplier
(λ,w, σ,R) ∈ R1 ×H2 × W̃ 1

2 (Ω)×W 2
2 (Ω) such that

(λ,w, σ,R) 6= 0, (97)

−∆((1 + T̂ )w)− v̂ · ∇
(
(1 + T̂ )w

)
+ (1 + T̂ )w · (∇v̂)T + 2∇T̂ · ∇w + qw

+R∇T + 2w∆T̂ +∇σ + (v̂− u0)(1 + T̂ ) = 0 in Ω,
(98)

∇ ·w = 0 in Ω, (99)

w|Γ = 0, (100)

−∆R− v̂ · ∇R+
β

(1 + T̂ )2

(
0
1

)
·w + w ·∆v̂ + 2∇w : ∇v̂ +R(v̂ · ∇v̂) ·w + (û− u0) · v̂ = 0 in Ω, (101)

v̂ = û/(1 + T̂ ) in Ω, (102)

R|Γ = 0, (103)

(
−λ∆Γ(θ̂ − θ0) + λ(θ̂ − θ0) +

∂R

∂ν
, θ − θ̂

)
L2(Γ)

≥ 0 ∀ θ ∈ K, (104)

where ∇w : ∇v̂ =
∑2
k=1∇wk · ∇v̂k and ∆Γ = ∂2/∂~τ2.

Proof. We will obtain the optimality system (97–104) using the penalization method. Let us consider the
auxiliary extremal problem

Jε(v, T, p, θ) = J̃(v, T, θ) +
1
2ε
‖F1(v, T, p)‖2[L2(Ω)]2 +

1
2ε
‖F2(v, T, p)‖2L2(Ω)

+
1
2
‖v− v̂‖2[L2(Ω)]2 +

1
2
‖T − T̂‖2L2(Ω) → inf, (105)

∇ · v = 0 in Ω, (106)

v|Γ = 0, (107)

T |Γ = θ, (108)

and

θ ∈ K, (109)
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where ε > 0 is a positive parameter and (v̂(1 + T̂ ), T̂ , p̂, θ̂) is the solution to the extremal problem (82–84).
The existence of this solution was established in Theorem 3.1. By a method similar to one used in the proof of
Theorem 3.1, one can prove that there exists at least one solution (v̂ε, T̂ε, p̂ε, θ̂ε) ∈ H2×W

3
2

2 (Ω)×W̃ 1
2 (Ω)×W 1

2 (Γ)
of the problem (105–109). Moreover, since Jε

(
v̂ε, T̂ε, p̂ε, θ̂ε

)
≤ Jε

(
v̂, T̂ , p̂, θ̂

)
= J̃

(
v̂, T̂ , θ̂

)
, by Theorem 2.1

we have {(
v̂ε, T̂ε, p̂ε, θ̂ε

)}
ε∈(0,1)

is bounded in H2 ×W
3
2

2 (Ω)× W̃ 1
2 (Ω)×W 1

2 (Γ). (110)

Thus, without the loss of generality, taking if necessary a subsequence, we have that(
v̂ε, T̂ε, p̂ε, θ̂ε

)
→
(
ṽ, T̃ , p̃, θ̃

)
weakly in H2 ×W

3
2

2 (Ω)× W̃ 1
2 (Ω)×W 1

2 (Γ) as ε→ +0. (111)

One can easily check that
(
ṽ, T̃ , p̃, θ̃

)
is an admissible element to the problem (82–84). On the other hand, the

inequality Jε
(
v̂ε, T̂ε, p̂ε, θ̂ε

)
≤ J̃

(
v̂, T̂ , θ̂

)
implies that

(
ṽ, T̃ , p̃, θ̃

)
is the solution for the extremal problem (82–

84). But in this case
(
ṽ, T̃ , p̃, θ̃

)
=
(
v̂, T̂ , p̂, θ̂

)
; otherwise

J̃
(
ṽ, T̃ , θ̃

)
+

1
2
‖ṽ− v̂‖2[L2(Ω)]2 +

1
2

∥∥∥T̃ − T̂∥∥∥2

L2(Ω)
≤ J̃

(
v̂, T̂ , θ̂

)
.

But this inequality is impossible since it immediately implies that (v̂, T̂ , p̂, θ̂) is not a solution to the problem (82–
84). Hence, (

v̂ε, T̂ε, p̂ε, θ̂ε
)
→
(
v̂, T̂ , p̂, θ̂

)
in H2 ×W

3
2

2 (Ω)× W̃ 1
2 (Ω)×W 1

2 (Γ). (112)

To obtain the optimality system for the extremal problem (105–109), we consider the function

Φ (λ1, λ2, λ3, λ4) = Jε
(
v̂ε + λ1δδδ1, T̂ε + λ2δ2 + λ3

(
δ3 − T̂ε

)
, p̂ε + λ4δ4, θ̂ε + λ3

(
θ − θ̂ε

))
,

where δδδ1 ∈ H2, δ2 ∈ W 2
2 (Ω) ∩

◦
W 1

2(Ω), δ4 ∈ W̃ 1
2 (Ω), and the function δ3 is the solution to the boundary value

problem

∆δ3 = 0 in Ω and δ3|Γ = θ θ ∈ K.

Obviously, this function has the global minimum at (0, 0, 0, 0) on the set {(λ1, λ2, λ3, λ4) | λ1, λ2, λ4 ∈ R1, λ3 ∈
[0, 1]}. Applying the Fermat theorem, we obtain

∂Φ
∂λi

∣∣∣∣(0,0,0,0) = 0 , i ∈ {1, 2, 4} , and
∂Φ
∂λ3

∣∣∣∣
(0,0,0,0)

≥ 0. (113)

Let

Rε =
1
ε
F2

(
v̂ε, T̂ε, p̂ε

)
and wε =

1
ε
F1

(
v̂ε, T̂ε, p̂ε

)
. (114)
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Obviously Rε ∈ L2(Ω) and wε ∈ [L2(Ω)]2. By (113), we obtain

(Rε,−∆δ2 + v̂ε · ∇δ2)L2(Ω) +

wε,−δ2∆v̂ε − 2∇δ2 · ∇v̂ε + δ2v̂ε · ∇v̂ε +
β(

1 + T̂ε
)2

(
0
1

)
δ2


[L2(Ω)]2

+
((

1 + T̂ε
)

v̂ε − u0, δ2v̂ε
)

[L2(Ω)]2
+
(
T̂ε − T̂ , δ2

)
L2(Ω)

= 0 ∀ δ2 ∈W 2
2 (Ω) ∩

◦
W 1

2(Ω), (115)

(wε,∇δ4)[L2(Ω)]2 = 0 ∀ δ4 ∈ W̃ 1
2 (Ω), (116)

(
Rε, δδδ1 · ∇T̂ε

)
L2(Ω)

+
(
wε,−

(
1 + T̂ε

)
∆δδδ1 − 2∇T̂ε · ∇δδδ1 +

(
1 + T̂ε

)
(v̂ε · ∇δδδ1 + δδδ1 · ∇v̂ε) + qδδδ1

)
[L2(Ω)]2

+
(
ûε − u0, (1 + T̂ε)δδδ1

)
[L2(Ω)]2

+ (v̂ε − v̂, δδδ1)[L2(Ω)]2 = 0 ∀ δδδ1 ∈H2,

(117)

(
Rε,−∆

(
δ3 − T̂ε

)
+ v̂ε · ∇

(
δ3 − T̂ε

))
L2(Ω)

+

(
wε,−

(
δ3 − T̂ε

)
∆v̂ε − 2∇

(
δ3 − T̂ε

)
· ∇v̂ε

(
δ3 − T̂ε

)
ṽε · ∇ṽε +

β(
1 + T̂ε

)2

(
0
1

)(
δ3 − T̂ε

))
[L2(Ω)]2

+
((

1 + T̂ε
)

v̂ε − u0,
(
δ3 − T̂ε

)
v̂ε
)

[L2(Ω)]2

+
(
T̂ε − T̂ , δ3 − T̂ε

)
L2(Ω)

+
(
θ̂ε − θ0, δ3 − T̂ε

)
W1

2 (Γ)
≥ 0. (118)

By (112), we can assume that
(
T̂ε, v̂ε

)
∈ Br =

{
(T,v) | ‖(T,v)‖

W
3
2

2 (Ω)×H2
≤ r
}

for all ε ∈ (0, 1) with the

fixed r. Let

Fµ =
{
δ2 | there exists z such that −∆δ2 = z in Ω, δ2|Γ = 0, ‖z‖W−1+µ

2 (Ω) = 1
}
·

Let µ ∈ (0, 1); then, for any δ2 ∈ Fµ, we have δ2 ∈W 1+µ
2 (Ω) ⊂ C0(Ω) and (115) implies

‖Rε‖W1−µ
2 (Ω) = sup

δ2∈Fµ
(Rε,−∆δ2)L2(Ω) = sup

δ2∈Fµ

{
−(Rε, v̂ε · ∇δ2)L2(Ω)

−
(
wε,−δ2∆v̂ε − 2∇δ2 · ∇v̂ε + δ2v̂ε · ∇v̂ε +

β

(1 + T̂ε)2

(
0
1

)
δ2
)

[L2(Ω)]2

−
(

(1 + T̂ε)v̂ε − u0, δ2v̂ε
)

[L2(Ω)]2
− (T̂ε − T̂ , δ2)L2(Ω)

}
≤ C1(µ, r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 + ‖T̂ε − T̂‖L2(Ω)

)
. (119)
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Let

G`µ =
{
δδδ1 ∈ [L2(Ω)]2 | there exist (z, σ) such that

−∆δδδ1 = ∇σ + z, δδδ1|Γ = 0, ∇ · δδδ1 = 0, ‖z‖[W−1+µ
`

(Ω)]2 = 1
}
·

Then, from (117–119) and the Sobolev embedding theorem, we have

‖wε‖[L4(Ω)]2 ≤ C2‖wε‖�
W1

4
3

(Ω)

�2

≤ C(r)

∥∥∥(1 + T̂ε
)

wε

∥∥∥�
W1

4
3

(Ω)

�2 + ‖wε‖[L2(Ω)]2


≤ C3(r)

 sup
δδδ1∈G4

0

(
wε,−

(
1 + T̂ε

)
∆δδδ1

)
[L2(Ω)]2

+ ‖wε‖[L2(Ω)]2


≤ C4(r)

 sup
δδδ1∈G4

0

{(
wε, 2∇T̂ε · ∇δδδ1 −

(
1 + T̂ε

)
(v̂ε · ∇δδδ1 + δδδ1 · ∇v̂ε)− qδδδ1

)
[L2(Ω)]2

−
(
ûε − u0,

(
1 + T̂ε

)
δδδ1

)
[L2(Ω)]2

− (v̂ε − v̂, δδδ1)[L2(Ω)]2

−
(
Rε, δδδ1 · ∇T̂ε

)
L2(Ω)

}
+ ‖wε‖(L2(Ω))2

)
≤ C5(r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 +

∥∥∥T̂ε − T̂∥∥∥
L2(Ω)

+ ‖v̂ε − v̂‖[L2(Ω)]2

)
. (120)

Moreover,

‖wε‖[W1
4 (Ω)]2 ≤ C6(r)

(∥∥∥(1 + T̂ε
)

wε

∥∥∥
[W1

4 (Ω)]2
+ ‖wε‖[L2(Ω)]2

)

≤ C7(r)

 sup
δδδ1∈G

4
3
0

(
wε,−

(
1 + T̂ε

)
∆δδδ1

)
L2(Ω)

+ ‖wε‖[L2(Ω)]2


≤ C8(r)

 sup
δδδ1∈G

4
3
0

{(
wε, 2∇T̂ε · ∇δδδ1 −

(
1 + T̂ε

)
(v̂ε · ∇δδδ1 + δδδ1 · ∇v̂ε)− qδδδ1

)
[L2(Ω)]2

−
(
ûε − u0,

(
1 + T̂ε

)
δδδ1

)
[L2(Ω)]2

− (v̂ε − v̂, δδδ1)[L2(Ω)]2

−
(
Rε, δδδ1 · ∇T̂ε

)
L2(Ω)

}
+ ‖wε‖(L2(Ω))2

)
≤ C9(r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[C(Ω)]2 +

∥∥∥T̂ε − T̂∥∥∥
L2(Ω)

+ ‖v̂ε − v̂‖[L2(Ω)]2

)
. (121)

The inequalities (119–121) yield

‖wε‖[W1
4 (Ω)]2 ≤ C10(r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 +

∥∥∥T̂ε − T̂∥∥∥
L2(Ω)

+ ‖v̂ε − v̂‖[L2(Ω)]2

)
. (122)
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On the other hand, the improved regularity for wε and (115) imply

‖Rε‖W1
2 (Ω) = sup

δ2∈F0

(Rε,−∆δ2)L2(Ω) = sup
δ2∈F0

{
− (Rε, v̂ε · ∇δ2)L2(Ω)

−

wε,−δ2∆v̂ε − 2∇δ2 · ∇v̂ε + δ2v̂ε · ∇v̂ε +
β(

1 + T̂ε
)2

(
0
1

)
δ2


[L2(Ω)]2

−
((

1 + T̂ε
)

v̂ε − u0, δ2v̂ε
)

[L2(Ω)]2
−
(
T̂ε − T̂ , δ2

)
L2(Ω)

}
≤ C11(r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 +

∥∥∥T̂ε − T̂∥∥∥
L2(Ω)

)
. (123)

Equations (115–118) along with (122) and (123) imply

−∆
((

1 + T̂ε
)

wε

)
− v̂ε · ∇

((
1 + T̂ε

)
wε

)
+
(

1 + T̂ε
)

wε · (∇v̂ε)
T + qwε + 2∇T̂ε · ∇wε

+Rε∇T̂ε + 2wε∆T̂ε +∇σε + (ûε − u0)
(

1 + T̂ε
)

+ v̂ε − v̂ = 0 in Ω, (124)

−∆Rε − v̂ε · ∇Rε +
β(

1 + T̂ε
)2

(
0
1

)
·wε −wε ·∆v̂ε + 2∇wε : ∇v̂ε

+Rε (v̂ε · ∇v̂ε) ·wε + (ûε − u0) · v̂ε +
(
T̂ε − T̂

)
= 0 in Ω, (125)

∇ ·wε = 0 in Ω, (126)

wε|Γ = 0, (127)

Rε|Γ = 0, (128)

and (
−∆Γ

(
θ̂ε − θ0

)
+ λ

(
θ̂ε − θ0

)
+
∂Rε
∂ν

, θ − θ̂ε
)
L2(Γ)

≥ 0 ∀ θ ∈ K. (129)

By (122) and (123), we obtain from (124)

‖σε‖L4(Ω) ≤ C12(r)
(

1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 + ‖v̂ε − v̂‖[L2(Ω)]2

)
. (130)

Moreover (122, 124), and a priori estimates for elliptic boundary value problems applied to (125) and (128)
imply

‖Rε‖W2
2 (Ω) ≤ C13(r)

(
1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 +

∥∥∥T̂ε − T̂∥∥∥
L2(Ω)

)
. (131)
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Using (4), one can rewrite (124) as

−∆wε +∇(ρ̂εσε) = mε in Ω , ∇ ·wε = 0 in Ω , and wε|Γ = 0,

where

mε = ρ̂ε
(
−σερ̂ε∇T̂ε + v̂ε · ∇ (1 + Tε) wε −

(
1 + T̂ε

)
wε · (∇v̂ε)

T − qwε

−Rε∇T̂ε + ∆T̂εwε − (ûε − u0)
(

1 + T̂ε
)
− v̂ε + v̂

)
where ρ̂ε(1 + T̂ε) = 1 in Ω.

By (122, 130), and (131), we have

‖mε‖[L2(Ω)]2 ≤ C14(r)
(

1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 + ‖v̂ε − v̂‖[L2(Ω)]2

)
.

This inequality and standard a priori estimates for the Stokes system imply

‖σε‖fW1
2 (Ω)

+ ‖wε‖H2 ≤ C15(r)
(

1 + ‖Rε‖L2(Ω) + ‖wε‖[L2(Ω)]2 + ‖v̂ε − v̂‖[L2(Ω)]2 + ‖T̂ε − T̂‖L2(Ω)

)
. (132)

Let Iε = ‖Rε‖L2(Ω) +‖wε‖[L2(Ω)]2 +‖σε‖L2(Ω). We consider two cases. First, assume that limε→0Iε <∞. Then,
by (131) and (132), the sequence

{(Rε,wε, σε)} is bounded in W 2
2 (Ω)×H2 × W̃ 1

2 (Ω). (133)

Hence, taking a subsequence if necessary, we have that

(Rε,wε, σε)→ (R,w, σ) weakly in W 2
2 (Ω)×H2 × W̃ 1

2 (Ω) as ε→ +0. (134)

Passing to the limit as ε→ +0 in (124–128), using (112, 134), we obtain that (R,w, σ) satisfies (98–103) with
λ = −1. To pass to the limit in (129), first note that(
−∆Γ

(
θ̂ε − θ0

)
+
(
θ̂ε − θ0

)
, θ − θ̂ε

)
L2(Γ)

=
(
θ̂ε − θ0, θ − θ̂ε

)
W1

2 (Γ)
=

−
∥∥∥θ̂ε∥∥∥2

W1
2 (Γ)

+
(
θ0, θ̂ε

)
W1

2 (Γ)
−
(
θ0, θ̂

)
W1

2 (Γ)
+
(
θ, θ̂ε

)
W1

2 (Γ)
. (135)

By (112), passing to the limit in (135) as ε→ +0, we obtain

lim
ε→+0

(
−∆Γ

(
θ̂ε − θ0

)
+ θ̂ε − θ0, θ − θ̂ε

)
L2(Ω)

= lim
ε→+0

(
θ̂ε − θ0, θ − θ̂ε

)
W1

2 (Γ)

= −
∥∥∥θ̂∥∥∥2

W1
2 (Γ)

+
(
θ0, θ̂

)
W1

2 (Γ)
− (θ0, θ)W1

2 (Γ) +
(
θ, θ̂
)
W1

2 (Γ)
. (136)

Moreover, by (134) and the trace theorem,

θ̂ε → θ̂ in W 1
2 (Γ) and

∂Rε
∂ν
→ ∂R

∂ν
weakly in W

1
2

2 (Γ).

This convergence implies immediately

lim
ε→+0

(
∂Rε
∂ν

, θ − θ̂ε
)
L2(Γ)

=
(
∂R

∂ν
, θ − θ̂

)
L2(Γ)

.
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Finally, passing to the limit in (129), we obtain that the pair
(
R, θ̂

)
satisfies (104).

For the second case, assume that

limε→+0Iε = +∞. (137)

Let us introduce the new variables

R̃ε =
Rε
Iε

, w̃ε =
wε

Iε
, and σ̃ε =

σε
Iε
.

By (124–129), the triple
(
R̃ε, w̃ε, σε

)
satisfies to the system of equations

−∆
(

1 + T̂ε
)

w̃ε − v̂ε · ∇
((

1 + T̂ε
)

w̃ε

)
+
(

1 + T̂ε
)

w̃ε · (v̂ε)T + qw̃ε + R̃ε∇T̂ε

+ 2∇T̂ε · ∇w̃ε + 2∆T̂εw̃ε +∇σ̃ε +
{

(ûε − u0)
(

1 + T̂ε
)

+ v̂ε − v̂
}
/Iε = 0 in Ω, (138)

−∆R̃ε − v̂ε · ∇R̃ε +
β(

1 + T̂ε
)2

(
0
1

)
· w̃ε − w̃ε ·∆v̂ε + 2∇w̃ε : ∇v̂ε

+ R̃ε (v̂ε · ∇v̂ε) · w̃ε +
{

(ûε − u0) · v̂ε +
(
T̂ε − T̂

)}
/Iε = 0 in Ω, (139)

∇ · w̃ε = 0 in Ω, (140)

w̃ε|Γ = 0, (141)

R̃ε|Γ = 0, (142)

and ((
−∆Γ

(
θ̂ε − θ0

)
+
(
θ̂ε − θ0

))
/Iε +

∂R̃ε
∂ν

, θε − θ̂ε

)
L2(Γ)

≥ 0 ∀θ ∈ K. (143)

Note that by (112) and (137), we have{
(ûε − u0) · v̂ε +

(
T̂ε − T̂

)}
/Iε → 0 in L2(Ω) (144)

and {
(ûε − u0)

(
1 + T̂ε

)
+ (v̂ε − v̂)

}
/Iε → 0 in

[
L2(Ω)

]2
. (145)

By (144) and (145), using the arguments similar to (120–131), we have{(
R̃ε, w̃ε, σ̃ε

)}
{ε∈(0,1)}

is bounded in W 2
2 (Ω)×H2 × W̃ 1

2 (Ω).
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So, keeping in mind that ∥∥∥(R̃ε, w̃ε, σ̃ε
)∥∥∥

L2(Ω)×[L2(Ω)]2×eL2(Ω)
= 1 (146)

and taking if necessary a subsequence, we obtain(
R̃ε, w̃ε, σ̃ε

)
→ (R,w, σ) weakly in W 2

2 (Ω)×H2 × W̃ 1
2 (Ω).

Moreover (R,w, σ) 6= 0. Passing to the limit in (138–143) in a similar manner to the first case, we obtain that
triple the (R,w, σ) satisfies (97–104) with λ = 0. Also, if R ≡ 0 and w ≡ 0, then by (98), ∇σ ≡ 0. Hence,
by the definition of the space L̃2(Ω), we have that σ ≡ 0. But this fact contradicts (146). Thus, the proof is
complete.

Remark. The system (1–6) is a special case of the general system for which (1) is replaced by

−ν∆u + ρu · ∇u +∇p+ β

(
0
1

)
ρT = f in Ω.
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