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ADAPTIVE PARAMETER ESTIMATION OF HYPERBOLIC
DISTRIBUTED PARAMETER SYSTEMS:
NON-SYMMETRIC DAMPING AND SLOWLY TIME
VARYING SYSTEMS

H.T. BANKS AND M.A. DEMETRIOU

ABSTRACT. In this paper a model reference-based adaptive parameter
estimator for a wide class of hyperbolic distributed parameter systems
is considered. The proposed state and parameter estimator can handle
hyperbolic systems in which the damping sesquilinear form may not be
symmetric (or even present) and a modification to the standard adap-
tive law is introduced to account for this lack of symmetry (or absence)
in the damping form. In addition, the proposed scheme is modified for
systems in which the input operator, bounded or unbounded, is also
unknown. Parameters that are slowly time varying are also considered
in this scheme via an extension of finite dimensional results. Using
a Lyapunov type argument, state convergence is established and with
the additional assumption of persistence of excitation, parameter con-
vergence 1s shown. An approximation theory necessary for numerical
implementation is established and numerical results are presented to
demonstrate the applicability of the above parameter estimators.

1. INTRODUCTION

The adaptive parameter estimation of second order distributed parameter
systems was initially studied by Demetriou and Rosen, [15], written in a
second order setting and by Scondo [25], Demetriou [14] and Baumeister
et al. [12] written as a first order system having strong damping. The
scheme presented there did not account for systems with non-symmetric
damping bilinear forms. Such a system, which motivated the current work,
was observed in the adaptive estimation of structural acoustic models [4]
where lack of symmetry in the damping form was observed and thus the
scheme presented in [15] was no longer applicable. A modification to the
adaptive scheme was therefore required in order to account for the lack of
such a symmetry.

In this note we propose various modifications to account for this (lack of
symmetry) and therefore rendering the scheme implementable. In addition,
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134 H.T. BANKS AND M.A. DEMETRIOU

if it is known that the parameters are (slowly) time varying, then a state and
parameter estimator is proposed to estimate these time varying parameters.
Specifically, if it is known that the (unknown) parameters converge to a
steady state value, then with the additional assumption of persistence of ex-
citation, the scheme can guarantee that the parameter estimates converge to
the steady state value of the system’s parameters. Another issue that arises
in many hyperbolic distributed parameter systems is when the system has no
damping at all. While the “no-damping” case does not occur physically, it is
often the model used for systems with very light and/or poorly understood
damping. This case is also treated here, and the persistence of excitation
condition, required for parameter convergence, is modified in order to ac-
count for the absence of the damping term. It is worth mentioning that even
though the system under consideration does not have a damping term, the
proposed estimator requires one in order to guarantee convergence. Further-
more, this estimator appears to be more general than the one presented in
[14] (systems with strong damping) or in [25] (systems with no damping),
because the estimator operators here are not simply chosen as the plant’s
operators evaluated at some optimal parameter, but rather some other gen-
eral and not necessarily parameterized operators. In all cases above, unlike
[15] and [25], the parameters in the input operator are assumed to be un-
known and therefore the adaptive schemes can identify these parameters in
the input operator. In addition, these schemes can handle the case where
the input operator is unbounded. A similar result was established in [14] for
the case with symmetric damping form. The issue of unknown parameters
in the source term is of great importance in the control of flexible structures
and especially when control is implemented via smart actuators. In this
case, parameters related to the geometric and physical properties of these
smart actuators are usually known to within a percentage of the actual value
and often vary (slowly) with time. These fluctuations exhibit destabilizing
effects in controlling these structures with the end result of poor, if not
inadequate, control performance.

The following section introduces the underlying spaces that are needed to
analyze the system and its estimator and gives conditions imposed on the
system that are required for parameter convergence. This essentially defines
the class of systems for which the adaptive parameter estimation schemes are
applicable. Section 3 provides a summary of the stability and convergence
arguments for such an estimator. The adaptive parameter estimation scheme
for systems with (slowly) time varying parameters is presented in Section 4.
Since the proposed state and parameter estimators are infinite dimensional,
an approximation theory, which will be used for implementation purposes,
is developed in Section 5. Section 6, which includes examples and numerical
simulations of the structural acoustic system [4], is added to demonstrate
the applicability of the above theoretical results while Section 7 summarizes
the results and concludes with further open problems in the area of adaptive
parameter identification of distributed parameter systems.
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ADAPTIVE PARAMETER ESTIMATION OF HYPERBOLIC SYSTEMS 135

2. THE PLANT AND THE ESTIMATOR

Let H be a real Hilbert space with inner product (-,-) and corresponding
induced norm |- |, and let V3 and V5 be real reflexive Banach spaces with
norms denoted by || - ||v; and || - ||v,, respectively. We assume that V; is
embedded densely and continuously in V3 and that V5 is embedded densely
and continuously in H. It then follows that (see, for example, [6, 10])

Vi Vo HE H — VS — V], (2.1)

where H™, VJf, and V|" denote the conjugate duals of H, V5, and Vj, respec-
tively. Since the embeddings in (2.1) are dense and continuous, [21, 26, 27,
28], we assume that there exist positive constants, Kv,, Ky,, and Ky, v,,
such that |¢| < Ky, ||¢llv,, ¢ € Vo, that |p] < Ky, ||¢|lv,, ¢ € Vi, and that
lellv, < Kv,villellvys ¢ € Vi. We denote the usual operator norms on
Vi and V* by || - [[vy and [| - [|vx, respectively. The duality pairing, de-
noted by (-, -)vx v, is the extension by continuity of the inner product (-, )
from H x Vi to V" X Vi; hence, elements ¢* € V" have the representation
©" () = (", ©)ve vy, see [T, 10]. As it was pointed out in [4, 6, 7, 15], V3
can either be Vi, H or some intermediate space, depending on the damping
form chosen.

Let @ be a real Hilbert space (henceforth the parameter space) with inner
product (-, -)g and corresponding induced norm |-|g, and for each ¢ € @) let
o1(q;+, ) : Vi x Vi = R be a bilinear form on V; satisfying

(Al) (Symmetry) g1 ((]7 P ¢) =01 ((]7 ¢7 9‘9)7 P ¢ € V17 and qc Q7

for at least one tuning parameter ¢* € (), we have
(A2) (Boundedness)

|Ul(q*§@7¢)| < ao(q*)H@HVIHQbHVM e, € Vy, with O‘O(q*) >0,
(A3) (Coercivity)

o1(q 5 0.9) > () lellf,, ¢ € Vi, with ag(q™) > 0,

(A4) (Linearity) the map ¢ — o1(q; ¢, v) from Q into R! is linear for each
@, ¢ S Vl.

Similarly, for each ¢ € Q, let a2(q;+,+) : Vo x Vo — R ! be a bilinear form on

V; satisfying

(B1) (Symmelry) oa(q; 0, 0) = 02(g5 9, 0), ¢, € Vi
(B2) (Boundedness)

|o2(g" 0, 0)| < B2 (@) lellvall ol 00 € V2,

(B3) (Coercivity) oa(q*; p, ) > Bolg™)l#llF,, @€V,
(B4) (Linearity) The map ¢ — a2(q; ¢, 1) from Q into R is linear for each
s ¢ € V27

where 8°(¢*), Bo(¢q*) > 0, and ¢* is the same fixed element of ) appearing
in Assumptions (A2) and (A3) above.
For each ¢ € Q, let b(q;-,-) : H x V; — R ! be a bilinear form satisfying

(C1) (Boundedness)
6(q; 9, 0)| < laleldl[[¢llvi, 0 € H, ¢ € VA,
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136 H.T. BANKS AND M.A. DEMETRIOU

(C2) (Linearity) The map q — b(q; 9, ¢) from Q into R ! is linear for 9 € H
and ¥ € V7.

For g € @) define the linear operators A;(¢) and Aj(g) from V; into V{* and
Vs into V' by

<A1(q)997¢> = Ul(%%?ﬁ)v 9971#6‘/17

(A2(@), ¥) = oalgp ), @0 €W
In addition, we define the input operator B(q) : H — V| by

(B()0,¥)vrv =blq;9,%), D€ H, eV

For ¢ € () we consider the second order linear initial value problem given
in variational form by

(zu(t), )vevi +o2(q: 2:(0), ) + o1 (g3 2(1), ) = blas f(1), ), (22)
P € Vi, t >0,

2(0) = 2o, 2(0) = 2, (2.3)

where z; denotes time differentiation, zg € Vi1, 21 € H, and f € Ly(0,00; H).

The well posedness of the system (2.2), (2.3) with symmetric oo was
established in [6] using linear semigroup theory. The case where o3 is not
symmetric was treated in [5, 8] for structural acoustic interaction models.

The identification objective is to design a state and parameter estimator
using the plant state (z(¢), z,(¢)) and the plant input f(¢) in order to identify
the unknown plant parameter ¢ adaptively.

We now make the assumption of an admissible plant as it was defined in
[15], namely a boundedness condition on the state of the system.

DEFINITION 2.1. An admissible plant is a triple (g, z, f) with ¢ € @ and
(z, z;) a solution to the initial value problem (2.2), (2.3) corresponding to ¢
and f, for which there exists constants A > 0 such that

|72 (p; 2:(1), @) + 1 (p; 2(1), @) = (5 £ (1), )| < Alplellellva,
for almost every t > 0, p € Q and ¢ € V7.

Following the results in [14], it is possible to specify sufficient conditions
for a solution (z,z) to the initial value problem (2.2), (2.3) to have the
necessary regularity for (g, z, f) to be an admissible plant.

2.1. NON-SYMMETRIC DAMPING

Given an admissible plant (¢, z, f) and a tuning parameter ¢* € Q, we
define in the same manner the estimator for ¢ and z, denoted by ¢ and 2
respectively, in the form of the initial value problem

(Zue(t), o) + 02(q75 2e(1), 0) + 01(q75 2(1), ) + 02(G(1); 24(1), )
+o1(q(t); 2(1), ¢)
= b(4(); f(8)s @) + 02(q71 24(t), ) + 01(q73 2(1), ), (2.4)

(RS Vl, t >0,
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ADAPTIVE PARAMETER ESTIMATION OF HYPERBOLIC SYSTEMS 137

(Ge(1), Py + oa(p; 24(t), 2(t) — 2(1)) + o1 (p; 2(1), 2(1) — 2(1))
= b(p; f(£), 2(t) = 2(t)) + yo2(p; 24 (1), 24 (t) — 2(1))
+you(p; 2(8), ze(t) — 2(t)) — vb(ps f(1), z4(t) — 2:(2)) = 0,  (2.5)
peQR,t>0,

2(0) € V7, 2(0) € H, §(0) € Q. (2.6)

REMARK 2.2. In the case that condition (B1) is not satisfied, i.e. o2(g;-,-)is
not symmetric, the above adaptive estimator does not satisfy the conditions
presented in [15] and therefore it cannot be implemented. We propose two
ways to alleviate such a problem.

(S1) We can impose the condition that the bilinear form satisfies the sym-
metry condition (B1) only when it is evaluated at the tuning parameter
¢*, namely

a2(q" 50, 0) = aa(q"5 ¥, 9), Ve, € Vi and some ¢* € Q. (2.7)

(S2) Replace the non-symmetric term o32(q*; ¢, %) in (2.4) with the sym-
metric term
% [o2(a"1 0, 0) + o2(0™5 0, 90)], @ W € VA (2.8)
The first option seems more attractive for implementational purposes, but
it might happen that equation (2.7) can never be satisfied for any tuning
parameter ¢* € () that simultaneously satisfies (S7), (A2), (43), (B2) and
(B3). Of course, if there exists such a ¢*, then (S;) is the preferred modifi-
cation. If; on the other hand, there does not exist a ¢* € @ such that (5;)
is satisfied, then (S2) must be implemented. With the second option taken,
equation (2.4) then becomes

Galt), @) + 5 102007 200), 9) + 72475 0, 20)]
o1l 20), 0) + a2(d(0): 2(0), 9) + o1 (d(0); 2(0), )
= D) F(1).9) + 5 [oaa"s 2(0), 9) + aa(a™s 2, 20)]
+o1(q%2(t), ), weV,t>0,

We note that the parameters ¢* € ) and v > 0 can be thought of as gains,
or tuning parameters, which are used to “tune” the estimator, see [15]. Of
course ¢* must be such that Assumptions (A2), (A3), (B2), and (B3) (and
(S1) when applicable) are satisfied. We note as well, that weighting the Q
inner product can also serve to tune the scheme, see [15, 16].

A third option seems to be the most general and will be the one treated
throughout these pages. Instead of searching for an optimal parameter
¢* € @ such that Assumptions (A2)-(A3), (B2)-(B3) and (51) or (S2) are
satisfied, one can introduce bilinear forms ¥;(-,-) : V; x V; — R! that do
not depend on any parameter g € () or necessarily bear any resemblance
to the bilinear forms o;(¢; -, -), and that satisfy Assumptions (A1)-(A3) and
(B1)-(B3) with known bounds. That is, let 31(-,-) : V4 x Vi — R! be a
bilinear form on V; satisfying

(A1) (Symmetry) 3 (@, ¥) = X1 (¥, ¢), ¢ 1€ Vi,
(A2) (Boundedness) |1 (¢, )| < o®l[@llvil[¥llvi, @ >0, @, €W,
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138 H.T. BANKS AND M.A. DEMETRIOU

(A3) (Coercivity) $1(p,¢) > @wllelly,, @ >0, ¢eVi,
and let ¥5(+,+) : Vo x Vo — R ! be a bilinear form on V; satisfying

(B1) (Symmetry) Sa(o, ) = Xa(h, ), @, 0 € Vo,

(B2) (Boundedness) |Sy(p, )| < Bllellva[lvllve, 37> 0, o0 € Va
(B3) (Coercivity) Xa(p,¢) > Bollelly,,  Bo>0, e Va

This can also be viewed as being a more general case of the adaptive scheme
presented in [15, 25] where ¢;(¢*;-, ) is a specific form of ¥;(-,-), ¢ = 1,2.
Then, the state and parameter estimator equivalents of (2.4) - (2.6) are now
given by

(Ze(1), ) + X2 (2:(8), ) + Xa(2(1); ) 4+ 02(q(2); 2(1), ) + 01(q(2); 2(2), )
= 0(q(); F(1); ) + Ba(2:(t), ) + X (2(1), ), p € Vi, 1> 0, (2.9)

(Ge(1), Py + oa(p; 24(t), 2(t) — 2(1)) + o1 (p; 2(1), 2(1) — 2(1))
= b(p; f(1), 2(t) = 2(t)) + vo2(p; 24 (1), 24 (t) — 2(1))
+yo1(p; 2(0), 20(t) — 2:()) = b(ps; f(1), (1) — Z(1)) = 0, (2.10)
peER,t>0,

2(0) € V7, 2(0) € H, §(0) € Q. (2.11)

Assumptions (A4) and (B4) imply that the system (2.9), (2.10) is linear
n (%,4). One way that the initial value problem (2.9), (2.10) and (2.11)
can be shown to be well posed is in the sense of the existence of a unique
mild or generalized solution. This can be argued via the theory of infinite
dimensional evolution equations as presented in, for example, Pazy [23],
Tanabe [27] or the more relevant treatment by Demetriou and Rosen [15]
and Scondo [25] for the symmetric or absent oy case. We duplicate, for
sake of completeness, the procedure used in [15] and present the required
modifications.

Let {X, (-,-)x} be the Hilbert space defined by X = V; x H and intro-
ducing an additional tuning parameter v, we define the X-inner product

(o) x = v {E1(e1, 1) + (@2, ¥2) } + (@1, ¥2) + (1, 02) + X (1, ¥1),

for ¢ = (1, 92), ¥ = (Y1,12) € X, v € R. It can easily be shown [15] that
if v > 0 is sufficiently large, then (-,-)x is in fact an inner product on X
and moreover, that the corresponding induced norm, |- |x, is equivalent to
the norm on X induced by the more standard inner product on X given by

(997 ¢)X = E1(9‘917 ¢1) + <9927 ¢2>7

for ¢ = (1, ¢2), ¥ = (¥1,12) € X. In fact, these arguments will be given
in the proofs of Lemma 3.1 and convergence results in the next section (see
also [15]). Now let Y = V; x V} be endowed with the norm

1
lelly = {llealliy + el 12
for ¢ = (¢1,¢2) € Y. Then Y is a reflexive Banach space and ¥ — X — Y~

with the embeddings dense and continuous.
We rewrite (2.9), (2.10) in first order form as

%[583 ] - [ —Bét)* Y ] [285 ] +F0, >0, (212
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ADAPTIVE PARAMETER ESTIMATION OF HYPERBOLIC SYSTEMS 139

where A € L(Y,Y ™) and B(t) € L(Q,Y ™), are given by

Ap = [ A A, ] [ Zz; ] ¢ = (p1,92) €, (2.13)

and

0

BW:[—Az<q>zt<t>—A1<q>z<t>+B<q>f<t> ] €Q (1)

respectively (the operators A;(q) and Aj(q) are as they have been defined
above), Ay € L(V1,V]) and Ay € L(Va, Vy) are the operators that corre-
spond to the bilinear forms X, ¥, and are defined similar to the operators
Ai(q), Aa(q), B(t)* € L(Y,Q) is the Banach space adjoint of B(t) (that is,
recalling that above embeddings, that (B(t)*p,q)g = (¢, B(t)¢)x, ¢ € Y,
q € Q), and the forcing term is

0
FU) = | Avz(t) + Az(t) |, t>0. (2.15)
B(t)(z(t), z(t))

Since (q, z, f) is assumed to be an admissible plant, then F € Ly(0,7; (Y x
Q)*) forall T > 0. We assume that z is such that Ay(q)z:(t)+ A1 (¢)z(t) € H,
t >0, q € Q, and that Ayz(¢t) + A12(t) € H, t > 0. In addition we
assume that the map t — Ay(q)2(t) + A1(¢)2(1), for each ¢ € @), is strongly
continuously differentiable in H. Let X = X x @), let the domain D be

D={(p,q) €EX: o= (p1,92) €Y and Ajp; + Ay € H}

and define the family of operators {A(t)}tm, At):DCX = X by

YR A B(t)

o =| g S| 2o

Using the results in [15] it can be shown that {A(t)};>0 is a stable family
of infinitesimal generators of Cy semigroups on X and that the map t —
A(t) (g, q) for (¢,q) € D is strongly continuously differentiable in . It
then follows, [23], that the system (2.9), (2.10), (2.11) admits a unique
mild solution. When the initial data, (2(0), ¢(0)), is sufficiently regular (i.e.
((0),¢(0)) € D) and F is sufficiently regular (which essentially depends
upon the regularity of the plant state, z) we have a strong solution to the
initial value problem (2.9) - (2.11). In the rest of this note, we assume that
theinitial data and the plant are sufficiently regular to ensure that the initial
value problem (2.9) - (2.11) has a strong solution.

Let e(t) := 2(t) — z(t) denote the state error and r(t) := ¢(t) — ¢ the
parameter error, with (q,z, f) a plant and (g, %) a solution to the initial
value problem (2.9) - (2.11). In the next section we will show that under no
additional assumptions we have state error convergence and that under the
additional assumption of persistence of excitation can guarantee parameter
convergence.
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140 H.T. BANKS AND M.A. DEMETRIOU

2.2. SYSTEMS WITH NO DAMPING

In this subsection we consider systems with no damping term, given in
weak form by

<Ztt(t)7 99>V1*7V1 + 01 (q; Z(t)v 99) = b(Q? f(t)v 99)7 peV, t>0, (2'16)

2(0) = 2o, 2(0) = 2, (2.17)

where zg € V1, z1 € H, and f € L3(0,00; H). In this case we only utilize a
Gelfand triple with Vy — H ~ H* — V*, [28].

The well posedness of the system (2.16), (2.17) with bounded input oper-
ator can easily be established using linear semigroup theory, see [10, 20, 21,
23, 26, 28]. The case of unbounded input operator is treated in [7]. Once
again, it is possible to specify sufficient conditions for a solution (z, z;) to
(2.16), (2.17) to have the necessary regularity for (¢, z, f) to be an admissible
plant.

The corresponding definition for an admissible plant, in this case, is the
triple (g, z, f) with (z, z) a solution to (2.16), for which there exist A > 0
such that

|1 (p; 2(1), @) = b(p; £ (1), ©)| < Alplollellvs (2.18)

for almost every ¢t > 0, p € () and ¢ € V;. In the proposed state and param-
eter estimator below, we utilize a damping sesquilinear form o5 even though
oy does not occur naturally in the system (2.16), (2.17). The motivation
behind this is to enhance the convergence properties of the state error (both
le(®)]]v, and |e.(t)]) to zero; this will become clearer in the ensuing stability
analysis. In this case the proposed state and parameter estimators take the
form

(Zue(t), o) + 02(q75 2e(1), 0) + o1(q75 2(1), )+01(fi() z(t), )
= b(4(); f(1)s @) + 02(q71 2e(t), ) + 01(q7:2(1), 0), p €V, £ > 0,(2.19)

(4:(t), p)a + o1(p; 2(1), 2(1) = 2(1)) = b(p; f(1), 2(t) = 2(1))
+ylou(p; 2(1), z:(8) = 2:(8)) = b(p; f(1), 2(1) = 2:(1))] = 0, (2.20)

peQ,t>0,

2(0) € V7, %(0) € H, 4(0) € @, (2.21)

where oy (a design term) is chosen to satisfy Assumptions (A1) - (A4). We
note, however, that by employing a 5-space setting as in (2.1), o2 could al-
ternatively be chosen to satisfy Assumptions (B1) - (B4) which permits one
to obtain the desired results under, in general, much weaker assumptions on
o2. The reader is also directed to [25] for a similar treatment of second or-
der systems with no damping in a 3-space setting where that author chooses
o2(q*; -, -) of the estimator to be the same as o1(¢™; -, -) of the system.

As in the case of subsection 2.1, we define the space X = Vi x H with
the same inner product

<997 ¢>X: Y {0'1((]*7 #1, ¢1) + <9927 ¢2>}+ <9917 ¢2> + <¢17 9‘92> + 0-2((]*; P15 ¢1)7

for ¢ = (¢1,92), ¥ = (¢¥1,%2) € X, where ¢* € @ is as it was defined in
Assumptions (A2), (A3) (or equivalently in Assumptions (B2), (B3)).
ESAIM: Cocv, May 1998, VoL. 3, 133-162



ADAPTIVE PARAMETER ESTIMATION OF HYPERBOLIC SYSTEMS 141

REMARK 2.3. In the no damping case the bilinear form o5, proposed in
(2.19), (2.20), is chosen to satisfy all four conditions (A1) - (A4), and this
of course results in a Gelfand triple setting rather than a Gelfand quintuple
setting. The symmetry condition is also imposed even when o3(q; -, ) is not
evaluated at the tuning parameter ¢*. This can be done since o3 is a purely
design term. One can further modify the above estimator by using the
results of the third option (general option) to replace o1(¢™;-,-) by ¥1(-, ")
and o3(¢*; -, ) by X2(+, ) if more design flexibility is desired, at the expense
of increased complexity via a Gelfand quintuple. This then becomes a more
general case that includes the treatment of symmetric damping in [12, 15]
and of no damping in [25].

Similarly, we define the reflexive Banach space ¥ = V; X Vj, endowed
with the norm

1
lelly = {ledll¥, + le2llsy 12

for (¢1,92) € Y with Y < H < Y™ and the embeddings dense and contin-
uous. We rewrite (2.19)-(2.21) in first order form as

L)Ly 1[0

where in this case A € L(Y,Y™) and B(t) € £(Q,Y™), are now given by

A@==[__A?@*) —Ajw*)][ 52]7 v =(p1p2) €Y,

and
B@QI[ A ’ } q€Q,
—A(q)z(t) + B(g) f (1)
respectively (once again the operators A;(¢) and Az(q) are as they have been

defined in subsection 2.1 with As(q) now in L£(V1, V™)), B(t)* € L(V,Q) is
again the Banach space adjoint of B(t), and

0
Ft)y= | Ax(¢")z(t)+ A1(¢")z(t) |, t>0.
B(t)"(2(t), z:(1))

From the equivalent definition of the plant, equation (2.18), we have F €
Ly (0,7;Y*) for all T > 0. Using similar arguments as in Section 2, we can
show the well posedness of the state and parameter estimator, (2.19)-(2.21).

Note that if the general case is used (Remark 2.3) then the A operator is
now given by (2.13) and F(t) by (2.15)

3. STABILITY AND CONVERGENCE
We now establish the convergence of the state estimator
li t =0 d i =0
Jim fle() v, and  1im eq(t)]
and, with the additional assumption of persistence of excitation, parame-
ter convergence. That is, limy o |r(t)|g = limne [¢(t) — ¢lg = 0. We

assume throughout this section that (g, z, f) is an admissible plant (see

Definition 2.1).
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3.1. NON-SYMMETRIC DAMPING

Using the plant equation (2.2) with non-symmetric o5 (i.e. (B1) not
satisfied), the state estimator (2.9), and the parameter estimator (2.10), we
have that e and r satisfy the linear, homogeneous, non-autonomous, initial
value problem given in weak or variational form by

(ent(t), ) + Ta(er(t), @) + Tule(t), p) + o2(r(t); z4(1), 0) + a1 (r(t); 2(1), ©)
= b(r(); f(),p)y P EVIE>O, (3.1)
(re(1), o — o2 (p; 2:(1), (1)) — o1 (p; 2(1), €(1)) 4+ b(p; f(1), e(t))
— yoa(p; (L), ec(t)) — you(p; 2(8), exlt)) + vo(p; f(1), e(t)) = 0, (3.2)
peR,t>0,
e(0) e Vi, e(0)e H, r(0)eq@. (3.3)

We next establish a Lyapunov-like estimate for the system (3.1) - (3.3). In
essence, it is shown that the derivative of an energy function is non-positive
along the trajectories of the error equations (3.1), (3.2).

LEmMMA 3.1. ([15]) If the tuning parameter v satisfies
Kv, K}
v > max {Kv17 R }7 (3.4)
Qo
then there exist constants p, k > 0 such that for allt > 0
¢
le(I%, + le:(O +1r(0)[5 + ,0/0 {le)If, + lles(s)[I3, } ds < &,

where € =k {[|e(0)[3, + le(0)* + [r(0)[3 ]
Proof. Following the treatment in [15], we define the energy functional, F :
[0,00) = R, for the system (3.1), (3.2) by
E(t) = y{Zile(t),e(®)) +lect)*} + 2{e(t), ex(t))
+Sa(e(t), e(t) +1r ()15

- ‘( . ) IRaCl (3.5)
Then, using (3.1), (3.2), and assumptions (A3) and (B3), we obtain

E(t) = v {2%1(e(t), ert)) + 2enlt), e(t)) ) + 2(ed(t), e(t))
+2{e(t), en(t)) + 28a(ed(t), €(t)) + 2(re(t), r(t))o
= 29%a(es(t), e4(t)) = 281 (e(t), (1)) + 2le(t) | (3.6)
= 2aole(t)l}, — {2700 — 27, } llec (1)I13,
= po {lle®IIF; + lle« 117, } -

for some pg = min{2ag, 2730 — 2[(V2} > 0, since, by assumption, v >

IANIA

K‘2/2 /Bo. Consequently,

B(1) +po/0 {lle(®)[I5; + lles()1I3; } ds < E(0). (3.7)
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From assumptions (A2) and (B2), see also [15], we find that
E(t) < kr{lle®IT; +le )" + Ir(®)5}, (3-8)

for some kK > 0 and from (3.5) that

s lle@I, + e +Ir@®)5} < E@), (3.9)
for some k7, > 0. The desired result then follows from (3.7), (3.8), (3.9),
and the assumed lower bound on 7. O

The convergence of the state estimate is established below without im-
posing any additional assumptions. Let (q,z, f) be an admissible plant. If
v > max{Ky,, Kv, /aq, K‘Q/z)/ﬁo}7 then the energy functional £ given by (3.5)
is non-increasing,

tli}rgoHe(t)Hvl =0 and 75li>1r}r>1o|et(t)| =0. (3.10)
The proof of the state convergence is similar to the one given in [15] for
the symmetric case and is given in greater detail in Appendix A of the
companion report [3].
REMARK 3.2. ([15]) In the case that Vi = V3, inspection of the definition

of IV given in (3.5) reveals that Lemma 3.1 and the error convergence (3.10)
can be proved with the somewhat weaker assumption on 7 that

I(Vl - % 1(‘2/2
a B |

In order to establish parameter convergence we require the notion of per-
sistence of excitation.

v > max {Kvl,

DEFINITION 3.3. A plant (¢, z, f) is said to be persistently excited via the
input f, if there exists Tg, dg, €0 > 0 such that for each p € @ with |pjg =1
and each t; > 0 sufficiently large, there exists a ¢ € [t1,t1 + To] such that

With the above condition assumed, we have that if the plant (g, z, f) is
persistently excited then

> €.

v

460
/; (As(p)2(7), ) + (AL (p)2(7), ) — (B(p)(7), Y

li t)lg = 0.

Jim [r(t)lg =0

The proof of parameter convergence follows from two technical lemmas
which are stated and proven in Appendix A of [3]. It is almost identical
to the symmetric case presented in [15].

REMARK 3.4. Continuing with possible extensions for the non-symmetric
case as was presented in Remark 2.2, we also present a fourth possible way
which is less complicated but changes the bound on the constant +. If the
original state estimator (with no modifications) given by (2.4) is used, then
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in the proof of Lemma 3.1 we have that

Ey(t) < = 200(q) e}, — {2v60(q7) — 2K3, Hle®)]I?,
+ 027 ea(l), (1)) — a2(q™e(t), e(t))
—{2a0(q%) = B(a) } )13,
— {2900(4") = 2K, = B (0" KT, v, eI

which imposes the additional condition 2ag(q*) — 3°(¢*) > 0 and decreases
2K, —8%(a") KT, v,
) 200(q*)

the choice of the constant ¢; and pg in the proof of parameter convergence,

(see Appendix A of [3]) which will eventually affect the rate of convergence
Yo of E(t) to zero, see [16]. Concluding about this option, either the level
of excitation, €y must increase or the length of the time window &g for
Definition 3.3 must decrease.

IN

. These changes will affect

the lower bound of v to v >

3.2. SYSTEMS WITH NO DAMPING

Assuming that the purely designed term oy is used (Remark 2.3) then the
resulting state and parameter error equations become
(ere(t), ) + 0a(q75 (1), ) + a1(q75 €(t), ) + a1 (r(2); 2(1), )
= b(r(t); f(t),v), @€ Vi,t>0, (3.11)

(re(t),p)q — o1(p; 2(t), e(t)) + b(p; f(1), €(t))
—y{o1(p; 2(1), ec(t)) — b(p; f(1), e(t))} =0, peQ,t>0, (3.12)

e(0) e Vi, e(0)e H, r(0)eq@. (3.13)

The persistence of excitation condition reduces to requiring that for 7j,
do, €0 > 0, for each p € @ with |p|g = 1 and each ¢; > sufficiently large,
there exists a ¢ € [t;,¢; + T] such that

The corresponding result in state error convergence is then summarized. Let
(¢, z, f) be an admissible plant. If v > max{Kv,, Kv,/ao(¢"), K‘z/l/oeo(q*)}7
then the energy functional £ given by (3.5) is non-increasing,

i+30
/f (A1(p)z(1), ) = (B(p) f(7), ) dr|| = co. (3.14)

v

Jim [le()llv; =0 and  Jim e,(1)] =0,

The arguments leading to the proof of the state error convergence are
similar to the case with damping presented in Appendix A of [3] and are
therefore omitted. The differences are in the definition of the (admissible)
plant given by (2.18).

Once again, in order to achieve parameter convergence we impose the
persistence of excitation condition given by (3.14). If the condition of per-
sistence of excitation, given by (3.14), is satisfied, then

lim [r(1)lg = 0.
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The proof of parameter convergence once again resembles the arguments
used in Appendix A of [3] for the case with damping. The differences are
in the choice of the constant g used in the proof of Lemma A.1 and in the
choice of ¢, ¢z, 70 and ¢(t) used in the proof of state error convergence with
damping.

REMARK 3.5. Following Remark 2.3, if the general option with a 5-space
setting is used, then the parameter v required to guarantee convergence is
given by (3.4).

4. SLOWLY TIME-VARYING SYSTEMS

We now turn our attention to systems with time varying parameters.
Specifically, we treat systems whose parameters are assumed to asymptot-
ically converge to an (unknown) steady state value. Consider the system
(with a symmetric o3(q; -, -) assumed here for simplicity, i.e. satisfying As-
sumption (B1))

(zu(t), p)ve vy + 02(q(l); 2(t), ) + o1(q(1); 2(2), 0) = blq(1); (1), ¢), (4.1)
Q€ Vl, t > 07

20)=2%€Vi, 20)=zn€H ¢q0)=gpecQ, (42

where zg € Vi, 21 € H, f € L3(0,00; H), and ¢(0) € @ is some unknown
initial condition of the parameter ¢(¢). We assume that the parameter ¢(t)
satisfies

(@(t),p)o = (Aqq(l),p)q + (55, P) s (4.3)

where ¢(0) € @, A, is the infinitesimal generator of an exponentially stable
Co semigroup on ) satisfying

(Agp,p)o < —kylply,  p€Q,  some ky >0, (4.4)

and cg, is related to the steady state value of ¢(¢). Following the results
in [1, 2] for finite dimensional adaptive systems and in [23] for () being
an infinite dimensional parameter space with ¢(¢) now denoting the mild
solution, we have that (4.3) satisfies
}i}rgo Q(t) = lGss = _Aq_lcssv

where ¢, is the steady state value of ¢(¢). It is assumed in this case that both
q(0) and ¢ss (equivalently c¢s) are unknown. The only parameter assumed
known here is the dissipation bound &,.

REMARK 4.1. We can also assume that c¢,, is a function of time and that
there exists a steady state value for ¢,5(f) (assumed bounded and measurable
on [0,00)), namely, ¢57 = lim_, o ¢55(£), so that ¢s; = —Aq—lcgg, see [18, 23].

The definition of an admissible plant will be taken to be the same pre-
sented in Section 2, namely Definition 2.1. We can follow the procedure
given in [20], [23], or [28] to establish the well posedness of the system (4.1)
- (4.3).
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We now proceed to establish a state and parameter estimator that will
guarantee the convergence of the state error to zero, and by imposing the ad-
ditional condition of persistence of excitation, parameter convergence. Fol-
lowing the treatment of finite dimensional results for slowly time varying
parameters, see for example [22], we re-introduce the parameter error given
by ¢(t) := ¢(t) — gss, instead of the more conventional term, ¢(¢) — ¢(t), and
define G(t) := q(t) — gss- The equations for the state and parameter estima-
tor are the same as the ones given for hyperbolic systems with symmetric
damping and time invariant parameters by (2.4) - (2.6), namely

(Zu(t), @) + 02(q7 (1), 0) + 01(q75 2(8), ) + 02(q(1); 2e(8) )
+01(G(t); 2(1), ¢)
= b(ﬁ@)?.f@)v@) + 02(q*§zt(t)799) + Ul(q*§z(t)799)7 (2lS V7 t> 07(4'5)

(Ge(1), Py + oa(p; 24(t), 2(t) — 2(1)) + o1 (p; 2(1), 2(1) — 2(1))
= b(p; f(£), 2(t) = 2(t)) + yo2(p; 24 (1), 24 (t) — 2(1))
+yo1(p; (1), ze(t) — 2(t)) — vb(ps f(1), z(t) — 2(¢)) = 0,  (4.6)
peQR,t>0,

2(0) € V7, 2(0) € H, §(0) € Q. (4.7)

Following the procedure given in Section 2, we duplicate the steps taken
for establishing the well posedness of the state and parameter estimator,
(4.5) - (4.7). We first assume that Assumptions (Al) - (A4), (B1) - (B4)
are satisfied for ¢,¢* € Q. Let {X, (-,-)x} be the Hilbert space defined by
X = Vi X H and now define

<997 ¢>X: 7{0-1 (q*7 P15 ¢1) + <9‘927 ¢2>} + <9917 ¢2> + <¢17 9‘92> + 02 ((]*7 P15 ¢1)7

for ¢ = (¢1,92), ¥ = (¢¥1,%2) € X, where ¢* € @ is as it was defined in
Assumptions (A2), (A3), (B2), and (B3).
We rewrite (4.5), (4.6) in first order form as

%[ pou ] = [ _B“?t)* 5) ] [ zgg ] LF@D), t>0,

where A € L(Y,Y™) and B(t) € £(Q,Y™), are now given by

Ap = [ _A?(q*) _Azl(q*) ] [ o ] v =(p1p2) €Y,

and

0
Bltye = [ —A(g) (1) — Ax(g)=(t) + Blg) F(O) ] e

respectively , B(¢)* € L(Y,Q), and F(t) is now given by

0
Flt) = | Aslq)z(t) + A(q)=(0) |, £ >0,
B0 (=(), z(1))
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The rest of the arguments are similar to the ones used in Section 2 and are
therefore omitted. The resulting error equations are now given by

(ert(t), ) + 02(q 5 e(t), ©) + o1(q 5 e(l), 0) +02(q(1); 2 (1), )
+01(q(1); 2(8), ) — 02(q(1); 2¢(1), ) — 01 (q(t); 2(8), )
= b(q); f(t), ) = b(@(1): f(1), ), 9wV, >0, (4.8)

(@), p)g — a2(p; 24(1), e(t)) — ar(p; 2 (1), e(t)) + b(p; f(t), e(t))
— vo2(p; 2u(t), er(t)) — you(p; 2(1), eult)) +70(p; f(1), exlt)) = 0, (4.9)
pEeEQ,t>0,

@(1),p) = (Fa(t) = Fss,0) = (Agq(t), p) + (cs5,p)
<Aq [q(t) Gss + qss] > <CSS7 > (410)
= (AgG(t),p) + (Aglss + css,p) = (A7(1), p),

e(0) € Vi, e(0) € H, ¢(0), g(0) € Q, (4.11)

where we used the fact 44(t) = %4(t) — Lqss = G(t) and that g5 =
—Aq_lcss.

The difference in the (slowly) time varying case arises in the definition of
the energy functional which is now given by

E@) = y{ougse),e(0) + e} + 2(e(t), (1))
+oa(q7se(t), () + 14015 + Bla0)1g,
for some 3 > 0 to be defined later. The derivative Ey(t) is given by

Ei(t) = v {20u(q75e(t), exlt)) + 2(ea(t), ex(t)) } + 2ed(t), e(t))
+2{e(t), ew(t)) + 202(q7; e4(t), (1)) + 2(a:(1), 4(1)) g
+26(7: (1), 7))o
= —2y0a(q"realt), ex(t)) — 201 (g7 e(t), e(t)) + 2]er (1) |
+202(q(t); 2(1), e(t) 4 201 (q(1); 2(2), (1))
+2705(q(t); 2:(1), €(1)) + 2701(q(1); 2(1), e4(t))
— 29b(q(1); f (1), (1)) = 20(q(1); [ (1), () 4+ 26(A7(1), 7(1)) @
|

(4.12)

)
)

< = 200(¢)le(®)[|F, + {=27v8o(q*) +2K7, } le(D][IF,
+22(@0lelle(®)lv, + 2y Ma®)lglle:(t)lv, — Frgla(t)

< = {200(¢") = AKT, ) ey
= {2v80(4") = 2K, = YAz} eI,
e (G o

< —po {lle@®I}, + lec®IT, + 17015} (4.13)

where we used the identity a - b < @?/4uy + 0% - 1. The equivalent of
Lemma 3.1 is
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LEMMA 4.2. If B, p1, e are chosen so that the following are satisfied

200(q") 2f0(q")
0 AN 7
AI(‘% 3 <z < A 3

A2 K 0
ﬂ>8@[%ww+&mwl

0<pu <

and

where v now satisfies

(4.14)

ao(q*)’ 260(q*) — Apa
then there exist constants p, ¢ > 0 such that for allt > 0
le(IF, + e + a3 + [a(1)[3

+p/0 {lle()1F, + lles ()15, + [@(s)|5 } ds < &,

K 2K}
~ > max {Kvl, Vi Vo },

where € = o {||e(O)|}, + ex(0) +1G(0)[3 + [7(0)]2 }-

The proof of Lemma 4.2 readily follows from equation (4.13) and using
arguments similar to the ones in the proof of Lemma 3.1. We now establish
the convergence of the state error.

THEOREM 4.3. Let (¢, z, f) be an admissible plant. If v satisfies the condi-
tions in Lemma 4.2, then the energy functional E given by (4.12) is non-
increasing, and

lim ||e(t)|ly, =0 and 75li>1r}r>1o|et(t)| =0.

t—00

Proof. The proof of Theorem 4.3 is similar to the one given for the time
invariant case with the exception of minor modifications and is therefore
omitted. O

Parameter convergence is again achieved by imposing the additional con-
dition of persistence of excitation. If the plant (g, z, f) is persistently excited
(see Definition 3.3) then

lim [3(0)]o = 0.

The proof of parameter convergence is similar to the previous case of time
invariant parameters and is summarized in Appendix B of [3].

REMARK 4.4. The above theorem shows convergence of the parameter esti-
mate G(t) to the steady state value g of the unknown parameter g. Since

(01 = 1(4(t) = g55) = (a(t) = :5) [ = 1a() =TS < 219(1)[G + 2[7()[5,

and since

75lim l¢(t) — gsslg =0, by (4.10) and the assumption on A,,
—+00
then we have that

Jim [3(1) = ¢(t)]q = 0.
—+00
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Further study is needed to see if the parameter estimate, ¢(¢), can converge
to the parameter ¢(¢) (in finite time) instead of its steady state value gs;.

REMARK 4.5. Using equations (4.4), (4.10) and (4.13) it can be seen that
it is not A, that is required to be known, but rather its coercivity bound &,
that is used in (4.13).

REMARK 4.6. A similar result can be established for the case of no damping
and time varying parameters. Combination of results from the previous
sections can give the conditions needed for the estimator of time varying
systems with no damping.

5. FINITE DIMENSIONAL APPROXIMATION

All the adaptive identification schemes presented in the previous sections
are infinite dimensional and their application necessitates a finite dimen-
sional approximation. We will outline a Galerkin approach in order to im-
plement finite dimensional adaptive estimators and establish abstract con-
vergence results. Even though the adaptive estimators require information
on the full state, a rather unlikely scenario, the approximate estimators will
be shown to adequately function with a finite dimensional information of
the state of the system. This, in a way, can be viewed as an adaptive (finite
dimensional) state and parameter estimator that uses a finite dimensional
output of the system (this being a finite dimensional approximation of the
system) to yield estimates of the state and the parameters of the actual
infinite dimensional system.

For each n=1,2,...,let H"” be a finite dimensional subspace of H with
H" Cc Vi, n=1,2,..., and let @™ be a finite dimensional subspace of ().
We consider only the case of the non-symmetric bilinear form o5, the other
two cases, the slowly time-varying systems and systems with no damping,
being similar and therefore omitted. The Galerkin equations for 2 and §"
in H" and Q" corresponding to (2.9) and (2.10) are given by

(2 (), ") + B2 (27 (1), ") + Ba (2(1), ") + 02(4" (1); 21 (1), ")
+01(§"(); 2(1), ¢")
= b((jn(t)§f(t)799n) + EQ(Zt(t)vg‘on) + El(z(t),cpn), @n € an t> 07 (5'1)

(a7 (), p")q + oa(p”; 22 (1), 2(t) = 2" (1)) + o1 (p"; 2(1), 2(t) — 2" (1))
= b(p"; f(1), 2(8) = £"(1) + vo2(p"; 24 (1), 2 (t) — £ (1))
+you(p"; 2(t), z4(t) = (1)) — vb(p™; f(1), 2e(t) — 27 () = 0, (5.2)
preR™ t>0,

0y e H,  EM0) € H,  §(0) € Q" (5.3)

We make the following standard Galerkin approximation assumptions.
First define the orthogonal projections P* : H — H"™ of H onto H™ and
F5:Q — Q" of Q onto Q™.

(H1) The finite dimensional subspaces H™ satisfy H" C V}
(H2) The functions ¢" := P"% and " := FPhg with (" € Ly(0,7; H") and
0" := P54 € L2(0,T;Q") are such that

ESAIM: Cocv, May 1998, VoL. 3, 133-162



150 H.T. BANKS AND M.A. DEMETRIOU
(i) ¢" — 2 in C(0, T3 V),
(i) 2¢" — L2100 C(0,T; H) and L(0, 75 Va),
(iii) 9" — ¢ in C(0,T;Q).
Using the above assumptions we prove the following convergence result.

THEOREM 5.1. Assume that assumptions (H1) - (H2) hold, and (q,z, f)
satisfies Definition 2.1. Let (§, 2) be the solution to the initial value problem
(2.9) - (2.11), and for each n = 1,2,..., let (¢", 2") be the solution to the
initial value problem (5.1) - (5.3) with

£0(0) = (1 (0) = Pr2(0),  427(0) = £07(0) = PP 2(0),

A ! (5.4)
q"(0) = 6"(0) = F54(0).
Then
(1) 2'—=2 in C(0,7;V1),
(21) %2” — %2’ in C(0,T;H) and L2(0,T;V3), and

(iii) §" —q in C(0,T;Q).

Proof. Since the proof is rather lengthy and technical, it is summarized in
Appendix C of [3]. Even though the scheme here is similar to the one

presented in [15], Theorem 5.1 does not impose any assumptions on %5”,

and %é”. The proof can be given under relaxed conditions by following
ideas in [11] (see also Chapter 5 of [10]). O

The above finite dimensional estimator requires the state of the system,
z, which lies in the infinite dimensional space V;. Therefore, it will be more

convenient to replace it in (5.1) - (5.3) by a finite dimensional approximation,

z". In order to present an approximation result that would use a finite

dimensional approximation of the plant, we need to impose some conditions
on the plant, as was similarly done for the symmetric case in [15].

(H3) There exists a constant s; > 0 such that

o1 (i, 9 < silplollelvill¥lhv, pe@ ¢ e
(H4) There exists a constant sz > 0 such that

|o2(pi 0, ¥)| < salplollellvall¥llve, pe @ w eVl
(H5) There exists a constant by > 0 such that

|b(p;g071b)| < b1|p|Q|99|H¢HV17 peQ, peH, Yel.

(H6) For the plant (q, z, f) there exists 2™ € C'1(0,T; H™) such that

(i) 2" — zin C'(0,T; V1),

(i) " — 2 in C(0,T; V).
THEOREM 5.2. Assume that (q, z, f) is an admissible plant and that (H1) -
(H6) are satisfied. Let (G, 2) be the solution to (2.9) - (2.11), and for each

n=1,2,..., let (§", 2") be the solution to (5.1) - (5.3) with z replaced by
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Z2% and z by 2. Then
(1) 2'—=2 in C(0,7;V1),
(22) %2” — %2’ in C(0,7;H) and Ly(0,T3V3), and
(vid) ¢ —q in C(0,7;Q).
Proof. The proof is also summarized in Appendix C of [3]. U

REMARK 5.3. As it was observed in [15], if we choose P, : V2 — H™ be the
orthogonal projection of V5 onto H™ with respect to the standard V5 inner
product and set

2" =Py z,
then we see that
or(p; Pz, 0) = o1(p; 2, 9) for pe O
o2(p; P2, @) = 02(p; £, 9) for pe on,

Si(Pp 2 0) = S1(z,9) for o€ H", and
Sa(Pp 2 ) = a(2, 9) for e H".

Indeed, the above make sense since z € Ly(0,7;V;) (and z € Ly(0,715V3)),
and 2z € Ly(0,T;V3) were assumed as part of the existence of a weak solution
to the plant (2.2), (2.3).

REMARK 5.4. From the conclusion of Theorem 5.2 and Remark 5.3 above,
we can see that if only a finite dimensional approximation (z",2") of the
plant (z, 2) is available and used in (5.1) - (5.3), then this may be viewed
as an adaptive state and parameter estimator that uses a part of the state
(z, 2) with the output y(¢) € H™ x H" of the system having the specific form

wo-e( )= ()~ (0 e

where the output (or observation) operator C : Vo x Vo — H" x H".

6. EXAMPLES AND NUMERICAL SIMULATIONS

As an example of a system with non-symmetric damping, we study the
2-D structural acoustic model with piezoceramic actuators presented in [4]
which indeed motivated the efforts of this paper. This 2-D structural acous-
tic model investigated here represents a “linearized slice” of a full 3-D acous-
tic cavity/plate structure currently being used in experiments in the Acous-
tics Division at NASA Langley Research Center, see [10] for further details.

The equations of motion for the 2-D linearized structural acoustic model
are given by

¢tt = 02A¢+ dA¢t7 ($7y) € Qv t>0 9
Vé-in = 0, (v,y)el,t>0,
Vo(t,z,0)-n = wi(t,z), 0<az<a,t>0,
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y r

(a) (b)

FIGURE 1. (a) Acoustic cavity with piezoceramic patches,
(b) Piezoceramic patch excitation.

gz Tl g

2 2, 3
bwtt_l_a@ (Ela 0% w )

82
= —psoe(t,x,0) + f(t, @) + 5% (KP Xy ), 0< @ <a,t>0,

Jw Jw
o (t 0) - w(tva) - 8_$(t7

#(0,2,y) = ¢o(z,y), w(0,2)= we(x),
(bt(ovxvy) = ¢1($7y)7 wt(ovx) = wl(x)v

where ¢(t, z,y) denotes the cavity potential, ps¢;(t, z,y) the cavity pressure
with p; being the equilibrium fluid density. The fluid constants ¢ and d
denote the speed of sound in the fluid and damping coeflicient, respectively.
The patch parameters u(t), X[y, z,)(*) and KP denote the voltage applied to
the patch, the characteristic function for the location of the patch and patch
parameter, see [5, 9].

The beam transverse displacement is denoted by w(¢,z) and the beam
parameters py, F'I and cpl represent the linear mass density, stiffness and
damping, respectively. In this note the piezoceramic material parameter £Z,
as well as the beam parameters F'1 and ¢pl are considered to be unknown
and must be estimated adaptively (on-line).

The domain is given by Q = [0, a] x [0,[] and the boundary is denoted by
I' (hard walls) and I'g (perturbable boundary—beam), see Figure 1.

In order to pose the problem in a variational form which is required for our
approach to adaptive parameter estimation and approximation, (see [10]),

the state is taken to be z = (¢, w) in the state space H = L3(Q) x L2(I'g)
ESAIM: Cocv, May 1998, VoL. 3, 133-162
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with the energy inner product

<(jz)’(§)>H:/pr¢5dw—l-/ropbwnd~y.

Here, Ly(€2) is the quotient space of Ly over the constant functions. The quo-
tient space is used because the potentials are determined only up to a con-
stant, again see [10]. We also define the Hilbert space Vi = H () x HZ(I'o)
where H'(R) is the quotient space of H'(Q) over the constant functions and
HE() ={¢ € H*(T) : ¢(x) = ¢'(x) = 0 at @ = 0,a}. The V; inner product

is taken as

¢ § _ _ 2,, )2
<(w)7(n)>%—/§2v¢ Védw + FOD wD*ndy.

In this case the parameter ¢ is taken to be ¢ = {FI(-),cpl(-), KP}. For
q € Q, we define bilinear forms o;(q;+,+): V4 x V; = RY ¢ =1,2,0n V by

o1(q; P, V) = / prc*Ve - Védw + FEID*wD*ndy,
Q Io

Uz(q;¢7q’)=/§2pfdv¢-vﬁdw+/r {epID*wD*n+ ps (o — wé) } d,

where & = (¢, w) and ¥ = (£, n) are in V4. In addition, for each ¢ € Q, we
define the bilinear form b(q;-,-): H x V; — R! by

b(q;0, )= | KBuDndy, 0= (u,v)eH VeV
Lo

In the work reported here, we followed the approach in [5], [8], [9], using
a Galerkin approximation scheme to approximate the beam /cavity system.
This was achieved by discretizing the potential and beam displacement in
terms of spectral and spline expansions, respectively.

Our scheme for the second order formulation approximating (2.2) was of
dimension N where N = m + n — 1 with n — 1 modified cubic splines used
for the beam approximation and m tensor products of Legendre polynomi-
als used for the cavity approximation (see [5] for complete details). Using a
standard Galerkin scheme, we choose a sequence of finite dimensional sub-
spaces HN C V; with projections PN : HN — H.

To illustrate the approximation technique mentioned above let {B?}?:_ll
denote the 1-D basis functions which are used to discretize the beam and
let {B™}",, m = (mgz+1)-(my+ 1) — 1, denote the 2-D basis functions
which are used in the cavity. The n — 1 and m dimensional approximating
subspaces are then taken to be HJ' = span {BF}?"! and H™ = {B"}7,,
respectively. Using the definition of N above, the approximating state space
is HY = H" x Hp. The restriction of the infinite dimensional system to
the space HY yields for W = (¢, A) the following

(A (), W) x + 02(g; 2" (1), V) + 01 (q: 27 (1), ¥) I/F/CBX[xl,xQ](w)U(t)DQAd'V

ESAIM: Cocv, May 1998, VoL. 3, 133-162



154 H.T. BANKS AND M.A. DEMETRIOU

When U is chosen in HY and the approximate beam and cavity solutions
are taken to be

n—1
SN0 ) and 6Nty =3 N B! (o)
i= =1
respectively, this yields the system

MY (8) + AY(q) 2N (1) + A ()2 (1) = BN (q)u(t) + FN (1),
MYy =g, MY EN(0) = gY.
Here

9

N0 = (o0 6 @) e oW w0 e () el 0]
with 2}V (t) defined analogously, denote the N x 1 = (m+n—1) x 1 approx-
imate state vector coefficients. The structure of the approximate system’s
matrices are given in detail in [3] (see also [5]).

For our computational tests, we chose physical parameters based on our
experimental efforts. The parameter choices a = 0.6m, [ = 1m, p; =
1.21 kg/m?, ¢ = 117649 m?/sec?, pp = 1.35kg/m, 1 = 0.20 and 25 = 0.40
are reasonable for a .6 m by 1m cavity in which the bounding end beam
has a centered piezoceramic patch covering 1/3 of the beam. The beam is
assumed to have width and thickness .1 m and 0.005 m, respectively.

For a simple set of runs, we used 4 cavity basis functions (m, = m, = 4)
and 7 beam basis functions. Therefore m = 24 and n = 8 thus giving N =
31. The dimension of the overall system (both plant and state estimator) is
4N.

It is worth mentioning that due to the structure of the bilinear form o5, the
adaptive estimator utilized in the numerical studies below, was constructed
via the method described by (S1) in Remark 2.2 with p% = 0 and a nonzero
cpl”®.

6.1. CONSTANT PARAMETERS

As a first test of our scheme, we attempt to identify all three parameters,
{FI1(-),epl(+),KB(:)}, which are assumed to be constant in time and space.
In this case the actual parameters to be identified adaptively are

EI=73.96 Nm? ¢pl =0.001 kgm?/sec, KP =0.0067 N/m?V
and the tuning parameters
EI*(x) =80 Nm?* cpl*(z) = 0.1kgm>/sec, 0<az <0.6m, ~ = >500.

Due to the structure of the damping form o3, we used the scheme (S;) in
Remark 2.2 with p% = 0 in the selection of the tuning parameters.

The @-inner product is taken to be the weighted Euclidean product on
R 3 given by

1 1 1
(0, p)g=—q1 - p1+ —q2 P2+ —q3 - ps3,
aq (85 a3

q = (917(]27f]3)7p = (p17p27p3) € Q7 where the Weights ay, = 17273 are
given by
ar = 2000, az =002, as=>5.
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The initial conditions for the plant state and the state estimator are taken
to be zero and the initial guesses for the three parameters are

EI1(0) = 55 Nm2, epl(0) = 0.0005 kgm3/sec, KB(0) = 0.0090 N/m?V.

In Figure 2(a)-(c), we see both the actual (dashed) and the estimated (solid)
values of the three parameters. All three parameters converge after three
seconds to within 2% of the actual value. The overshoot appearing in the
estimate of CD/\](t) can be reduced by tuning the parameters E1*(z), cpl*(x)
and the gains v and «;, ¢ = 1,2, 3. The high fre/q\uency oscillations observed

in the first two seconds of the time history of KB (t) was also observed in a
similar study by Rosen and Demetriou in [24] for the adaptive identification
of a flexible cantilevered Euler-Bernoulli beam.

6.2. FUNCTIONAL PARAMETERS

Continuing with our test, we now assume that £/(-) and cpI(-) are spa-
tially dependent and that KP is a constant. The actual values are taken to

be

73.96 Nm? if 2 € [0.0,0.2)
El(x)=1{ 1254Nm? if 2 €[0.2,0.4),
73.96 Nm? if 2 € (0.4, 0.6]

0.00100 kgm?/sec if x € [0.0,0.2)
epl(z) = { 0.00125 kgm?>/sec if x € [0.2,0.4),
0.00100 kgm?/sec if = € (0.4,0.6]

and KB = 0.0067 N/m?V. The tuning parameters are

80.00 Nm? if z € [0.0,0.2)
EIl*(z) =< 1350 Nm? if 2 € [0.2,0.4),
80.00 Nm? if x € (0.4,0.6]

0.01 kgm?/sec if z € [0.0,0.2)
cpl*(z) = 0.01 kgm?/sec if v € [0.2,0.4),
0.01 kgm?/sec if x € (0.4,0.6]

and v = 500, while the initial estimates are

N 66.00 Nm? if 2 € [0.0,0.2)
El(z,0)={ 110.0 Nm? if z €[0.2,0.4),
66.00 Nm? if 2 € (0.4,0.6]

- 0.0009 kgm?>/sec if x € [0.0,0.2)
cpl(z,0) = ¢ 0.0011 kgm?>/sec if z € [0.2,0.4),
0.0009 kgm?/sec if = € (0.4,0.6]
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and 1673(0) = 0.0075 N/m?V. For this case, the Q- inner product is taken
to be

0.6
q1p q12P
(q(x),p(x))q = / ( - HX[o,o.z](ﬂC)—l- -2 12)([0.2,0.4](90)
0 a1 Q12
713P q21pP
+ 2 13X[0.4,0.6](90)‘|‘ 2 21)([0,0.2](95)
a3 1
q22P q23P q3p
+ 22 N 02,04(2) + 2 23><[o.4,o.6](90)) de + ==,
Q22 Q23 a3

with the weights given by
11 = 12 = Q13 = 35007 g1 = Qg9 = Qg3 = 027 3 = 0.5.
Figure 3(a)-(c) shows the actual (solid) value for EI(-), epI(-), and KB, the

time history for K (¢) and the time estimates at 0 (dashed) and at 2.5 sec

(dotted) for E\I(w, t) and C/D\I(av7 t). The functional parameters converge to
the true values after about 2.5 seconds within a 2% of the actual values. It
should be noted that the stiffness functional parameter E'/(z,t) (Figure 3(a))
converges to the actual parameter E1(z) to within a 0.1% in less that 2.5
seconds which explains why /tlle two graphs are indistinguishable. Finally,

the piezoceramic parameter KP(¢) converges within a 5% of the actual value
in 3 sec. Once again, the high frequency oscillations observed above, are also
present in the time estimate of KZ.

6.3. SLOWLY TIME VARYING PARAMETERS

In this example, we attempt to identify the two time varying parameters
d

1 d 1
—EI{t)=—-FEI(t)+2 —cpl(t) = ——cpl(t .0002
P = — 716 420, —epl(t) = —Zepl(t) +0.000275

where El,, = 80 Nm?2, EI(0) = 73.96 Nm?, EI(0) = 68.00 Nm?2, and
cplss = 11.0 x 107* kgm?/sec, cpl(0) = 10.0 x 10~* kgm?/sec, CD/\](O) =
11.5 x 10~* kgm?/sec. The parameter KP = 0.0067 N/m?V is assumed to
be known. In this case the tuning parameters and adaptive gains are

EI* =80 Nm?, ¢pl* =0.01kgm>/sec, v =a; =1000, a3 =0.0003,

Figure 4 shows the time estimates of F1(t) and ¢pl(t). The time estimate
FE1(t) of the time varying stiffness parameter converges to the actual value

within 1 sec whereas the time estimate CD/\](t) of the damping parameter
converges much later at around 5 sec to within a 2% of the actual time

varying cpl(t).

6.4. SYSTEMS WITH NO DAMPING

The absence of damping allowed the use of the adaptive scheme (2.19),
(2.20) with o2 = o1. For this case the parameter cpl(z) =0for0 <z < L,
and KP = 0.0067 N/m?V is assumed to be known. The parameter to be

estimated is F1 = 73.96 Nm? and the initial guess is F1(0) = 68 Nm?. The
tuning parameters and gains (using the scheme given by (2.19), (2.20)) are
ET* =80 Nm?, cpl* =0.01kgm?®/sec, = a; =1000.
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FIGURE 2. Actual and estimated parameters; constant (a)-
(¢) (example 6.1).
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FiGURE 3. Actual and estimated parameters; functional (a)-
(¢) (example 6.2).
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80
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o
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Time (sec)

FiGURE 4. Actual and estimated values of time varying pa-
rameters; (a) stiffness E'I(t) (dashed) and EI(t) (solid), (b)
damping cpl(t) (dashed) and epl(t) (solid).

The time estimate of K1 converges to a 0.5% of the actual value in 1/2
sec as seen in Figure 5. Even when the system has no damping at all, the
estimator can still estimate the parameter.
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FIGURE 5. Actual and estimated values of FI - no damping.

7. CONCLUSIONS

In this paper, we have extended and modified previous adaptive esti-
mation schemes for hyperbolic systems that have non-symmetric, or even
absent, damping bilinear form. In addition, a modification was added for
systems that had slowly time varying parameters which converge to their
steady state values asymptotically (or exponentially) in time. Of course,
for all modifications, the adaptive estimator can identify both constant (in
space) and functional parameters. The estimation of parameters in the in-
put operator, bounded or unbounded, was also incorporated to the above
modifications.

The proposed estimator, like the one given in [15], is infinite dimensional
and therefore cannot be implemented. An approximation scheme was pre-
sented, which was similar to the one in [15]. Since the estimator required
full plant data, a modification to the finite dimensional scheme was added to
include a finite dimensional approximation to the plant data. This in a way
can be viewed as an adaptive state and parameter estimator that uses input
and output (through the finite dimensional approximation assumptions on
the plant) information only.

A possible extension and further study to the above is the incorporation
of an adaptive observer which adaptively estimates both the parameters
and the state using only input and output data through a more general
output operator. A possible point of reference would be the work of Lilly in
[19], wherein the system is divided in two subsystems, a finite dimensional
dominant system and a stable infinite dimensional residual system. Further
yvet, another direction towards adaptive observers would be the one used
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in [13] for a special class of infinite dimensional systems. In addition, the
effect of noisy data can be taken into account by introducing robust adaptive
schemes, as this was studied for the parabolic case in [17]. Further extension
is the improvement of the numerical algorithms so that for fast systems the
adaptive estimator can be applicable in real time. One such extension might
be the incorporation of a hybrid adaptive parameter estimator in which the
parameters are updated not in a single time unit but every several time
units.
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[15]

[16]
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