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THE BC-METHOD IN
MULTIDIMENSIONAL SPECTRAL INVERSE PROBLEM:
THEORY AND NUMERICAL ILLUSTRATIONS

M.I. BELISHEV, V.YU. GOTLIB, AND S.A. IVANOV

ABSTRACT. This work is devoted to numerical experiments for multi-
dimensional Spectral Inverse Problems. We check the efficiency of the
algorithm based on the BC-method, which exploits relations between
Boundary Control Theory and Inverse Problems. As a test, the problem
for an ellipse is considered. This case is of interest due to the fact that a
field of normal geodesics loses regularity on a nontrivial separation set.
The main result is that the BC-algorithm works quite successfully in
spite of this complication. A theoretical introduction to the BC-method
is included.

1. INTRODUCTION
1.1. STATEMENT

The paper deals with an approach to Inverse Problems based on Boundary
Control Theory (the so-called “BC-method”; see [5-12]). We consider a
spectral variant of this approach.

Let © C R” be a bounded domain with a boundary I' € C'° and p
be a positive infinitely smooth function (“density”), p € C*(Q). The
operator L := —p~!A, Dom L = H?*(Q) N H}(Q) acting in the space
H = L*(Q;pdz) is selfadjoint. Let {52130 < A < Ag < .. beits
spectrum and {¢x(-)}52, be the eigenfunctions: Loy = Apox, (¢x, 1) = 0%.
We denote by ¢ := 0, ¢k|r, ¥r € C°°(I'), the traces of normal derivatives
(with respect to the outward normal v = v(y), v € I'). The set of pairs
{ Ak, Yr(s) 172, is called the Spectral Data (SD) of L.

The spectral Inverse Problem (IP) is to recover p in S, using the given
SD.

This statement goes back to the classical papers of M.G. Krein dealing
with the one dimensional spectral inverse problem for an inhomogeneous
string (see [18]). The multidimensional problem of recovering a potential ¢(-)
in the Schrédinger operator —A+4-¢ via its spectral data was first investigated
by Yu.M. Berezanskii [13]. In our statement we use the same type of inverse
data to recover a density. This problem is more difficult in the following
sense. The well known fact is that a second order elliptical operator induces
a metric in  determined by its principal part. In the case of the Schrédinger
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operator this metric is known (Euclidean), whereas in our case the metric
itself has to be found. In other words, we have to recover a main part of the
operator in contrast to a recovering the lowest order term.

An important feature distinguishing 1-dim from multidimensional Inverse
Problems is that the first are well-posed whereas multidimensional Inverse
Problems turn out to be (strongly) ill-posed. In the framework of the BC-
method this fact shows up in a different character of controllability of cor-
responding 1-dim and multidimensional dynamical systems. Namely, the
1-dim systems are exactly controllable whereas the multidimensional sys-
tems are only approximately controllable.

1.2. GoaLs, CONTENTS AND RESULTS

As was shown in [5], a density p is uniquely determined by the SD. More-
over, a constructive procedure for recovering p was proposed. The recovery
was first realized numerically in [12]. Let us remark that we did not find
other numerical results concerning recovery through the Spectral Data in
the multidimensional case in the literature.

Here we continue the numerical testing of the BC-method. By way of a
test, the spectral Inverse Problem for an ellipse is considered. In contrast to
the case of a circle [12], an ellipse possesses an essentially richer geometry for
the field of geodesics starting from a boundary in the normal direction. The
field loses regularity on a nontrivial separation set (“cut locus”), on which
focusing effects are present. As was shown in [6, 7], this lack of regularity
does not in principle hinder the use of the BC-method. To confirm this fact
by direct numerical tests is a main goal of this work.

In the first part of the paper (2.1-4.2) an outline of the BC-method is set
forth.

A density is recovered by means of the so-called Amplitude Formula (AF),
which is a main tool of the method. By its nature the AF has a dynamical
origin. It is connected with the dynamical system

pOiu — Au=0, inQx(0,§),
U|t:0 = 8tu|t:0 =0,
ulryjoe = f,

with Dirichlet boundary control f.

The solution u = uf (z,t) of the problem describes a wave generated in
by a boundary source. The basis of the AF is a kind of geometrical optics
relation describing the propagation of breaks of wave fields u/.

The AF allows us to recover the waves u/ in Q via inverse data, the waves
being expressed in terms of natural coordinates related to the p-metric. To
introduce them we give the geometrical preliminaries in sections 2.1-2.3.
The key objects here are the eikonal, semigeodesical coordinates, and a
pattern.

A dynamical variant of the AF is derived in 3.1-3.5. The derivation is
based on the property of controllability of the dynamical system.

In 4.1-4.2 we reformulate the AF in terms of spectral data, which gives
a way to recover the density. The recovery procedure is described in 4.3. It
forms the basis of the algorithm which is used for the numerical tests.
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In sections 5.1-5.3 we propose a somewhat simpler variant of the algo-
rithm for recovering a density, based on a conjecture related to the inversion
of geometrical optics formulas. The conjecture looks natural from the phys-
ical point of view, but has not been fully justified up to this moment.

The BC-method was first proposed in [5]. For other approaches to the
problem, see [21-23, 26].

The last part (6.1-6.4) is devoted to numerical testing. The experiment
consists of three steps. At first the SD for the ellipse are calculated in terms
of Mathieu functions. Then the SD are used to recover the field of rays in
the ellipse: in the second step a global characteristic (pattern) is recovered,
and in the third step the equidistant curves of a boundary are calculated.
Results of recovery are demonstrated and discussed.

As a conclusion drawn from the results of the tests, we could say that
the BC-method works satisfactorily even in the case of a nonregular field of
geodesics. This is a reason to hope for its usefulness in applications.

2. GEOMETRY

This part of the paper concerns some geometrical preliminaries. In sec-
tions 2.1-2.3 we introduce the basic objects used in the IP for any smooth
compact Riemannian manifold with boundary. These objects are semi-
geodesical coordinates (s.-g.c.), a pattern of a manifold, and images. Section
2.3 deals with the particular case of a conformally flat metric p|dz|? deter-
mined by a density. We consider the relations between the s.-g.c. (p-metric)
and the Cartesian coordinates. These relations are applied to solve the IP:
we demonstrate a way to recover the density p through the images of the
Cartesian coordinate functions.

2.1. SEMIGEODESICAL COORDINATES (S.-G.C.)

Let © be a compact C'°° Riemannian manifold with boundary I'; dim
Q=n>2.
The function
T(z) = dist(z, '), 2z €,

is said to be an eikonal and we set T := maxq 7(-). Eikonal level sets ['¢ :=
{z €Q|1(2)=¢},0<E<T,, are called equidistant surfaces of a boundary
['. The corresponding family of subdomains Q¢ := {z € Q | 7(z) < &} is
expanding with respect to £.

Let [, be a geodesic starting from a point v € I' in the normal direction
and let /[0, s] be its segment of length s > 0. The second endpoint of the
segment is denoted by z(v,s) € L,; for s = 0 we set 2(v,0) :=~

A critical length s = s.(7) is defined by conditions

(2) 7 (x(vy,s)) = s for any 0 < s < s.(7);
(21) 7 (2(y,5)) < s for s > s.(7).

So, if s < s.(7), then the segment [,[0, s] is the shortest geodesic connecting
x(v,s) with I', whereas for s > s.(v) this segment does not minimize a
distance between the point and the boundary I'. The point @ = z (v, s«(7))
is said to be a separation point on L.
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The set
wi=J2(r,5.07)

~el

is called a separation set (“cut locus”) of the manifold © with respect to its
boundary I' (see [14, 15]). It is a closed set of zero volume:

w=w; volw=0. (2.1)

Every point of € can be joined with I' by the shortest normal geodesics.
For any z € Q we define a geodesic projection prz as follows pr z := {y €
I' | dist(y,z) = dist(I',z) = 7(x)}. Thus, pr z is the subset of I', which
consists of the endpoints of shortest geodesics connecting z with the bound-
ary. If € Q\w, then its projection contains a unique point y(z). The pair
(v(x),7(x))is called the semigeodesical coordinates of a point € Q\w. Due
to property (2.1) the s.-g.c. may be used on Q “in the large”, i.e. almost
everywhere [15].

Length and volume elements in s.-g.c. (v, 7) have the known form

ds* = dr° + g (v, 7) dy"dy";

dQ = /detg,, dy'dy*...dy" " tdr = B(vy,T)dldr, (2.2)
where v, ~42,...,7""! are local coordinates on T,

det g, (v, t n—
ﬁ(%T):”W((ZO;; and dl' = \/det g, (7,0) dy'...dy"?
uv\Vs

is the canonical measure of a boundary; g(y,7) > 0, 5(v,0) = 1 for vy € I'.
Let us remark that the function # and surface element dI' do not depend on
the local coordinates.

2.2. PATTERN

Semigeodesical coordinates induce a canonical correspondence between
Qand a subset of the cylinder I' x [0,7,]. Let us define the map 7 : z
(v(z), 7(x)) from Q\w into the cylinder. The set of values of s.-g.c.

0 := i(Q\w) C T x [0, 7]

is said to be a pattern of the manifold €2.
To describe the structure of a pattern it is convenient to introduce a
special partition of the boundary. For any fixed £ € [0, T\] the representation

FIO‘iUO‘iUO‘S, (2.3)

where O'i = pr (I\w), 0% == pr (I Nw), ¢° = F\(Uﬁ_ U of) is valid. The
sets o’s in (2.3) possess the following properties, which can be derived from
the definitions:

(i) For any positive & < T, := dist (w,I') one has I' Nw = ) what implies
Uﬁ_:F, of =0t =0

(ii) for &€ > T,, the sets [¢\w are smooth (possibly, not connected ) (n—1)-
dimensional submanifolds in €. Thus, the regularity of ' may be broken
on a cut locus only. The map pr determines a diffeomorphism I'*\w on O'i;
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i71) the sets ¢’s may be characterized in terms of (continuous) function
s« ()

of = {y €T | s.(x) > €,
oS ={y €Tl | s.(y) =€},
ot ={y el |s.y) <&

The sets O'i are open in [ &, is a closed set. Note that the family O'i is
13

a decreasing family and that ¢° is an increasing one: for any & < &” one

has O'_|_/ D Uﬁ_ﬂ, Uél C Ug_”;

(iv) denoting Q5 := Q\Q¥, one has the relation
dist(a, Q%) > ¢ (2.4)

holding true for every & satisfying T, < & < T};
(v) the “upper” border 0 of a pattern, § := {(v,7) | v € I', 7 = s.(y)} has
zero measure in ' x [0, T,]:

mes 4rq.0 = 0. (2.5)
The obvious relations
Nw=|J 8w), i*\e)=0f x {r=¢}
0<E< T
lead to useful representations
0= U Uﬁ_x{rzf}; 0= U ot x {r=¢) (2.6)
0<E<Tx 0<E<Tw

describing a “horizontal” bundle of a pattern and its border. The comple-
ment ©° := ([' x [0,7,]) \(© U #) may be represented in the form

o= [J o x{r=¢}. (2.7)

0<E<T.

The objects introduced above are illustrated on Fig. 1.

2.3. p-METRIC. IMAGES

Let us return to the case under consideration (see 1.1). A density p
determines the conformally flat metric

ds* = p|dz|?,

which turns © C R™into a Riemannian manifold with boundary I' = 9€2 and
intrinsic distance denoted by dist,. A peculiarity of this situation is that
there exists a global coordinate chart on €, i.e. the Cartesian coordinates
2!, ...,2" So, we have two coordinate systems on €: there are the s.-g.c.
and the Cartesian coordinates. Let us discuss the relation between them.
Considering the eikonal 7 = 7(z), 2 = {#!,...,2"} as a function of the

Cartesian coordinates, one has the well known equality
IV.7]? = p, in Q\w. (2.8)

Now we introduce the so-called images of functions. This notion will be
useful for the IP.
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Ficure 1. Geometrical objects of a Riemanian manifold.

The map 7 : z(y,7) — (v,7) (see sec. 2.2) is bijective from Q\w to ©O;
z(y,7) =171((7,7)). For any function y(-) given on  we define the function

s { OPTIGIEO) R ES

where
Ay, 7) = [pla (. 1))l (3, )27
The function ¥ is said to be image of y. An image is not defined on the

boundary 6 of a pattern, but in view of (2.5) y turns to be defined almost
everywhere on I' x [0, 7]

2.4. IMAGES AND RECONSTRUCTION OF DENSITY

Let m; be Cartesian coordinate functions,

mi(x) = @ inQ, j=1,..n

7; be their images on I' X [0,7]. Introduce also the function 1 =1(z) =1,
x € Q and its image 1. N
Let us explain in advance the roles of 7;, 1 in the IP. Suppose, that we

can find 75, 1 from the inverse data. Then one can recover the density p by
the following scheme.
(i). The image 1 determines the pattern:

© =supp1 C ' x [0, 7).

(ii). The obvious relation

minT) _ (z(v, 7)) =2’ (v, T T
m_ﬂ-]( (77 ))_ (77 )7 (77 )66
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permits us to recover the map i~* : © +— Q/w by the correspondence

%1 (77 T) %n (77 T)
(v,7) = {= ey =
7)) 1(y,7)
which determines the relations between s.-g.c. and Cartesian coordinates.
(iii). The level surfaces I' of the eikonal can be reconstructed by this
map:

9

it {(y,T)€B|IT=E) = M\w, ¢¢ (0,T).

The family {TI'¢} obviously determines the eikonal 7(-) in Q/w.
(iv). The density p is recovered in € /w by means of (2.8); it may then be
recovered on w by continuity.

3. DYNAMICS

In this part of the paper we prepare a main tool of the procedure which
solves the IP. It is the so-called Amplitude Formula, which connects the
geometrical objects introduced above with a dynamical system determined
by the density. It expresses the images of functions via the discontinuities of
waves propagating in the system. A basic fact used to derive the Amplitude
Formula is controllability of the dynamical system.

3.1. DYNAMICAL SYSTEM WITH BOUNDARY CONTROL
Let us consider the initial boundary-value problem
pOiu — Au =0, (z,t)€Qx(0,¢),
t|i=0 = Oyufi=0 = 0,

Ulpoe = /s (3.3)

N TN
w W
[N
e

with a “control” f = f(v,t) of class F¢ := L%(I x [0,&]; dydr) where dy is
the Lebesgue measure on I'. Its (generalized) solution (“wave”) u = u/(z,t)
has the following known properties:

(i) the map f +— uf acts continuously from F¢ into C([0,£];H), where
H = L?(Q; pdz) (see [19]);

(ii) (finite velocity of wave propagation) for any f one has u/(z,t) = 0
fort < 7(2), i.e.

supp u/ (-, &) c Q. (3.4)

Thus, Qf is a subdomain of Q filled by waves up to a final moment t = €.

By virtue of (i), (ii) the operator W¢ : f — uf( - £) acts continuously
from F¢ into HE := {y € H | supp y € Q¢}. For any positive & < T, this
turns out to be injective:

Ker W& = {0}, 0 < £ < T. (3.5)

(see [1, 6]).
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3.2. WAVE SHAPING AND CONTROLLABILITY

Let us formulate a problem of Boundary Control Theory. Can one select
a control f so as to obtain a prescribed shape of wave u/? More precisely,
the problem is to find a control f € F¢ such that

w'(-,8)=a(-) inQ (3.6)

for given a € H¢ (see [2, 3, 25]). It is clear that this problem is equivalent
to the equation

Wef = a. (3.7)

The relation (3.5) implies uniqueness of its solution for any & < 7.

The set

Ut :=Ran W¢ = {u/(-,&) | feF

is called reachable (in time &); U¢ C HE for any € > 0 by virtue of (3.4).

The structure of ¢ and properties of reachable sets provide the subject
matter for Boundary Control Theory. The same problems turn out to be
principal ones for the BC-method. The following result concerning problem
(3.6) plays a central role in IP.

THEOREM 3.1. For any & > 0 the equality
clos U* = H1°. (3.8)
s valid.

In Control Theory, the property (3.8) is called (approximate) controlla-
bility of the system (3.1)—(3.3). In accordance with it any function a € H¢
may be approximated by waves u/( -, &).

REMARK 3.2. The proof of (3.8) is based on the fundamental Holmgren’s
Uniqueness Theorem. Over a period of years there was a gap in the papers
devoted to the BC-method connected with a lack of generalization to the
case of nonanalytical p. Recent progress in this direction stimulated by
L. Robbiano [24] and L. Hérmander [17] was crowned by a remarkable result
of D. Tataru [27], which settled the question.

In addition to (3.8) it would be interesting to note that U¢ # H¢ for
¢ < T. (see [1]). This leads to unboundedness of [W¢] ~!. So in the multidi-
mensional case the Wave Shaping Problem turns out to be ill-posed. In its
turn, this leads to the ill-posedness of the multidimensional IP.

Let us discuss equality (3.8) in more detail. Introduce the (orthogonal)
projector G¢ in H onto HE. It cuts off functions on subdomain Q¢ filled by

waves: ¢
¢ B a(z) z€Q
o= 0 TE

where Qi = Q\Q¢. Define also the “wave” projector P¢ in H onto clos U¢.
The projector G¢ is of geometrical origin connected with the p-metric in €,
whereas the projector P¢ is an intrinsic object of the dynamical system (3.1)-
(3.3). Obviously, both are determined by density p, but the coincidence

Pt =Gt >0, (3.9)
following from (3.8) is a deep result of Boundary Control Theory.
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Let Gi = Idy — G¥, Pf_ = Idy — P¢ be the complement projectors. As
a corollary of (3.9) one has the equalities

O¢
{ao ve (3.10)

£
() x ey

(Gia) (z) = (Pf_a) (z) =

for any &€ > 0.
One further corollary of (3.8) is the following. If {f,} C F&is an arbitrary
complete system of controls, i.e.

closze Lin Span {f,},2; = Fe,
then the relation

closy Lin Span {W¢f,}° HE, (3.11)

p=1—

is valid for any fixed & > 0.
Property (3.5) allows us to equip the space of controls F& with a new
scalar product

(fvg)cb'f = (uf( : 75)7ug('7€))7-l = (Wé.ﬁ ng)Hv 0< g < T..

A completion of F¢ with respect to the norm ||f||e¢ := (/, f)ib/.527

denote by ®¢, may be considered as a space of generalized controls. The
space ®¢ turns out to be a rather exotic object containing distributions of
arbitrarily high order. What is more, elements of ®¢ are not, generally
speaking, distributions in L. Schwartz sense [1].

By definition of the norm ||-||g¢ the operator W¢ : ®¢ — #¢, Dom W¢ =
FEC B, WEF = WES, acts isometrically and may be extended to the whole
space ®¢ by continuity as a unitary operator. For any fixed £ < Ty, a € HE
a solution of (3.6), (3.7) in the class of generalized controls is

which we

f=we Tae et (3.12)

The procedures solving the IP use the relations of the Geometrical Op-
tics describing a propagation of breaks of wave fields in dynamical systems.
Below we demonstrate these relations.

3.3. PROPAGATION OF DISCONTINUITIES IN THE SYSTEM WITH
BouNDARY CONTROL AND (GEOMETRICAL OPTICS

Let the control f in (3.3) be a smooth function, f € C*°(I" x [0,£]) and
set f(-,¢) =0 fort < 0. In applications (acoustics, geophysics etc.) its value
f(7,0), v € I'is called the onset of f. So, if f(-,0) # 0, then control has a
break at the initial moment ¢t = 0.

It is well known that a discontinuous control generates a discontinuous
wave, which has a break propagating along bicharacteristics of equation
(3.1). At the final moment ¢ = ¢ the break reaches a surface I'¢. Its value
(“amplitude”) is determined by the onset of control and may be derived by
means of geometrical optics (see [16, 28]): if # = (v, &) € [8\w, 0 < € < T,
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then
. n/4—1/2
Tgrén_ouf($(’y,7'),f) = (%) ﬁ_1/2(77€)f(770)7 Y € Uﬁ—'

(3.13)

The equality u/ (z(v,£ + 0),&) = 0 follows from (3.4). It gives a reason to
call T'¢ a forward front of the wave u/( - ,&).

The formula (3.13) leads to the following useful relation. Let f, g be the
smooth controls having the onsets f(-,0) and ¢(-,0), g(-,0) # 0. Then the
equality

3 —
10,0 _ (Ve (620D - e (3.14)
9(770) (ng) ($(’y7€— 0))
is valid. Thus the break of a wave at its forward front is proportional to
onset of a control.

3.4. BREAKS AND (GEOMETRICAL OPTICS IN FREE DYNAMICS

Along with (3.13) we need a similar result concerning propagation of
breaks in a dynamical system with a switched off control. Passing through
a domain towards the boundary, these breaks carry information about the
density. Amplitudes of the breaks link geometrical and dynamical parame-
ters of the system.

The problem

pdiv —Av =0, z€Q, t>0, (3.15)
Vli=0 =0, Ovli=0 =y € H, (3.16)
v(+ 1) =0, (3.17)

describes an evolution of a dynamical system without control. Its (general-
ized) solution v = v¥(z,t) possesses the known properties:

(i) for any T > 0 function v¥ belongs to the Sobolev class H'(Q2 x (0,7));

(ii) the map O :y = 0,v¥|ry (0,77 acts continuously from # into L3(T x
[0,T1]) for any T > 0 (see [20]), where v is an outward normal on [;

(iii) (finite velocity of wave propagation) the solution v¥(x,t) vanishes
identically for (z,t) such that ¢ is less than distance in p-metric between
and suppy. In particular, if suppy C Qi = Q\Q¢, then by virtue of (2.4)
d,vY(y,t) = 0 for any (7, 1) belonging to some vicinity of the set ot x {t=¢}
on I x {t > 0}. This result has a clear dynamical sense. Points v € 6° C T
are separated from the initial perturbation by a distance more than £. That
is why the wave generated by the perturbation reaches o later than t = £.

The analog of (3.13) for the free system has the following form. For
arbitrary a € C'*°(Q) and fixed £ < T let us put in initial condition (3.16)

o= (@) {40 1o

and denote a corresponding solution by Vg The Cauchy Data {0, Gia} turns

out to be discontinuous on I'*. A break of Data generates a break of wave,
propagating along bicharacteristics of (3.15) and reaching the boundary I
at the moment ¢t = £. This break interacts not with the whole boundary I
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but with its “illuminated zone” O'i only. Indeed, distp(aﬁ_7 Qi) = ¢ and the

wave vg is in time to reach Uﬁ_ C I'. At the same time, the “shadow zone”

o is not covered by wave up to the moment ¢t = &£, since it is located far

from Qi (see (iii)). Geometrical optics permits us to calculate an amplitude
of the break observed on I':

K(7,€) 82 (v, )alz(7,€)) (%8€U§Xﬁ=€}
0 (v,€) €0t x {t=¢}
(3.18)

i, (018 (02 =

(definition of  see in sec. 2.3).!
Let us remark that Geometrical Optics is not applicable for points (v, ) €

0% x {t = ¢} lying on the border 8 of the pattern (see (2.6)).

3.5. AMPLITUDE FORMULA

Let us consider the left-hand side of (3.18) as a function of (v,£) €
I' x [0,7,]. Recalling, the representations (2.6), (2.7), and the definition
of images, one can write (3.18) in the form of

Jim (@08, = (7, 9).

Indeed, the right-hand side of (3.18) is defined everywhere on I' x [0, T}]
except the border @ of the pattern. In view of (3.7) it is not essential to
define functions from L*(I" x [0,7%]).

Returning to the notations of 3.4 and using (3.10), we obtain

tlig-o (OGJ_Q) (v,t) = a(vy,&) for almost all (v,&) € T x [0, T.].

Using the property of controllability in the form (3.9) one can substitute
Gi for Pf_:

tlig-o (OPJ_(Z) (v,t) = a(vy,€) for almost all (v,&) €' x [0,1y]. (AF)

This relation was first proposed in [6, 7]. It gives a dynamical representa-
tion of images of functions @ € C*°(2) via wave breaks propagating in the
free system (3.15)—(3.17).

Setting @ =1 and a = 7; in AF leads to the equalities

Jim (0P1) (.1 =10.0). (3.19)
Jim (0P7) (3,6 = 75(2.9). (3.20)

4. INVERSE PROBLEM

Here we apply the AF to solve the IP. We demonstrate that the left-hand
sides of (3.19), (3.20) may be expressed via Spectral Data. In accordance
with the results of section 2.4 this enables us to recover the density.

Yin the paper [12] the factor & is missed by mistake, which has no effects on the final
results. Note that x = 1 in dimension n = 2.
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4.1. SPACE H. SPECTRAL REPRESENTATION

Let U : H s H = P Uy=7y:= {yk};o:17 y* = (y, ¢r)n be the Fourier
Transform corresponding to the operator L (see 1.1). The following objects

in 7:l\ are needed for the IP.
1) Spectral representations of the functions 1, 7, may be found with the
p p y Tj y
help of integration by parts:

1=U1={1"}32,, 1 15 = - o dyvn(y);
@:Uﬂj:{ﬂf}gozl, Tt = 1 frd'yﬂ']('y) ) i=1,2,....n

(77) The Fourier method for the problem (3.1)—(3.3) gives a spectral repre-
sentation of a solution

ul (2,8) = Zklyck()()vk k()

(4.1)

= feuom vt PR )] £ 1) = (s )
s = si(1,0) = %ﬁm( )s

or, in other words,

w8 =0 (-6 = {(sf. )i (2)
(see, for instance, [2 ]) Thus the Spectral Data determine the map W¢ :
[, Wff = uf( ); W¢ = UWE and the “reachable set”
UE = Ran W* = UUS C 7.
(iii) The projector P in H onto clos UE, PE = UPEU—" is also determined
by SD. Usmg any complete system of Controls {f»} (see (3.11)) one can

construct P& as the projector in #H onto the subspace clos Linear Span
{ngp p=1

(iv) Evolution of the system (3.15), (3.16) may also be described in spec-
tral terms. The Fourier method leads to the well known representation

Y (t) = UnvY(-t) = {%yk}j -

The map O := OU~! : j— 90|y (10} acts as

(09) (. Zysk—Z 0] uy

k=1

By virtue of continuity of O, this series converges in L? (I' x (0,7T)) for any
T > 0.

4.2. AMPLITUDE ForMULA IN TERMS OF SD

Since

OP a=OU'UP U Ua= 0P, a
(where ]/DEJ_ =1dg — ]/3\5), the AF may be transformed into the form

—

lim (@I/D\fjﬁ) (v,t) = a(y,&) for almost all (v,&) € I' x [0,Ty], (AF)
t—E+0

which is adequate for a spectral representation.
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The same transformation may be used in equalities (3.19), (3.20). We
write them in a final form convenient for the Inverse Problem (see (3.18)):

lim (@ﬁfﬁ) (v, ) = 1(7,€)

t—£€40
— 5(77€)ﬁ1/2(77€) (775) € O--él— X {t = g} (44)
0 (v, €0t x {t=¢}
and
Jim (OPL7)) (3.0) = 7(3.6)

0 (v,€) € 0% x {t=¢}.

As was shown in 4.1, the limits in (4.4), (4.5) are completely determined

by the Spectral Data. That is why (/AF) works in the IP permitting us to
visualize the images of elements of H.

:{ K3 OB (e 8) (O edfx =8 o

4.3. RECOVERY PROCEDURE

Let us recall that the problem is to recover a density p in €2 from given
SD { Mg, ¥r(-)}72,. In essence, the procedure of solving of the IP consists
of two steps. The first is to construct all the objects entering the left-hand
side of amplitude formulas (4.4), (4.5) via Spectral Data and to find images
1, 7; of the unit and the coordinate functions. These images determine a
correspondence between semigeodesical and Cartesian coordinates on €. In
the second step, using the s.-g.c., one can recover the eikonal in €2, and then
find the density. Below we present the procedure in more detail.

(i) Find elements 1, ﬂ'] in # = 2 by means of (4.1);

(i) Find projections Pgl7 Pz 7; on the subspace clos U€ formed by spectral
representations o/ (&) of waves. To construct these projections we choose a
complete system of controls {f,}°2, in F&, and find the system uf? ()}

in U¢ (see (4.2)). Using the complete system in clos /¢, one can find the

A

projections. Then find the complementary projections Pf_l7 ﬁf_@ entering
(4.4), (4.5).

(7i) Find the operator O in (4.4), (4.5) by means of its representation
(4.3).

All the objects in the left-hand side of (4.4), (4.5) have now been found.
Using these formulas we determine images 1, 7;.
(iv) Recover the pattern © as the support of the image 1 (see 2.4).

Using the images 1, 7; on O, one can recover surfaces I'¢ in Q, the eikonal,
and, at last, the density p in accordance with the scheme (i)—(iv), in 3.1.
The Inverse Problem is solved.
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5. PROCEDURE II

There exists another variant of the recovery procedure based on the “front
formula” (3.13). To use this variant we should accept a conjecture, which
has not been justified rigorously as yet.

5.1. ONSET CONJECTURE

Let us return to the Wave Shaping Problem (3.6), (3.7) and consider the

cases ¢ = 1¢ and a = 77]5,7 where
1 Q¢ , 0
15(@ =G = ve e 7T£($) = Gfﬂ-j = mi(z) x € }
0 =z« € QJ_ J 0 xr € QJ_

By virtue of (3.9) one has
1£:P£17 7T§IP£7T]‘.
Let ¢, p§ be the (generalized) solution of the problem given by (3.12):
-1 -1
¢t = {Wg} P%1; p§ = {Wf} Pgﬂ']‘. (5.1)

As to properties of controls ¢%, pﬁ, the only fact known is that they belong

to a very wide class ®¢ (see 3.2)2. To use them for the recovering of a density
we accept the following conjecture.

Onset Conjecture. For any & € (0,7T.) and for arbitrary open subset o C O'i

there exists a vicinity (on I' x {t > 0}) of the set 0 x {t = 0}, such that
3
J
¢t (-, 0), pﬁ(-7 0), are the smooth functions on o.

Let us note that for small T we have O'i = I' and the smoothness of

controls ¢, p§

S is the corollary of the conjecture. We could say in addition
that the conjecture is true for the case of a ball Q@ = {z € R” ‘ |z| = 1},

p =1

controls ¢¢, p% are smooth functions in the vicinity. In particular, onsets

5.2. ONSET ForMULA

The conjecture accepted above permits us to use ¢%, p§ in the following
way.
First, ¢¢, p§ must be expressed in spectral terms. We introduce the

(isometrical) operator WE 9 ﬁ, WE .= UWE. For any control
f € F& C ®¢ one has

WEF = UWEf = UWEf = WES.
Since the operator We is determined by the SD (see (i), sec. 4.1), the same

is true for its extension W¢. Therefore, the relations
=1 o~ =1~
o = PV PR of = 0] Pigy, (5.2)
2If T, < & < Ty, then ¢¢, pﬁ do not belong to F¢ = L*(T x [0,¢]) (G. Lebeau; private

communication).
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following from (5.1), give a representation appropriate for the Inverse Prob-
lem.
In accordance with their definitions, the solutions ¢¢, pé

(W) (=15, (W) (& =8,

Consequently, the equality (3.14) together with the Onset Conjecture leads
to an “Onset Formula”:

¢
p‘(770) .

Its left-hand side may be found through the SD by means of (5.2).

satisfy

5.3. RECOVERY OF DENSITY

Let us describe briefly the second procedure.

(i) Using the procedure of 4.3, find the pattern O.

(ii) Find controls ¢¢, p§ via (5.2).

(71i) Determine the coordinate functions by (5.3).

(iv) Recover the density via the coordinate functions (see 2.4).

6. NUMERICAL TESTING

The first experiment to test the numerical opportunities of the BC-method
was realized by V.B. Filippov in [12]. It dealt with 2-dim spectral 1P for
a nonhomogeneous circle. To prepare the Spectral Data for a smooth non-
constant density, a conformal automorphism of the circle with p = 1 was
used. A peculiarity of this case is that the picture of normal geodesics is
trivial, i.e., the same as in the homogeneous circle with p = 1. For further
experiments an ellipse was chosen. On the one hand it admits a separation
of variables permitting us to find the SD efficiently. On the other hand an
ellipse possesses a richer geometry of geodesics. It has a nontrivial “cut lo-
cus”, where focusing effects are present. In this concluding part of the paper
we describe the numerical experiment for an ellipse.

The numerical algorithm used for testing exactly follows the procedures
described in 4.3 and 5.3. The pattern © and the family of equidistant curves
(wave fronts) I'* were reconstructed. As was shown above, these objects
determine a density, therefore, we do not recover the density p = 1 itself.
The results show that the algorithms work satisfactorily, permitting us to
recover the picture of an intrinsic geometry in a domain.

6.1. PREPARING THE DATA

As a test, we consider the spectral problem for the operator L in the ellipse
Q= {(x,y) | 22/a® + 42 /b? < 1} CR?% a=2, b= 1 with the density p = 1.
In this case the cut locus is the segment [—1/2,1/2] on the z-axis. Therefore
T, = dist (w,I') = 1/2, i.e., for 7 > 1/2 the field of normal geodesics loses
regularity. The time T, needed for waves to fill the whole domain is equal
to 1.

The SD are found by separation of variables in terms of ordinary and
modified Mathieu functions (see [4], chapter 16); the subset {Ag, ¥ (-) 12,
of SD ; N = 1000, was used.
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To check the accuracy of the found SD we use the equalities

and similar equalities for coordinate functions 7;. This accuracy grows with

IT][% = 111720y = mes Q = 7ab = 2r.

the number N (see the table below).

N error of [|1]]2 error of ||71]|2 error of ||73]|2
100 3.6% 5.8% 7.9%
400 1.8% 2.6% 3.9%
960 1.1% 1.5% 2.5%

6.2. SPECTRAL REPRESENTATION OF PROJECTIONS P¢1 AND PS7;.
Basis or CONTROLS

A central point of the algorithm is to calculate the projections ]35/1\7 ]35%\]'.
Let {f,};2, be the complete system of controls in F¢ (see (ii) in 4.3); let
{alr (§)},;2, be the spectral representation of the waves generated by these
controls (see (4.2)). We seek the projections in the approximate form cor-
responding to the finite part of this system:

M M
P ~ Zdéo)ufp(-,f); ]3£%j ~ ng)ufp(-f).
p=1 p=1
To find the coefficients d]()j)7 linear systems with the Gram matrix G

N
glp = (ufl( . 75)7 ufp( . 75))12 = Z(Si7 fl)}-'f (Si7 fp)fﬁ
k=1
must be solved.
This linear system has the form

GdW) = pl) ql) = {dg) M (6.1)

p=1
where the right-hand sides are
h(o) = {(i\vafp)ﬁ}gjpwzlv h(]) = {(%jvafp)ﬁ}gjpwzl‘

A main difficulty is that the condition number of the matrix G grows rapidly
with M. This corresponds to the ill-posedness of both the Wave Shaping
Problem and the Inverse Problem. The calculations are also complicated by
a slow convergence of the spectral expansions (4.1), (4.2) (see the table in

the previous section).

3

The solutions of the system give the controls ¢¢, p;

M M
¢ty Y dOf ), pe =Y dDf (1), (6.2)
1 1

which are used in the recovery procedure based on the Onset Formula (see
sec. 5.3).
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To simulate a complete system of controls {f;} (see (3.11)), we use the
functions

flr’(P%t) = X[g(t)Cr(Py)v [ = 17 o '7@7 r= _R7 _R—I_ 17 B '7R7

where ¢t € [0,£), v € [0,27) and

({=1)¢ !
¢ 1 <t <
t) = Q
Xl( ) { 0 else

[/

Q|

B cos Ty r>0
and G (7) = { sin rvy r < 0.

Let At := £/Q be the duration of the “impulse” Xlg- The following com-
plication arises in calculations. On the one hand, to obtain more precise
approximations (6.2) one needs to decrease At (i.e., increase }). On the
other hand, the spectral expansions (4.2) for waves generated by short im-
pulses converge more slowly when At decreases. A compromise value of At
was found experimentally, At = 0.1 (Q = 10€). The number of angular har-
monics 2R + 1 did not exceed 65. The total number (2R + 1)@ of controls
fir used in the testing was bounded by 360.

6.3. RECOVERY OF PATTERN

The pattern © is recovered layer by layer in accordance with the repre-
sentation (2.6). For fixed £ € (0,1), we find the values 1(-, &) of the image,
calculating the limit in the left-hand side of (4.4). By doing so, we recover
the set

55 = supp1(-,€)

on I'. Varying £, we recover the pattern by (2.6).

Typical results of calculations of I(,E) are demonstrated in Fig. 2-4 for
£=0.1,£=10.3, and £ = 0.8 (for the quarter of the ellipse). The boundary
I' of the ellipse is parametrized by v € [0, 27).

Figures 2 and 3 corresponding to & < T, demonstrate the absence of a
“shadow zone”: O'i =T, 0% =0 (see (i) in 2.2).

An appearance of a shadow zone is demonstrated on Fig. 4, for £ = 0.8 >
T,.
The parts of sets O'i and o lying in the first quadrant correspond to

intervals 0.81 < v < #/2 and 0 < v < 0.81. The calculations give O'i ~

0.84, 7 /2) and, consequentl O'g_ =~ (0,0.84). Let us remark that the point
(0.84,7/2) and, quently, , p

v € ol separating the shadow zone from the illuminated one was determined
by means of an auxiliary fitting algorithm.

A final result for reconstruction of the pattern is given on Fig. 5.

To obtain Fig. 5, the subset {Ag, ()}, N ~ 1000, of the SD was used.
The results show that the algorithm detects the presence of shadow zones
Ué. Thus the BC-algorithm enables us to reveal the effect of a breakdown of
regularity of a normal geodesic field from the analysis of the Spectral Data.
It is interesting to note that the effect may be detected even for N ~ 40. A
rather good picture of the pattern may be obtained already for N ~ 100.
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FIGURE 2
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FIGURE 3

6.4. RECOVERY OF ['¢

Both of the procedures for recovering the family {I'¢} (see 4.3, 5.3) were
tested for £ = 0.1,0.2,...,0.8. The first procedure, based on the Amplitude
Formulas (4.4), (4.5), gives the results presented in Fig. 6.

The second variant, using the Onset Formula (5.3), gives the following pic-
ture (Fig. 7).

Comparing the results one can note that the AF seems to be more efficient
for calculations. On the other hand, the algorithm based on the Onset
Formula is simpler to program and takes less computational time. The
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FIGURE 6. Recovery of I'¢, € = 0.1,0.1,...,0.8; the Ampli-
tude Formula.

1.0}
0.8
0.6
0.4

0.2

0.0

2.0
FIGURE 7. Recovery of I'¢, ¢ = 0.1,0.1,...,0.8; the Onset Formula.

his program [12]. It was used as a test to debug our program. We thank the
referees, whose advices help us to improve the presentation.
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