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INFINITE TIME REGULAR SYNTHESIS

B� PICCOLI

Abstract� In this paper we provide a new su�ciency theorem for

regular syntheses� The concept of regular synthesis is discussed in �����

where a su�ciency theorem for 	nite time syntheses is proved�

There are interesting examples of optimal syntheses that are very

regular� but whose trajectories have time domains not necessarily

bounded� This research is motivated by the fact that one of the main
tools toward the construction of optimal syntheses is the proof of a

strong su�ciency theorem�

The regularity assumptions of the main theorem in ���� are veri	ed
by every piecewise smooth feedback control generating extremal tra


jectories that reach the target in 	nite time with a 	nite number of
switchings �indeed even by more complicate syntheses like the Fuller

one presenting trajectories with an in	nite number of switchings�� In
the case of this paper the situation is even more complicate� since we
admit both trajectories with 	nite and in	nite time� It is important to

notice that� in spite of its complexity� this situation is encountered in
many simple cases like linear
quadratic problems �see the example of

the last section and ��
���

We use weak di�erentiability assumptions on the synthesis and weak
continuity assumptions on the associated value function� However� in

this paper we need the value function to be continuous at the origin

�see Remark 
�
 for more details�� The general case of synthesis gen


erated by general piecewise smooth feedback deserves a further careful

investigation�

�� Introduction

Given an optimization problem for a control system with �xed initial data�
there are various ways of giving a solution� One can �nd an open loop con�
trol or try to solve all the problems obtained by varying the initial data�
Beside the classical concept of feedback� one can construct a trajectory for
every initial data in such a way that the resulting collection has nice reg�
ularity properties� This gives raise to what is called a regular synthesis�
Firstly introduced by Boltianskii� the concept of regular synthesis has been
developed and used by many authors in connection with theoretical prob�
lems as well as for special classes of systems ���	
� �����

� ��	
� A synthesis
is a mathematical object with more �structure� with respect to a feedback�
and there are examples showing that a feedback alone is not su�cient to
describe the solution to an optimization problem� see ���
�
In this paper we provide a new su�ciency theorem for regular synthesis�

The concept of regular synthesis is discussed in ���
� where it is proved a
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��� B� PICCOLI

su�ciency theorem for syntheses formed by �nite time trajectories� We refer
to ���
 and the references therein for synthesis theory�

There are interesting examples of optimal syntheses that are very regular�
but whose trajectories have time domains not necessarily bounded� see ���
�
One of the main tools toward the construction of optimal syntheses is the
proof of a strong su�ciency theorem� If an optimization problem is su��
ciently regular then every optimal trajectory must satisfy the Pontryagin
Maximum Principle �in this case we say that the trajectory is extremal��
Hence a �rst necessary condition for optimality is extremality� However� in
general extremality is not a su�cient condition for a single trajectory �see
��
� �	
� ���
�� Moreover� no regularity property can ensure the optimality of
an extremal trajectory�see ���
�� On the other hand� the su�ciency theo�
rems guarantees that every extremal synthesis that is su�ciently regular is
indeed optimal�

Usually one builds a candidate optimal synthesis using regularity prop�
erties of extremal trajectories� Thus extremality is a condition granted by
construction� The regularity assumptions of the main theorem in ���
 are
veri�ed by every piecewise smooth feedback control generating extremal tra�
jectories that reach the target in �nite time with a �nite number of switch�
ings� Moreover� the same theorem applies also to the system considered
by Fuller� that presents trajectories with an in�nite number of switchings
�however it is not clear under which conditions it is possible to apply the
theorem to a generic piecewise smooth feedback�� In the case of this paper
the situation is even more complicate since we admit trajectories de�ned
on unbounded domains� We need weak di�erentiability assumptions on the
synthesis and weak continuity assumptions on the value function associated
to the synthesis� However� to treat in�nite time trajectories� we have to
assume the continuity of the value function at the origin� while only weak
upper semicontinuity was assumed in ���
 �see Remark � for more details��
Moreover� we give two di�erent de�nitions of weak di�erentiability� see Re�
mark ��� of Section �� The �rst relies on strong integrability properties
�of the Jacobians of the dynamics and the cost� along the trajectories� the
other� veri�ed by the linear�quadratic example of Section �� requires fast in
time convergence of trajectories to the target�

We state a result valid for a point target problem� The same result can
be used for Bolza problems without �nal condition when the form of the
Lagrangian naturally forces the trajectories to tend asymptotically to a given
point� This is the case of some examples� see ���
 and Section ��

We remark that in our problem we admit both trajectories with compact
domain and trajectories with unbounded domains at the same time� As
remarked in ���
� our de�nition of regular synthesis is quite mild compared
to the other de�nitions given in previous papers ��
� ��
� �

� Moreover� these
conditions can be checked easily in some interesting examples� The main
result is stated for presynthesis even if we do not know interesting examples
in which the concept of presynthesis plays a crucial role�

Finally� let us mention that another well known approach ensuring su��
ciency theorems is the theory of viscosity solutions for the Hamilton�Jacobi�
Bellmann equations� see ��
���
�
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INFINITE TIME REGULAR SYNTHESIS ���

In Section � we give basic de�nitions� in Section � we state and prove the
main result and in section � we give examples�

�� Basic definitions

Consider a control system�

�x � f�x� u� x � �� u � U� �����

and the minimization problem�

minimize

Z
L���t�� ��t��dt� �����

where ��� �� is a trajectory�control pair satisfying some admissibility condi�
tions that will be stated later�
Our basic assumption is

�H�� � is an open subset ofRn� U is a set� f � ��U � R
n and L � ��U � R

are maps such that f��� u� and L��� u� are of class C� for every �xed u � U �

We use the same notation of ���
� In particular� we use �f to denote the
R
n�� valued map �x� u�� �f�x� u�� L�x� u���
A control is a map � � I � U � whose domain is a subinterval I of R �not

necessarily bounded��
If � � A � B is a map� we use Dom��� to indicate the domain of �� i�e�

the set A� In particular� if � � I � U is a control� then Dom��� � I �
A trajectory � for a control � is an absolutely continuous map � �

Dom���� � that satis�es ���t� � f���t�� ��t�� for almost every t � Dom����
If Dom��� � �a� b
 �so that Dom��� � �a� b
 as well�� and x � ��a�� y � ��b��
we say that � �or the pair ��� ��� goes from x to y� and that � steers x to
y� and we write �� � x� �� � y� In the same way if Dom��� � �a����
then we simply write �� � x� Moreover� if limt��� ��t� � y then we write
�� � y�
A control � � I � U is admissible if the map � � I � �x� t�� �f��x� t� �

�f�x� ��t�� � Rn�� satis�es the following C� Carath�eodory conditions�

�A� �f� is measurable as function of �t� x�

�B� for every compact K � � and every compact interval J � I � there exists
an integrable function �K�J such that for every x � K and t � J �

k �f��x� t�k� kDx
�f��x� t�k 	 �K�J�t�� �����

If � is an admissible control� � a trajectory corresponding to �� such that
the integral in ����� is de�ned �possibly equal to ���� then we say that
��� �� is an admissible pair for �f � We use Adm� �f� to denote the set of all
admissible pairs for �f � For an admissible pair ��� ��� we use J��� �� to denote
the cost of ��� ��� i�e� the value of the integral of ����� over Dom����
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��� B� PICCOLI

Given � � Rn �the space of row n vectors�� �� � R� x � � and u � U � we
de�ne�

H�x� �� ��� u� � h�� f�x� u�i� ��L�x� u� �����

H�x� �� ��� � inffH�x� �� ��� u� � u � Ug� �����

The functions H � ��Rn�R� U � R and H � ��Rn�R� R
 f��g
are known as the Hamiltonian and the minimized Hamiltonian of �f �
We say that the pair ��� �� � Adm� �f� is extremal if there exist an abso�

lutely continuous map � � Dom��� � Rn� called the adjoint vector� and a
constant �� � �� not both zero� such that the adjoint equation

�� � �
	H

	x
���t�� ��� ��t�� ��t�� ���
�

and the minimization condition�

H���t�� ��t�� ��� � H���t�� ��t�� ��� ��t�� � � �����

hold for almost every t � Dom���� For a discussion of the validity of PMP
under our assumptions see ��	
�

�� The main result

We consider the problem ������ ����� with a point target that� without loss of
generality� will be assumed to be the origin� We consider only trajectories �
whose domain is bounded below� that is either Dom��� � �a� b
 or Dom��� �
�a���� for some a � R� Hence a trajectory has to start at some time a
from a point x and either reach the origin in �nite time or converge to it as
t tends to ��� We call Adm�� �f� the set of such trajectories �� indicates
the fact that they end at the origin��
If  
 Adm�� �f� is an arbitrary set of admissible pairs� we de�ne a function

V� � �� R
 f��g� called the value function of  � by letting V��x� be� for
x � �� the in�mum of the costs J��� ��� taken over the set of all ��� �� �  
such that � goes from x to �� �In particular� if there is no ��� �� �  going
from x to � then V��x� � ���� If  � Adm�� �f�� then the function V� is
the value function of our problem� and in that case we will write V �f rather

than VAdm�� �f�� A pair ��� ��� Adm�� �f� is optimal if V �f��
�� � J��� ���

A presynthesis for our problem on a set S � � is a set  � f��x� �x� �
x � Sg of admissible pairs ��x� �x� � Adm�� �f� such that ��x � x� The set
S is called the domain of  � If the domain S of  consists of all points
that can be steered to the origin by an admissible pair� then we say that  
is total� Given a presynthesis  we will always renormalize the time along
every ��x� �x� in such a way that the domain of �x �and of �x� either is of
the form ��� Tx
 for some non negative number Tx or it is �������
A presynthesis ismemoryless if whenever x � S and t � Dom��x� it follows

that y � �x�t� belongs to S and �y is the renormalization of the restriction of
�x to the interval �t� Tx
 or �t����� A synthesis is a memoryless presynthesis�
If each pair of a presynthesis  is optimal �resp� extremal� then we say

that  is optimal �resp� extremal�� In particular� a presynthesis  is a total
optimal presynthesis if and only if V� � V �f �
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INFINITE TIME REGULAR SYNTHESIS ���

Our goal is to prove that� under suitable regularity assumptions on  
and V�� a total extremal presynthesis is optimal� We �rst describe these
regularity assumptions in detail�
Given a locally Lipschitz vector �eld X on �� we say that V has the NDJ

��no downward jumps�� property along X if the following holds�

�NDJ�� For every � integral curve of X � t � Dom���� if a � inf Dom��� then
for every t � Dom��� n fag we have

lim sup
h���

V ���t��� V ���t� h�� � ��

We say that V satis�es the weak continuity conditions for the control
problem ������ ����� if V is lower semicontinuous� continuous at the origin�
and has the NDJ property along the vector �eld x� f�x� u� for every u � U �
We now de�ne the �weak di�erentiability conditions� for  � In this def�

inition it is understood that �f�y� �x�t�� � � for every t 
� Dom��x�� A
presynthesis  � f��x� �x� � x � Sg is �f� L��di�erentiable at a point !x � �
if the following assumption is satis�ed�

�A� there exist an open set W � containing f��x�t� � t � Dom���x�g� a neigh�
borhood N of !x �in �� such that N 
 Dom� �� with the property that

�A�� for every compact K � �� there exist an integrable function �K �
�����
 � R such that j�J�K�t�j 	 �K�t� for every compact J � I � t �
Dom��J�K�t�� �here �J�K are de�ned as in ����� for the control ��x�� and�
for su�ciently small � � �� integrable functions 
� � �����
� R such that

lim���

R ��
�


��t� dt � �� and the inequalities

k �f�y� �x�t��� �f�y� ��x�t��k 	 
��t�

kDy
�f�y� �x�t���Dy

�f�y� ��x�t��k 	 
��t�

hold for every y � W � x � N such that kx� !xk 	 �� t � �������

�A�� the map v � �v� where �v is the integrable Rn�� valued function on
������ given by

�v�t� � �f ���x�t�� ��x�v�t��� �f���x�t�� ��x�t��

is vaguely di�erentiable at v � � or it is weak��di�erentiable at v � ��
regarded as a map into the space of Rn���valued Borel measures� That
is� for every continuous function � � ������ � R� that vanishes at ��

�limt��� ��t� � ��� the map Rn � v �
R ��
� �v�t���t� dt � R

n�� is di�er�
entiable at v � ��
Moreover the map Rn � v �

R ��
� ���v�t� dt � R� where �

��
v is the �n����th

component of �v� is di�erentiable at v � ��

A set A � � is �n � �� dimensional recti�able if there exist A�� A	� such
that A � A� 
A	� A� is a �nite or countable union of connected embedded
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��� B� PICCOLI

C� submanifolds of positive codimension and A	 veri�es Hn���A	� � �
where Hn�� is the n� � dimensional Hausdor� measure�
We can now state the main theorem �cf� ���
� ��	
��

Theorem ���� Let �	 U 	 f 	 L be such that � � � and assumption �H� hold�
Let  be a total extremal presynthesis� Assume that
�i� the associated value function V� satis�es the weak continuity conditions	
�ii� V���� � �	
�iii�  is �f� L��di�erentiable at all points in the complement of a �n � ��
dimensional recti�able set A�
Then  is optimal�

Proof� We �rst prove the relation between the di�erential of the value func�
tion V� and the adjoint covector �elds along the extremal trajectories of
the presynthesis� This is of interest in itself so we state it as a separate
theorem� tu

Theorem ���� Let �	 U 	 f 	 L be such that � � � and assumption �H�
hold� Let  be an extremal presynthesis� If  is �f� L��di�erentiable at !x
and if � denote the adjoint covector associated to the pair ���x� ��x� �  then
���� � DyV��!x��

Proof of Theorem 
��� Fix a point !x of �f� L��di�erentiability for  � Let W �
N � 
�� be as given by Condition �A�� Pick � � � such that the compact set

W � � fx � d�x� f��x�t� � t � Dom���x�g� 	 �g

satis�es W � 
 W � tu
Let X be the Banach space C���������R� of continuous real�valued func�

tions on ������� that vanishes at ��� endowed with the sup norm� We
recall that usually X is de�ned as the completion for the sup norm of the
space of continuous functions with compact support�
With �v � ������ � R

n�� de�ned as in �A�� for v � Rn� jjvjj small� let
��v� � � � � �

n��
v be the components of �v� so each �

j
v is an integrable real�valued

function on ������� Then for each � � X and each j � f�� � � � � n� �g the

function v �
R ��
� ��t��jv�t�dt is di�erentiable at v � �� so there exists� for

each j� a unique ��dependent vector wj��� � Rn such that

Z ��

�

��t��jv�t�dt � hwj���� vi� o�jjvjj� as v � �� �����

It is clear that wj��� depends linearly on �� so each component wj
i ���

�i � �� � � � � n� of wj��� depends linearly on � as well� For every v � Rn

su�ciently small� �jv dt is a �nite Borel measure� hence an element of X�

�the dual of X�� Let us indicate with by k � kX� the norm of X�� For every
�xed � � X � from the di�erentiability at v � �� it follows that there exists
C� � � such that for every v �� � su�ciently small

�

kvk

Z
��jv dt 	 C��
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INFINITE TIME REGULAR SYNTHESIS ���

Hence the Uniform Boundedness Theorem implies that there exists a con�
stant C	 such that

k�jvkL�

kvk
�

���� �jv
kvk

����
X�

	 C	� �����

for v small and j � f�� � � � � n � �g� �Otherwise there would exist a j and

a sequence fv�g such that v� � �� v� �� �� and
R ��
�

jj�jv��t�jjdt � K�jjv�jj�
with K� � ��� By passing to a subsequence� we may assume that v�

jjv�jj

converges to a unit vector v� Then by ����� the continuous linear functionals
�� � X � R given by

����� �
�

jjv�jj

Z ��

�

��t��jv��t�dt

converge pointwise on X to the map � � hwj���� vi� So the sequence
f�����g

�
�
� is bounded for each �� and then there exists "by Uniform

Boundedness" a C � � such that jj��jjX� 	 C for all �� But

jj��jjX� �
�

jjv�jj

Z ��

�

jj�jv��t�jjdt � K��

and we have derived a contradiction�� From ������ it follows in particular
that

jhwj���� vij 	 Cjj�jj � jjvjj for � � X � v � Rn�

so each wj
i is a bounded linear functional on X� and jjw

j
i jjX� 	 C� Therefore

each wj
i is given by a �signed� Borel measure on ������� that will also be

denoted by wj
i � Let #w

j
i denote the inde�nite integral of w

j
i � i�e�

#wj

i �t� � wj

i ���� t
� for t � ������� #wj

i ��� � ��

Let BV ����� denote the space of all functions w � ������ � R of
bounded variation such that w��� � � and w is right�continuous at every t �
������� LetM����� denote the space of all monotonically nondecreasing
functions w � ������ � R such that w��� � � and w is right�continuous
at every t � ������� Then there is a canonical correspondence between
members of BV ����� and signed Borel measures on ������� that assigns to
a function w � BV ����� the unique Borel measure �w such that �w���� t
� �
w�t� for � � t � ��� �The measure of a single point set ftg is then
�w�t��� �w�t��� which is equal to �w�t�� �w�t�� if t � � and to �w�t��
if t � �� In particular� �w�ftg� � � i� �w is continuous at t�� From now on
we identify a function w � BV ����� with its corresponding measure �w �
and write

R
�dw for

R
� d�w � We emphasize that� if w is not continuous�

then for an integral such as
R t
s
dw to be well de�ned we have to be careful to

specify whether the integral is to be interpreted as
R
��s�t�dw or

R
��s�t�dw orR

��s�t�dw or
R
��s�t�dw� so we will never write

R t
s
dw unless w is continuous�

Clearly� each #wj
i belongs to BV ������ and ����� can be rewritten as

Z ��

�

��t��jv�t� dt �
nX
i
�

vi
Z
� d #wj

i � o�jjvjj�� �����
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where v � �v�� � � � � vn��

We now let #�jv�t� �
R t
�
�jv�s�ds� so each #�jv�t� is an absolutely continuous

function ������� R and a member of BV ������ that satis�es

j#�jv�t�j 	 C	jjvjj for small v � t � ������ � j � f�� � � � � n� �g�

We let Y be the space L���������R� of all real�valued bounded measurable
functions on ������� endowed with the weak� topology of Y regarded as
the dual of L���������R�� so a net fyd � d � Dg of members of Y "where
D is a directed set" converges to a y � Y i�

R
��t�yd�t�dt �

R
��t�y�t�dt

for all � � L���������R�� We remark that the topology of Y is metrizable
on subsets of Y that are bounded in the L� norm� Therefore� as long as we
are dealing with bounded sets the topology is entirely characterized by the
convergence of sequences�
We show that

#�jv �
nX
i
�

vi #wj

i � o�jjvjj�� �����

in the sense that

lim
v��

�

jjvjj

�����#�jv �
nX
i
�

vi #wj
i

����� � � in Y � for j � �� � � � � n� �� �����

To see this� �x j� and write

Qj�v��t� �
�

jjvjj

�����#�jv�t��
nX
i
�

vi #wj

i �t�

������ ���
�

Let �jv�t� � �j��v �t�� �j��v �t�� where �j��v �t� � max��jv�t�� ��� and de�ne

#�j��v �t� �

Z t

�

�j��v �s�ds� #�j��v �t� �

Z t

�

�j��v �s�ds�

so each #�j��v � #�j��v is a monotonically nondecreasing continuous function on
������ with the property that #�j��v ����#�j��v ������ and limt��� #�j��v ��� �
#�j��v ��� 	 Cjjvjj� If fvkg

�
k
� is a sequence of nonzero vectors inR

n converging
to �� then it follows from Helly$s Theorem that there exists a subsequence
fvk���g and functions �

j��� �j�� belonging toM������ such that

�

jjvk���jj
#�j��vk����t�� �j���t� and

�

jjvk���jj
#�j��vk����t�� �j���t� �����

for all t � ������ that are points of continuity of �j�� and �j��� By passing
to a subsequence� if necessary� we may assume that there is a vector v such
that jjvjj � � for which

lim
���

vk���

jjvk���jj
� v� ���	�
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INFINITE TIME REGULAR SYNTHESIS ��	

It then follows that

�

jjvk���jj

Z ��

�

��t��j��vk����t�dt�

Z
�d�j��

and
�

jjvk���jj

Z ��

�

��t��j��vk��� �t�dt�

Z
�d�j��

for all � � X � Indeed� if ��t� �
Pn

k
� ak��tk�tk����t�� for some ak � R and
some points tk � Rof continuity for �

j��� the convergence easily follows from
������ By approximation� we obtain the conclusion for every �� Therefore�
if we let �j � �j�� � �j��� we see that �j � BV ����� and

�

jjvk���jj

Z ��

�

��t��jvk����t�dt�

Z
�d�j

for all � � X �
On the other hand� ����� and ���	� imply that

�

jjvk���jj

Z ��

�

��t��jvk����t�dt�
nX
i
�

vi
Z
�d #wj

i

for all � � X � So �j �
Pn

i
� v
i #wj

i � and then ����� implies that

�

jjvk���jj
#�jvk����t��

nX
i
�

vi #wj

i �t�

for all t � ������ except possibly on a countable set� But

�

jjvk���jj

nX
i
�

vik��� #w
j

i �t��
nX
i
�

vi #wj

i �t�

for all t� So

Qj�vk�����t� �
�

jjvk���jj

�����#�jvk����t��
nX
i
�

vik��� #w
j
i �t�

������ � �����

for almost all t� Therefore� since Qj�vk�����t� is bounded by a �xed constant�
independent of t and �� the Dominated Convergence Theorem implies that
Qj�vk����� � in Y � So we have shown that every sequence fvkg converging
to � in Rn has a subsequence fvk���g for which Qj�vk���� � � in Y � This
implies that ���
� holds�
We can rewrite ���
� in vector form by introducing the column�vector�

valued functions #�v � �a� b
 � R
n�� given by #�v�t� �

R t
� �v�s�ds� and the

matrix�valued function #W � ������ � R
n���n �with n � � rows and n
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columns� whose entry in column i� row j� is #wj

i � Then ���
� clearly implies
that the scalar function

t�
�

jjvjj

�����#�v�t�� #W �t��v

�����
converges to � in Y � It will also be convenient to split �v into a n�dimensional
part ��v corresponding to the �rst n components and a scalar part �

��
v corre�

sponding to the n� ��th component� With the obvious de�nition of #��v� #�
��
v �

#W �� #W ��� we can conclude that the scalar functions

t�
�

jjvjj

�����#��v�t�� #W ��t��v

����� and t�
�

jjvjj

�����#���v�t�� #W ���t��v

�����
converge to � in Y �

Now consider x � !x � �v� v � Rn� kvk � � and � � R small�
Let � be such that kf�x� ��x�t�� � f�y� ��x�t�k 	 ��t�kx � yk for every

x� y � W � and t � �a� b
� There exists !� such that�Z ��

�


��t� dt �
�

� ek�kL�

for every � � ��� !�
� From now on we consider only those x corresponding to
� 	 !�� Fix now such an x� There exists T �x� such that�

k�x�T �x��k �
�

�ek�kL�
� k��x�T �x��k �

�

�ek�kL�
� �����a�

and for t � T �x�
k�x�t�� ��x�t�k 	 kx� !xk� �����b�

Notice that we may have that the trajectory �x �or ��x� reaches the origin
in �nite time� But in this case we consider it as prolonged on ������ by
�x�t� � � for t � sup�Dom��x��� This is compatible with the de�nition
#f��x�t�� �x�t�� � � for t 
� Dom��x��
De�ne �x�t� � �x��t�� �x�t� � �x��t� so that �x � ��T �x�� �
� R

n is �x
run backward in time and it satis�es the equation�

��x�t� � �f��x�x�� �x�t���

Now

k�x�t�� ��x�t�k 	 k�x��T �x��� ��x��T �x��k

�

Z t

�T �x�

kf��x�s�� �x�s��� f���x�s�� ��x�s��kds

	 k�x��T �x��� ��x��T �x��k

�

Z t

�T �x�

kf��x�s�� �x�s��� f��x�s�� ��x�s��kds

�

Z t

�T �x�

kf��x�s�� ��x�s��� f���x�s�� ��x�s��kds

	 k�x��T �x��� ��x��T �x��k

�

Z t

�T �x�


���s�ds�

Z t

�

���s�k�x�s�� ��x�s�kds
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as long as �x�s�� ��x�s� � W � for every s � ��T �x�� �
� Then

k�x�t�� ��x�t�k 	 ek�kL�

�
k�x��T �x��� ��x��T �x��k�

Z t

�T �x�


���s�ds

�

	 ek�kL�
�
k�x�T �x��k� k��x�T �x��k�

Z ��

�


��s�ds

�

	
�

�
�
�

�
�
�

�
� ��

������
Assume by contradiction that �x�t� is not in W

� for some t � ��T �x�� �
 and
let !t the �rst time in which this happens� Using the estimate ������ at time
!t we obtain

k�x�!t�� ��x�!t�k � � ������

that gives us the contradiction� Hence we can conclude that for � � ��� !�
�
��x��v�t� � W � for t � ��T �x�� �
 and from now on we consider only those
x � !x� �v for which � 	 !��
For simplicity� denote by � the integrable function �W � of �A��� From

�A�� it follows

sup
y�W �

kDy
�f�y� �x�t��k 	 sup

y�W �

kDy
�f�y� �x�t���Dy

�f�y� ��x�t��k

� sup
y�W �

kDy
�f�y� ��x�t��k

	 
��t� � ��t��

������

Notice that from ������ we know that the segment joining �x�t� to ��x�t�
is inside W � thus we can apply the mean value inequality and use �������
Hence

k�x�t�� ��x�t�k 	 k�x��T �x��� ��x��T �x��k

�

Z t

�T �x�

kf��x�s�� �x�s��� f���x�s�� �x�s��kds

�

Z t

�T �x�

kf���x�s�� �x�s��� f���x�s�� ��x�s��kds

	 k�x��T �x��� ��x��T �x��k

�

Z t

�T �x�

�
��s� � ��s��k�x�s�� ��x�s�kds

�

Z t

�T �x�

k��v��s�kds

and applying Gronwall Lemma� from �A��

k�x�t�� ��x�t�k 	 ek�kL��k��kL� k�x
�
�T �x��� ��x��T �x��k

�

Z t

�T �x�

k��v��s�kds
	

	 ek�kL��k��kL� �kx� !xk� Ck�vk�

� ek�kL��k��kL� �� � C� kx� !xk�

������
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Now� from ������ ������ and ������� we have that there exists a constant C


such that

k�x�t�� ��x�t�k 	 C
kx� !xk� ������

We now prove the di�erentiability of V� at !x� We have�

d

dt
��x�t�� ��x�t�� � f��x�t�� �x�t��� f���x�t�� ��x�t��

� f��x�t�� �x�t��� f���x�t�� �x�t��

� f���x�t�� �x�t��� f���x�t�� ��x�t��

�

Z �

�

Dyf���x�t� � ���x�t�

� ��x�t��� �x�t�� � ��x�t�� ��x�t�� d� � ��v�t�

� A�t� � ��x�t�� ��x�t�� � ��v�t� � Zx�t��

where

A�t� � Dyf���x�t�� ��x�t���

Zx�t� � Z�
x�t� � Z	

x�t��

Z�
x�t� �

Z �

�

B��x� t� �� � ��x�t�� ��x�t��d��

Z	
x�t� �

Z �

�

B	�x� t� �� � ��x�t�� ��x�t��d��

����
�

B��x� t� �� � Dyf���x�t� � ���x�t�� ��x�t��� �x�t��

�Dyf���x�t� � ���x�t�� ��x�t��� ��x�t���

B	�x� t� �� � Dyf���x�t� � ���x�t�� ��x�t��� ��x�t��

�Dyf���x�t�� ��x�t���

and� as explained before� we write � � ���� ���� with ���t� � Rn� ����t� � R�
We use M�t� s� to denote the fundamental matrix solution of the linear
system�

�w � A�t� � w�t� � � 	 t � ���

and observe that the matrix�valued map t � A�t� is Lebesgue integrable�
because of the integral bound kA�t�k 	 
�t�� which follows from �A��� Then
M � ������� ������� R

n�n is continuous� and

�x�t����x�t� �M�t� ���v�

Z t

�

M�t� s����v�s� ds�

Z t

�

M�t� s��Zx�s� ds� ������

Next� we claim that

lim
v��

�

jjvjj
sup


���Z t

�

M�t� s� �Zx�s� ds
��� � � 	 t � ��

�
� �� ����	�
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Indeed� ������ implies that

supfk�x�t�� ��x�t�k � � 	 t � ��g � O�jjvjj��

Moreover� ��x�t�����x�t����x�t�� � W � � W if t � ������� � � ��� �
� Then
from the de�nition of Z�

x and �A�� we get the bound kZ�
x�t�k 	 O���
��t�

�because jjB��x� t� ��jj 	 
��t��� so

kZ�
xkL� � O���k
�kL� � o���� ������

To estimate Z	
x� suppose �rst that xj � !x as j � �� Then it is clear that

kB	�xj� t� ��k 	 ���t� for each �xed t� �� and B	�xj � t� �� � � as j � ��

Then
R �
�
kB	�xj � t� ��kd� � � as j � � for each �xed t by the Dominated

Convergence Theorem� and
R �
�
kB	�xj� t� ��kd� 	 ��t�� Using Dominated

Convergence again we conclude that
R ��
�

R �
�
kB	�xj � t� ��kd� dt � �� So� if

we let

��v� �

Z ��

�

Z �

�

kB	�x� t� ��kd� dt�

we see that ��v�� � as v � �� Then

Z ��

�

kZ	
x�t�kdt 	

Z ��

�

�Z �

�

kB	�x� t� ��kd�
	
k�x�t�� ��x�t�kdt

	 ��v� supfk�x�t�� ��x�t�k � � 	 t � ��g

� o����

Therefore kZ	
xkL� � o���� This fact� together with ����
� and ������ imply

that
kZxkL� � o����

Since t �� A�t� is Lebesgue integrable� M is bounded on ������� �������
hence Z t

�

kM�t� s�k � kZx�s�k ds 	 o���� ������

so ����	� follows�
We now analyze the second term of the right�hand side of ������� Using

integration by parts� we write

Z t

�

M�t� s� � ��v�s� ds �M�t� t�#��v�t��

Z t

�

	

	s
M�t� s� � #��v�s� ds

� #��v�t� �

Z t

�

M�t� s�A�s�#��v�s� ds�

since M�t� t� � identity and �
�s
M�t� s� � �M�t� s�A�s�� De�ne

%�t� � #W ��t� �

Z t

�

M�t� s� #W ��s� ds�
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Then % is an n � n�matrix�valued function on ������ whose components
belong to BV ������ We then have

Z t

�

M�t� s� � ��v�s� ds� %�t� � v

� #��v�t�� #W ��t� � v �

Z t

�

M�t� s�A�s�
�
#��v�s�� #W ��s� � v

	
ds�

In view of ������ the scalar function

s�
�

jjvjj

���#��v�s�� #W ��s� � v
���

converges to � in Y � Therefore for any !t

lim
v��

�

jjvjj

Z ��

�

jjM�!t� s�jj � jjA�s�jj �
���#��v�s�� #W ��s� � v

��� ds � ��

Since M�t� s� �M�t� !t�M�!t� s�� and M is bounded� we can conclude that

lim
v��

�

jjvjj
sup

�	t	��

�����
Z t

�

M�t� s�A�s�
�
#��v�s�� #W ��s� � v

	
ds

����� � ��

Therefore ����� implies that the scalar functions

t�
�

jjvjj

���Z t

�

M�t� s� � ��v�s� ds� %�t� � v
���

converge to � in Y � In view of ������� ������� it follows that the scalar
functions

t�
�

jjvjj

����x�t�� ��x�t��M�t� T � � v � %�t�v
���

converge to � in Y � This says� in particular� that the map x � �x is
�di�erentiable at x � !x and its di�erential is the linear map v � M��� T � �
v � %���v�� where di�erentiability is understood in the precise sense spelled
out above� namely� the di�erence �x�t����x�t��M�t� T ��v�%�t��v is o�jjvjj�
in the sense that

lim
v��

�

jjvjj

Z ��

�

��t�
����x�t�� ��x�t��M�t� ���v� %�t��v

���dt � � ������

for every integrable function � � ������� R�
Now

V��x�� V��!x� �

Z Tx

�

L��x�t�� �x�t��dt�

Z T�x

�

L���x�t�� ��x�t��dt�
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By de�nition� if Tx � �� we prolong ��x� �x� on �Tx���� by setting
�f��x�t�� �x�t�� � � for t 
� Dom��x�� Hence� we can write both integrals
with � and �� as extrema of integration� so that

V �x�� V �!x� �

Z ��

�

�L��x�t�� �x�t��� L���x�t�� �x�t���dt

�

Z ��

�

�L���x�t�� �x�t��� L���x�t�� ��x�t���dt

�

Z ��

�

Z �

�

DyL���x�t� � ���x�t�

� ��x�t��� �x�t�� d� � ��x�t�� ��x�t�� dt

�

Z ��

�

����v�t� dt

�

Z ��

�

a�t� � ��x�t�� ��x�t��dt

�

Z ��

�

���v�t�dt�

Z ��

�

zx�t�dt�

where

a�t� � DyL���x�t�� ��x�t���

zx�t� � z�x�t� � z	x�t��

z�x�t� �

Z �

�

b��x� t� �� � ��x�t�� ��x�t��d��

z	x�t� �

Z �

�

b	�x� t� �� � ��x�t�� ��x�t��d��

������

b��x� t� �� � DyL���x�t� � ���x�t�� ��x�t��� �x�t��

�DyL���x�t� � ���x�t�� ��x�t��� ��x�t���

b	�x� t� �� � DyL���x�t� � ���x�t�� ��x�t��� ��x�t���DyL���x�t�� ��x�t���

An argument identical to that used above to estimate Zx proves that the
L� norm of zx is o�jjvjj� as v � �� Also� since a��� is integrable and the scalar
functions t� �

jjvjj jj�x�t����x�t��M�t� T � � v�%�t� � vjj go to � in Y � we can

conclude that the integral
R ��
�

a�t� � ��x�t�� ��x�t��M�t� T � � v�%�t� � v�dt

is o�jjvjj�� Finally� the integral
R ��
� ���v�t�dt is di�erentiable as function of v

at v � �� If we use & to denote its di�erential� it follows that

V��x�� V��!x� �

�Z ��

�

a�t�
�
M�t� ��� %�t�

	
dt�&

�
� v � o�jjvjj�� ������

This shows that V is di�erentiable at !x and gives us an explicit expression
for its di�erential�
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Let denote by ��� ��� the adjoint covector along ���x� ��x�� We have�

���V��!x� �v�� V��!x��

�

Z ��

�

��L��x�t�� �x�t��dt�

Z ��

�

��L���x�t�� ��x�t��dt�

and again we can use � and �� as extrema of integration for both integrals�
Notice that we have �x�t� � �x�Tx� for every t � �Tx����� Moreover the
equation�

���t� � ���t� �Dyf���x�t�� ��x�x��� ��DyL���x�t�� ��x�t�� ������

is valid on ������ de�ning ��t� � ��T�x� for t � �T�x����� Hence

���V �!x� �v�� V �!x�� �

Z ��

�

���L��x�t�� �x�t��� L���x�t�� �x�t���dt

�

Z ��

�

���L���x�t�� �x�t��� L���x�t�� ��x�t���dt

� I� � I	�

We start estimating I��

I� � ��

Z ��

�

Z �

�

DyL���x�t� � ���x�t�� ��x�t��� �x�t�� � ��x�t�� ��x�t��d� dt

� ��

Z ��

�

Z �

�

�
DyL���x�t� � ���x�t�� ��x�t��� �x�t��

�DyL���x�t� � ���x�t�� ��x�t��� ��x�t��



� ��x�t�� ��x�t��d� dt

� ��

Z ��

�

Z �

�

�
DyL���x�t�����x�t����x�t��� ��x�t���DyL���x�t�� ��x�t��



� ��x�t�� ��x�t��d� dt

�

Z ��

�

��DyL���x�t�� ��x�t�� � ��x�t�� ��x�t��dt

������
and the �rst two terms can be written as o���� Indeed

k�x�t�� ��x�t�k � O����

and ��x�t� � ���x�t� � ��x�t�� � W �� then the �rst integrand is bounded by

��t�O���� For the second� notice that for every �xed t the �rst factor is
bounded by ���s� and tends to zero as � tends to zero� therefore by dominate

ESAIM� Cocv� December ����� Vol� �� ���	
��



INFINITE TIME REGULAR SYNTHESIS �	�

convergence we obtain the conclusion� Now using ������

I� �

Z ��

�

h� ���t�� ��t� �Dyf���x�t�� ��x�t��� �x�t�� ��x�t�idt � o���

� �

Z ��

�

d

dt
h��t�� �x�t�� ��x�t�idt

�

Z ��

�

h��t�� f��x�t�� �x�t��� f���x�t�� ��x�t��idt

�

Z ��

�

h� �Dyf���x�t�� ��x�t��� �x�t�� ��x�t�idt � o���

� h����� �x���� ��x���i � lim
t���

h��t�� �x�t�� ��x�t�i

�

Z ��

�

h��t�� f���x�t�� �x�t��� f���x�t�� ��x�t��idt

�

Z ��

�

h��t�� f��x�t�� �x�t��� f���x�t�� �x�t��idt

�

Z ��

�

h� �Dyf���x�t�� ��x�t��� �x�t�� ��x�t�idt � o����

Since Dx
�f���x� ��x� � L�������� we have that k��t�k is bounded and then

from limt��� �x�t� � limt��� ��x�t� � �� it follows that the second adden�
dum is zero� The sum of the last two integrals is o���� indeed we can reason
as for ������ replacing L with f � From the minimization condition of the
Maximum Principle�

h��t�� f���x�t�� ��x�t��i� ��L���x�t�� ��x�t��

	 h��t�� f���x�t�� �x�t��i� ��L���x�t�� �x�t��
����
�

for every x and almost every t � Dom���x� � Dom��x�� Moreover� with the
above de�nitions� the minimization condition holds also for t 
� Dom���x� in
a trivial way� Indeed the �rst term of ����
� is always zero� while the second
is either zero �if t 
� Dom��x�� or equal to the Hamiltonian� evaluated at
��x�t� � � and �x�t�� that is positive� From these facts we have�

I� � h����� x� !xi � ��

Z ��

�

���L���x�t�� �x�t��� L���x�t�� ��x�t���dt� o���

and then�
I� � I	 � h����� �vi� o����

We can divide by � and pass to the limit as � goes to zero� obtaining�

��hDyV��!x�� vi � h����� vi�

Since both terms are linear in v� we obtain�

��hDyV��!x�� vi� h����� vi�
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We have �� �� � otherwise � � �� but this contradicts the non triviality
of adjoint covector� Hence� it is possible to normalize the adjoint covector
setting �� � �� We �nally obtain�

DyV��!x� � ����� ������

This proves� in particular� the uniqueness of ������ ��� up to multiplication
by a positive constant� since the Cauchy problem for the adjoint equation
has unique solutions� This concludes the proof of Theorem ����

We now complete the proof of Theorem ���� From the minimization con�
dition of Pontryagin Maximum Principle ������ we have�

h��t�� f��x�t�� ��i� L��x�t�� �� � � ����	�

for every x � S� every � � U and almost every t � Dom��x�� Using a
sequence of times tending to �� at which the inequality is true� from the
continuity of the quantities involved in ����	�� we obtain that the inequality
is true at time �� Hence� from ������� we obtain�

hDyV��x�� f�x� ��i� L�x� �� � �� ������

for every x � S at which  is �f�L��di�erentiable and every � � U �
At this stage� we are ready to prove optimality� Fix x � S and consider

an admissible pair ��� �� � Adm�� �f� verifying �� � x and J��� �� � ���
If Dom��� is bounded then we can reason exactly as in ���
� Thus we as�
sume that Dom��� � ������� Now� take a sequence Tj that tend to ���

For each �xed Tj � there exists a sequence ��
j

l � �
j

l � of admissible pairs� with

Dom��jl � � ��� Tj
� �
j

l piecewise constant� �
j

l �Tj� � ��Tj�� such that �
j

l tend
to � uniformly on ��� Tj
� and�����

Z Tj

�

L��jl �t�� �
j

l �t�� dt�

Z Tj

�

L��� ��dt

������ ��

as l tends to ��� This argument is used for the �nite time case ���
� for
the proof see ���
�
By a transversality argument� identical to that one used in ���
� we can

�nd a sequence of points yji converging to ��Tj� such that for every l the

trajectory �j�li � corresponding to control �jl and verifying �
j�l
i �Tj� � yji � inter�

sects the �n��� dimensional recti�able set A a �nite or countable number of
times� Hence using ������� the lower semicontinuity of V� and the property
�NDJ� �exactly as in the �nite time case� see ���
�� we obtain�

V���
j�l
i ���� 	

Z Tj

�

L��j�li �t�� �jl �t�� dt� V��y
j
i �� ������

We now let i tend to in�nity� Since trajectories corresponding to control �jl
depend continuously on initial data� we obtain that �j�li tends uniformly to

�j
l
� Moreover� using ����� for �j

l
we have that

lim
i���

Z Tj

�

L��j�li �t�� �jl �t�� dt �

Z Tj

�

L��jl �t�� �
j
l �t�� dt�
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Hence� passing to the limit in the inequality ������ and using the lower
semicontinuity of V� we obtain�

V���
j

l ���� 	

Z Tj

�

L��jl �t�� �
j

l �t�� dt� lim inf
i���

V��y
j
i ��

We now pass to the limit in l� Using again the lower semicontinuity of V�
and the uniform convergence of �jl to � on ��� Tj
� it follows

V��x� � V�������	

Z Tj

�

L���t�� ��t��dt� lim inf
i���

V��y
j
i �� ������

Finally� we pass to the limit in j� From the continuity of V� at the origin
and V���� � �� we have

lim
j���

lim inf
i���

V��y
j
i � � ��

Hence� since ��� �� is an admissible pair� from ������ letting j tend to ���
we obtain

V��x� 	 J��� ���

Since ��� �� was an arbitrary admissible pair steering x to the origin

V��x� 	 V �f�x��

therefore  is optimal�

Remark ���� The main theorem admits various generalizations�

TARGET�
This proof is valid under the hypothesis that the target T is the origin� The
same proof can be extended to cover the case of for more general smooth tar�
gets under additional assumptions in the de�nition of �f� L��di�erentiability�
More precisely we ask�

lim
���

�

�
k���x�v� � ���x k � ��

However� this condition seems to be too stringent to �t with the interesting
application� While in the �nite time case� the result is valid for general
targets� see ���
� It is possible to consider a �nal cost 
 � T � R� substituting
the condition V���� � � with the condition V��x� 	 
�x� for every x � T �

TOTALITY�
The hypothesis requiring that the presynthesis is total can be replaced by
the following� It is su�cient to ask S to be open and �x�t� � S for every
x � S and every t � Dom��x�� Another interesting su�cient condition
stated in term of the cost is the following� There exists a real number !J � �
such that�
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�a� For every x � S we have J��x� �x� 	 !J

�b� For every x � S and every ��� �� � Adm�� �f� verifying �� � x� we have
that J��� ��	 !J implies that� for every t � Dom���� ��t� � S�

CONTINUITY AT THE ORIGIN�
It is clear that a su�cient assumptions to carry out the proof in the same
way is that

lim sup
j���

lim inf
i���

V��y
j

i � 	 ��

This can be guaranteed for example by asking that for every admissible pair
��� �� that steers a point x � S to the origin in in�nite time� there exists a
sequence of time Tj such that Tj � �� and

lim sup
j���

V����Tj�� 	 V�����

We can always choose the sequene yji in such a way that kyji � ��Tj� �
f���Tj�� u�k � � as j � �� for some u � U � Thus from the �NDJ�
assumption we obtain

lim inf
j���

V��y
j
i � 	 lim sup

j���
V��y

j
i � 	 V����Tj���

concluding� This condition is very�ed by Example � of ���
�
We may also ask the existence of a set C such that every trajectory �

reaching the origin in in�nite time is de�nitely in C �that is there exist !T
such that ��t� � C for every t � !T � and V� is upper semicontinuous at �
along C� that is lim supy���y�C V��y� 	 V����� Again� this more geometric
condition is satis�ed by Example � of ���
� Notice that both conditions for
the linear quadratic example of next section are equivalent to continuity at
the origin for V��

DIFFERENTIABILITY CONDITIONS�
We give an alternative de�nition of di�erentiability of the synthesis that
guarantees the same conclusion of the theorem� We brie'y indicate the
modi�cations of the proof needed to reach the conclusion in this case�
This new conditions are important since the example of a linear quadratic

problem we give in the next section� satis�es these assumptions �not the
assumption �A���
Given !x� de�ne� as in the proof of Theorem ����

A�t� � Dyf���x�t�� ��x�t���

and let M�t� s� be the fundamental matrix solution of the associated linear
system� A presynthesis  is �f� L��di�erentiable in !x if the following holds�

�A�$ there exist an open set W � containing f��x�t� � t � Dom���x�g� a neigh�
borhood N of !x �in �� such that N 
 Dom� �� with the property that
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�Aa� there exists � � � such that the compact set W � � fx � d�x� f��x�t� �
t � Dom���x�g� 	 �g satis�es W � 
 W and

lim sup
x��x

lim inf
T���

k�x�T �� ��x�T �k exp
�
k�W �����T �kL�



	
�

�

�Ab� there exist an integrable function 
 � �����
 � R and� for suf�
�ciently small � � �� integrable functions 
� � �����
 � R such that

lim���

R ��
�


��t� dt � �� and the inequalities

k �f�y� �x�t��� �f�y� ��x�t��k 	 
��t�

kDy
�f�y� �x�t���Dy

�f�y� ��x�t��k 	 
��t�

kDyL���x�t� � ���x�t�� ��x�t��� ��x�t��k 	 
�t�

hold for every y � W � x � N such that kx � !xk 	 �� t � ������ and
� � ��� �
�

�Ac� the map v � �v� where �v is the integrable R
n�� valued function on

������ given by

�v�t� � �f ���x�t�� ��x�v�t��� �f���x�t�� ��x�t��

is vaguely di�erentiable at v � � or it is weak��di�erentiable at v � ��
regarded as a map into the space of Rn���valued Borel measures� That
is� for every continuous function � � ������ � R� that vanishes at ��

�limt��� ��t� � ��� the map Rn � v �
R ��
�

�v�t���t� dt � R
n�� is di�er�

entiable at v � ��
Moreover the map Rn � v �

R ��
�

���v�t� dt � R� where �
��
v is the �n����th

component of �v� is di�erentiable at v � ��

�Ad� de�ne C	 as in ������ then the function

t�

����DyL���x�t�� ��x�t�� �

�
M�t� �� � C	

Z t

�

M�t� s� ds

�����
is integrable�

�Ae� let ��x denote the covector associated to ��x� then for every x � N

lim
t���

h��x�t�� �x�t�� ��x�t�i � ��

Notice that the condition �Ac� is the same as �A���
The proof now can be modi�ed in the following way�
From �Ac�� we have that� as before� the scalar functions

t�
�

jjvjj

���Z t

�

M�t� s� � ��v�s� ds� %�t� � v
���
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converge to � in Y �
Now condition �Aa� ensures that trajectories �x are near to ��x for x near

to !x� More precisely� we can prove the estimate ������ for � su�ciently
small� The estimate ������ is then obtained de�ning T �x� in a similar way
and using the function �W �����T �x�� instead of �W � �
The di�erentiability in Y of the map t� �x�t����x�t� can now be proved

only on compact intervals using the same proof and �Ab�� The di�erentia�
bility of V� at !x is now obtained using the assumption �Ad� to pass to the
limit for t tending to ���
The link of DyV� with ��x��� is obtained in the same way� making use of

the estimate �Ae��
The rest of the proof does not change�

�� Examples

The aim of this section is to give examples of syntheses that satisfy the
assumption �A�
 and present both �nite time and in�nite time optimal tra�
jectories�

Example ���� Consider the system �cf� ���
��

�
�x� � x	

juj 	 �
�x	 � u

�����

and the minimization problem�

min

Z ��

�

�
x	��t� � x		�t�



dt�

Let us describe the optimal synthesis� There are two optimal singular
trajectories that lie on the line x	 � �x�� respectively for �� 	 x� � �
and � � x� 	 �� These trajectories reach the origin in in�nite time using
the feedback control u�x� � �x	� The other trajectories start as bang�bang
trajectories ad either reach one of the two singular trajectories or reach the
origin in �nite time �the latter happens only for trajectories reaching the
origin with control ��� see Fig� ���
This minimization problem is not written as the optimization problem we

considered in section �� However� it is clear that any admissible trajectory
must tend to the origin at in�nity� Even a stronger property is true� namely
if x��� is optimal and x�t� � � for some t� then necessarily x�s� � � for t � s�
Otherwise the trajectory de�ned by �x�s� � x�s�����t��s� would achieve a
better performance� Hence� we can introduce the �nal constraint assigning
the origin as point target�
For convenience� we will verify the assumptions of our theorem in a neigh�

borhood of the origin� This clearly is enough if we want to prove optimality
on some open neighborhood of the origin covered by trajectory of the syn�
thesis �choosing the open set in such a way that the trajectories do not exit
from it�� For the global synthesis� one can easily check the assumptions

ESAIM� Cocv� December ����� Vol� �� ���	
��



INFINITE TIME REGULAR SYNTHESIS �
�

estimating the e�ects of the switchings of the optimal trajectories� This is
entirely similar to the computations exploited in ���
 for Fuller phenomenon
�now with only a �nite number of switchings and hence no problem of con�
vergence��

switching curve

control -1

control +1

singular
trajectory

trajectory
singular

switching curve

Fig��

Consider a point x in a neighborhood of the origin� not on the two singular
trajectories or on the trajectories reaching the origin in �nite time� The time
t�x�� in which the optimal trajectory starting from x reaches one of the two
singular trajectories� depends smoothly on x� Consider the curve � �� x

such that t�x
� � t�x� and x� � x� Let us check the assumption �Ac�� We
�rst prove the di�erentiability for a �xed � � C� along x

�

j

� �the tangent

vector to the curve � �� x
 at � � ��� and then along f��x���� �x����� We
have

�f��x�t�� �x��t���
�f��x�t�� �x�t�� �

�
� �
�x��t�� �x�t�

�

�
A � �����

The only nonzero component of ����� is the second one� Hence we have to
estimate only the integral�

Z ��

�

�
�x��t�� �x�t�



��t� dt �

Z ��

t�x�

et�x��t
�
�x��t�x��� �x�t�x��



��t� dt

� C���
�
�x��t�x��� �x�t�x��



�

for some constant C��� � �� We obtain immediately the di�erentiability us�
ing the regularity of t�x� and of the singular trajectory� The computations
for the di�erentiability in the other direction are straightforward� Now� the
vectors x�
 and f��y���� �y���� form a basis for every y in a neighborhood
of x� and are smooth functions of y� Moreover� the derivatives along these
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directions depend continuously on y� Hence� we obtain the weak� di�eren�
tiability for every � � C�� The other assumptions of Theorem ��� are easily
veri�ed� therefore we can apply the theorem obtaining the optimality of the
synthesis�

Example ���� Consider the system

�
�x� � ��x	�

juj 	 �
�x	 � u

�����

where � � C� veri�es ��x	� � x	 � o�x	�� and the minimization problem�

min

Z ��

�

�
x	��t� � x		�t�



dt�

The optimal synthesis near the origin is entirily similar to the one described
in the previous example� The singular trajectories now lay on the set of
zeroes of the function

	�

	x	
�x	� � x		�� �x	 ��

Call S this set and let S� be its intersections with the union of the second and
the forth orthant� Then S� can be characterized giving x	 as a function of
x�� say x	 � ��x��� with ����� � �� The function � can be highly nonlinear�
e�g� ��x	� � arctg�x	�� showing that syntheses with the above features are
not necessarily linked to linear�quadratic problems�

Remark ���� Consider the same problem of Example ��� but now with a
cost function Q having a single zero� say at !x� and a quadratic behaviour
near !x �e�g� Q�x � !x� is quadratic�� and a perturbed dynamics admitting
the zero velocity at !x �the perturbation being small in the C
 norm�� Then
the optimal synthesis has the same structure with !x playing the same role
of the origin in Example ���� �This follows from the analysis of the struc�
tural stability of two dimensional syntheses discussed in ��
�� This proves
structural stability of the synthesis of Example ��� and hence illustrates the
applicability of Theorem ����
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