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SMOOTH HOMOGENEOUS ASYMPTOTICALLY

STABILIZING FEEDBACK CONTROLS

HENRY HERMES

Abstract� If a smooth nonlinear a�ne control system has a con�
trollable linear approximation� a standard technique for constructing

a smooth �linear� asymptotically stabilizing feedback control is via the

LQR �linear� quadratic� regulator� method� The nonlinear system may
not have a controllable linear approximation� but instead may be shown

to be small �or large� time locally controllable via a high order� homo�
geneous approximation� In this case one can attempt to construct

an asymptotically stabilizing feedback control as the optimal control�
relative to a cost functional with homogeneous integrand� for the ap�

proximating system� Necessary� and some su�cient� conditions for the
existence of a smooth �real analytic�� stabilizing feedback control of

this form are given� For some systems which satisfy these necessary
conditions� the speci�c form of a stabilizing control is established�

�� Introduction

This paper deals with the problem of existence and construction of a smooth�
asymptotically stabilizing �state� feedback control �hereafter ASFC� for a
real analytic� n � � dimensional� control system of the form

�x � X�x� � uY �x�� X�	� � 	� Y �	� �� 	� �
�
�

If one can �nd a smooth� homogeneous �of appropriate order� ASFC for a
homogeneous approximating system of �
�
�� then �see 

	�� 

��� this control
is also a local ASFC for �
�
�� Our goal is to characterize all homogeneous
�approximating� systems which admit a smooth �C��� homogeneous ASFC
as an optimal control of a nonlinear regulator problem�

For example� suppose the linearization of �
�
� is a controllable linear sys�
tem �x � Ax� ub� Assign the quadratic cost functional C�u� �

R
�

�

eu��t��

h�� �x�t���dt where h�� is a positive de�nite quadratic form �homogeneous of
degree � with respect to the standard dilation ���x � ��x�� � � � � �xn��� Classi�
cal theory� 

��� shows that the value function v is a smooth� positive de�nite�
solution of a smooth Hamilton�Jacobi�Bellman �hereafter HJB� equation�
If one considers b as a vector �eld Y on Rn� i�e�� let Y �

P
bi

�
�xi

� then the
linear optimal control is an ASFC and has the form u��x� � ���Y v��x��
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�� HENRY HERMES

where � � 	 is a gain constant� Furthermore� a controllable linear system
can always be transformed to ��rst power integrator form�� i�e� �y� � y��
�y� � y�� � � � � �yn � u via linear feedback and a linear coordinate change� For
nonlinear systems of the form �
�
� which have controllable linearizations
�homogeneous approximations relative to ����� the �rst power integrator can
be considered a �nice� canonical representative of these approximations un�
der the linear feedback group� An ASFC for the integrator easily transforms
to an ASFC of any controllable� linear system� i�e� system in the orbit of
the group acting on the integrator�

First power integrators are a special case of the pth power integrators

�y� � yp� � �y� � yp� � � � � � �yn�� � ypn� �yn � u �
���

with p an odd integer� In 
��� an inductive argument is used to show the odd
pth power integrator admits an ASFC of the form u��y� � ���

Pn
� �iyi�

p

and quadratic Lyapunov function v�y� � �
	��yTQy� We will show that v
is a value function for a cost functional of the form C�u� �

R
�

�

eup���t� �

h�p���y�t���dt where h�p�� is homogeneous of degree �p � 
� with respect
to the standard dilation� positive de�nite� and smooth� Letting X�y� �Pn��

j�� y
p
j��

�
�yj

� Y � �
�yn

the value function v is smooth� homogeneous of

degree � with respect to ��� � and is a positive de�nite smooth solution of the
HJB equation ����Y v��y��p�� � �Xv��y� � �h�p���y�� Furthermore� the
smooth� homogeneous ASFC u� has the form u��y� � ����Y v��y��p�

As in the linear system case� i�e�� p � 
� the odd� pth power integrator
system �
��� should be considered a canonical representative for its �feedback
equivalence class� where here feedback and coordinate changes should be
such as to preserve the degree of homogeneity of the vector �elds X� Y
which describe the system� For a more general dilation �r� on Rn� this
leads to the notion of the ��r� feedback equivalence group�� Again� as in
the linear case� once a smooth� homogeneous ASFC is known for a canonical
representative� it is easily transformed to any system in the equivalence class�
Thus the goal is to characterize the �r� feedback group equivalence classes
of homogeneous systems which admit a smooth� homogeneous� ASFC as
an optimal control of a nonlinear regulator problem� and to �nd a �nice�
canonical representative system from each such equivalence class� The p�
th power integrators� p � 
� �� � � � � would be considered as nice canonical
representatives from their equivalence classes�

Our method is to �rst assign weights� wtX � k� wtY � 
 to the �sym�
bols� X � Y � of the vector �elds X � Y of �
�
�� The weight of a Lie product is
the sum of the weights of its factors� We then consider the free Lie Algebra
on these symbols� and a homomorphism from this free Lie algebra to the
Lie algebra generated by the vector �elds X � Y � see 
��� for details� We will�
however� abuse notation� and use L�X� Y � as either the free Lie algebra on
the symbols X � Y � or the Lie algebra generated by considering these as vec�
tor �elds� In particular� we identify a given bracket in the free Lie algebra
with the vector �eld resulting from this bracket of the vector �elds X � Y �
Clearly many di�erent brackets in the free Lie algebra can map to the same
vector �eld� but this presents no problem� The weight induced �ltration of
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the Lie algebra� L�X� Y �� generated by X� Y � is used to induce �natural�
local coordinates and a dilation� �r� � 
 � r� � � � � � rn� relative to which
there is a homogeneous approximation �see eqs� ������ ������ of system �
�
��
A homogeneous ASFC of the approximating system� of appropriate order�
is also a local ASFC of �
�
�� We seek necessary conditions that such an
ASFC exist as a smooth optimal control for a nonlinear regulator problem
having positive de�nite� homogeneous� integrand�

If the vector �eld X � in �
�
�� admits a homogeneous approximation
X���k� such that the origin of �x � X���k��x� is asymptotically stable� then
�

	�� 

��� the origin is locally asymptotically stable for �x � X�x� and no
control is necessary� Our interest is in the case when control is necessary
to cause the solution from any initial data to tend to zero as t � �� We
de�ne� an integral manifold Mk of a vector �eld Z� Z�	� � 	� is a stable
manifold of the rest solution zero if there is a C�� positive de�nite� function
v � Rn� R

� such that �Zv��x� is negative de�nite on Mk� If Mk is a stable
manifold for the rest solution zero of Z� the solution x�t� p� of �x � Z�x��
x�	� � p will satisfy x�t� p�� 	 as t��� We assume� throughout� that no
such stable manifold of positive dimension k exist for either X or X���k��
This assures that any solution of the controlled system which tends to zero
as t�� does so because of control�

The main results� theorem ��
 and theorem ���� can roughly be stated as
follows� A necessary condition for the existence of a smooth ASFC which
is an optimal control for a nonlinear regulator problem is that weight as�
signments can be made so that there are n products of X� Y � having weight
one� which are linearly independent when evaluated at zero� while products
of weight less than or equal to zero vanish at zero� This means it is neces�
sary that the induced dilation be �r� with r � �
� � � � � 
�� which we call the
standard dilation ��� � It is also necessary that k 	 f	������� � � �g� If k � 	�
the homogeneous approximation is a standard linear approximation� which
gives the classical �linear� quadratic� regulator�� If k � ��p � 
�� p � �
and odd� one gets the pth power integrators� but also other systems not in
their ��� feedback equivalence class� which do admit a smooth� homogeneous�
ASFC as an optimal control of a nonlinear regulator problem�

Brockett�s necessary conditions� 
��� for the existence of a continuous
ASFC� which is only a function of the state� showed that STLC at zero
was not su�cient� In dimension n � �� Coron� 
��� shows that STLC does
imply the existence of a continuous �time periodic� �dynamic� feedback con�
trol u�t� x� which actually drives the system to zero in �nite time� Other
results along this line can be found in 

��� It is also true that systems of
the form �
�
� can have a continuous� state dependent� ASFC� but no C�

such control� For results on the di�erentiability properties of ASFC� in two
dimensional systems� see 
���

�� The precise problem formulation

Let �r� � Rn � R
n be de�ned by �r�x � ��r�x�� � � � � �

rnxn� with � � 	 and

 � r� � � � � � rn integers� A smooth �C�� function f � Rn � R

� is
homogeneous of degree m with respect to �r� � denoted f 	 Pm� if f��r�x� �
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�mf�x�� We set Pm � f	g if m 
 	� A smooth vector �eld X�x� �Pn
j�� aj�x�

�
�xj

is homogeneous of degree m with respect to �r� �in the given

local coordinates� i�e�� this is not a coordinate free notion� if aj 	 Prj�m���

j � 
� � � � � n� In this case we write X�m� to denote homogeneity of degree
m� It is worth remarking that the above de�nition of homogeneity of a
function f � Rn � R

� is standard in the literature� but several de�nitions
of homogeneity of vector �elds can be found� In their classical paper 

���
Rothschild and Stein de�ne a vector �eld X to be homogeneous of degree m
with respect to a dilation �r� if Xh 	 Pk�m whenever h 	 Pk� k � 	� 
� � � � �
With X given in local coordinates� as above� this requires aj 	 Prj�m and
a vector �eld which is linear in the local coordinates becomes homogeneous
of degree zero with respect to the standard dilation ��� � while a linear map
from R

n to Rn is homogeneous of degree one� The de�nition of vector
�eld homogeneity given here makes either a map or vector �eld� which is
linear in the local coordinates� homogeneous of degree one with respect
to the standard dilation� For an excellent discussion of advantages and
disadvantages of the various de�nitions� see 

���

Assume� without loss of generality� that feedback has been used� and local
coordinates chosen� in �
�
� so that

X�x� �
nX

j��

aj�x�
�

�xj
� Y �x� �

�

�x�
�

Let � � 	� �� denote the set of Lebesgue measurable �open loop� controls
u � 
	���� 
��� �� and A�

� �t� be the set of all points which can be reached
at time t by solutions of �
�
�� from initial data x�	� � 	� and with controls
u 	 ��� As is standard� A�

� �t� will be referred to as the attainable set of
system �
�
� at time t � 	� System �
�
� is small time locally controllable
�STLC� at zero if for any t� � 	� � � 	� 	 	 intA�

� �t��� System �
�
� is large
time locally controllable �LTLC� at zero if given any � � 	� there exists a
t� � 	 such that 	 	 intA�

� �t��� STLC has been extensively studied� see

��� 
�
�� with a major� computable� su�cient condition given by Sussmann
in 
���� and paraphrased as theorem ��� in what follows� A computable
su�cient condition for LTLC is given in 


�� and rephrased as theorem ����
below� Clearly STLC implies LTLC while �for an analytic system �
�
��
LTLC is su�cient for the Brockett necessary condition� 
��� for the existence
of an ASFC� i�e�� from any initial point y in a neighborhood of zero there
exists an open loop control uy 	 ��� with solution of �
�
� denoted t �
x�t� uy�� such that lim

t��
x�t� uy� � 	�

Given any dilation �r� and any local coordinates x� one can expand the
vector �elds X� Y as

X�x� � X���k��x� �X���k��x� � � � �

Y �x� � Y ���m��x� � Y ���m��x� � � � �

where we assume X���k�� Y ���m� are the lowest order nonvanishing terms�
Then X�	� � 	 implies X���k��	� � 	 and Y �	� �� 	 implies m � 
 and
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Y ���m��	� �� 	� The homogeneous approximation of system �
�
�� relative
to dilation �r� and given local coordinates� is

�x � X���k��x� � uY ���m��x� ���
�

Since we assume that the rest solution zero of the uncontrolled system
�
�
� has no stable manifold of positive dimension� asymptotic stability can
only result from use of control� To assure the Brockett necessary condition�
we require that system �
�
� be either STLC �implies LTLC� or LTLC at
zero� The following theorem relates STLC of the homogeneous approxima�
tion ���
� to STLC or LTLC of system �
�
��

Theorem ���� �
��� 


�� If there exists a dilation �r� for which k � 	 in the
expansion of X� or k � 	 and �m� k� � 	� and the approximation system
����� is STLC at zero� then system ����� is STLC at zero� If k � �
 and
system ����� is STLC at zero� system ����� is LTLC at zero�

The use of homogeneous approximations to construct an ASFC for �
�
�
stems from the following theorem� which is stated� below� for smooth controls
but holds under far weaker smoothness assumptions� see 

���

Theorem ���� �

	�� If u� 	 Pm�k is an ASFC for the homogeneous ap	
proximating system ������ it is a local ASFC for system ������

In light of the above two theorems� our goal will be to determine when an
STLC homogeneous approximating system has a smooth� homogeneous �of
appropriate degree� ASFC�

For applications and a reasonable theory� it is essential to have a construc�
tive way of obtaining an appropriate dilation and local coordinates� and these
should come in a coordinate free way from system �
�
�� Let 
X� Y � denote
the Lie product of the vector �elds X� Y � L�X� Y � the Lie algebra gener�
ated by X� Y under this product and L�X� Y ��	� the elements of L�X� Y �
evaluated at zero� We assume� throughout� that dimL�X� Y ��	� � n�
An extended �ltration� F � of L�X� Y � at zero is a sequence of subspaces
fFj � �� 
 j 
�g of L�X� Y � such that for all integers i� j�

�i� Fj 
 Fj�� �ii� 
Fi� Fj� 
 Fi�j
�iii�

S
j Fj � L�X� Y � �iv� X 	 Fj with j � 	 implies X�	� � 	�

Such �ltrations will be constructed from brackets in the free Lie algebra on
the symbols X � Y as follows� Assign integer �negative integers permitted�
weights to the symbols X� Y � denoted wtX�wtY � Let the weight of a Lie
product be the sum of the weights of its factors and identify any bracket in
the free Lie algebra with the same bracket of the vector �elds X � Y � The
weight induced �ltration F then has as subspace Fj all elements in L�X� Y �
identi�ed with brackets of weight i � j in the free Lie algebra� Note that
condition �iv� puts a severe restriction on the admissible weights one can
assign to X and Y �

���� Filtration induced coordinates and dilation

Let F � fFj � �� 
 j 
 �g be an extended �ltration of L�X� Y � at
zero and nj � dimFj�	�� �� 
 j 
 �� Property �iv� shows nj � 	 if
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j � 	 while dimL�X� Y ��	� � n means dim FN�	� � n for some integer N �
Choose X�� � � � � � X�n�

	 F� such that these are linearly independent at zero�
Adjoint X�n���

� � � � � X�n�
	 F� such that X���	�� � � � � X�n�

�	� are linearly
independent and continue in this fashion to get X�� � � � � � X�n with

X�i 	 Fj � nj�� � 
 � i � nj �

Let j � 
 be the smallest integer such that nj �� 	� Choose ri � j for

 � i � nj � ri � j � 
 for nj 
 i � nj��� etc� The dilation �r� with
r � �r�� � � � � rn� chosen as above is called the �ltration induced dilation�

In a speci�c problem vector �elds are initially given relative to some local
coordinates� say x � �x�� � � � � xn�� Let exp�tX�i��q� denote the solution of
�x � X�i�x�� x�	� � q at time t� De�ne a local coordinate change y � ����x�
where

x � ��y� � �exp y�X��� � � � � � �exp ynX�n��	�� �����

Then � is a local di�eomorphism with ��	�� � 	� The coordinates y �
�y�� � � � � yn� are called the �ltration induced coordinates � IfX�x� was a vector
�eld given in the original x coordinates� we abuse notation and let X�y�
denote this vector �eld in the new coordinates�

Theorem ���� �

�� Thm� ��
�� 

��� Let F � fFj � �� 
 j 
 �g be
an extended �ltration at zero with y � �y�� � � � � yn� and �r� the induced local
coordinates and dilation� Then if X 	 Fk �i�e�� wtX � k� it admits the
expansion

X�y� � X���k��y� �X���k��y� � � � �

where X���k� is not identically zero�

The construction of �ltration induced dilations� coordinates and homo�
geneous approximating systems will be illustrated by examples to follow�
We �rst describe how to choose the weight assignments for a �ltration from
system �
�
�� in a coordinate free manner� In the �gure below �which we
call a Kawski diagram� a point of the type �k� 
� designates brackets of X� Y
containing k factors Y and 
 factors X �

�
� 	�
�

�
� 
�
�

�
� ��
�

�
� ��
�

�
� ��
�

�
� ��
�

��� 
�
�

��� ��
�

��� ��
�

��� ��
�

��� ��
�

��� 
�
�

��� ��
�

��� ��
�

��� ��
�

��� ��
�

��� 
�
�

��� ��
�

��� ��
�

��� ��
�

��� ��
�

Figure 
�
The main theorem in 
��� can be described� via this diagram� as follows�

Theorem ���� �Sussmann 
���� Suppose one can draw a line through the
���
� point of the Kawski diagram of slope k	m where m � 
� m � k � 	
�i�e�� of slope between 
 and �� such that as one moves the line downward and
to the right parallel to itself �or downward if k � 	� any time one reaches a
bracket of type �even� odd� which when evaluated at zero is not zero� its value
at zero is a linear combination of brackets �at zero� previously reached� Then
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the weight assignment wtX � k� wt Y � m gives a �ltration such that in the
induced coordinates and relative to the induced dilation� the approximating
system is

�y � X���k��y� � uY ���m��y�� �����

and is STLC at zero� Since either k � 	 or k � 	 and m�k � 	� by theorem
��� system ����� is STLC at zero�

Example ���� �Sussmann 
����� LetX�x� � x�
�
�x�

��x���x
�
��

�
�x�

� Y � �
�x�

�

Then letting �adX� Y � � 
X� Y �� �ad�X� Y � � 
X� 
X� Y ��� etc�� �adX� Y ��x�
� �

�x�
� �x��

�
�x�

� �ad�X� Y ��x� � �x�
�
�x�

� W � 
�ad�X� Y �� 
X� Y �� � � �
�x�

�

�ad�Y�X� � �� �
�x�

� Here W is of �bad� bracket type ����� thus one wants

a line of slope k	m such that it gets to the good ���
� bracket �ad�Y�X�
before W �

�a� Choose our initial line through the �
�	� point to have slope 
� i�e��
k � m � 
� The parallel translates of this line satisfy theorem ���� The
weight assignment is wtX � 
� wtY � 
 which gives wt 
X� Y � � ��
wt �ad�Y�X� � �� wtW � �� Then in the �ltration F � Y � X�� 	 F��

X� Y � � X�� 	 F�� F��	� contains no new linearly independent vectors
but �ad�Y�X� � X�� 	 F	 gives the third and �nal �direction�� The in�
duced dilation is �r� with r � �
� �� ��� The induced coordinates� from ������
are easily calculated as y� � x�� y� � x�� y� � ��
	��x�� In these co�

ordinates X�y� � X����y� � X����y� where X����y� � y�
�
�y�

�
�
�



�
y��

�
�y�

�

X����y� � y��
�
�y�

while Y �y� � Y ����y� � �
�y�

� The homogeneous approxi�

mating system becomes �y � X����y� � uY ���� which is STLC at zero�

�b� An initial line of slope ��� through the point �
�	� is also such that
its parallel translates satisfy theorem ���� Here one would assign wtX � ��
wtY � � which gives wt 
X� Y � � ��wt�ad�Y�X� � 

 and wtW � 
��
The weight generated �ltration induces the dilation �r� with r � ��� �� 

��
The induced local coordinates are exactly as in part �a� above� In these
coordinates� and relative to the induced dilation� the approximating system

is �y � X�����y��uY ���� where X�����y� � y�
�
�y�

�
�
�



�
y��

�
�y�

� and Y ���� �
�
�y�

�

Theorem ��� handles the case where the approximating system being
STLC implies the original system is STLC� We next take the case where
the approximating system STLC implies the original system is LTLC�

Theorem ���� �


�� For system ������ assume there is an m � 	 such that
the �
� m� 
� bracket vanishes at zero �hence this will be true for all �
� 
�
brackets with 
 � �m � 
� since X�	� � 	�� If for some integer k � �

one can draw a line through the �
� m� point in the Kawski diagram with
�negative� slope k	�
�mk� such that�

�a� All brackets to the right of the line vanish at zero� All �even� odd�
brackets on the line vanish at zero�

�b� As one slides the line to the left� parallel to itself� each time one
encounters a bracket of type �even� odd� which is not zero at zero� it is a
linear combination of bracket types �at zero� already encountered�
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Then the weight assignment wtX � k� wt Y � 
�mk yields the approxi	
mating system �in induced coordinates relative to the induced dilation�

�y � X���k��y� � uY �mk��y� �����

which is STLC at zero and hence� by theorem ���� the system ����� is LTLC
at zero�

Example ��	� �Hermes� 


��� Let X�x� � x�
�
�x�

� �x�� � x���
�
�x�

� Y � �
�x�

�

The relevant brackets are Y� �adX� Y � � �
�x�

� �x�
�

�x�
� �ad�Y�X� � � �

�x�
�

and �ad�
X� Y �� X� � �� �
�x�

� These are� respectively� of types �
�	�� �
�
��
���
� and ������ Choose m � 
� k � �� which means we consider a line
through the �
�
� point with slope ��	�� This line passes through the �good�
����� point and hence as we slide the line to the left parallel to itself� the
�direction� of the �bad� ���
� bracket has already been attained� With
m � 
� k � �� we assign wtX � ��� wtY � �� Then wt �adX� Y � � 
�
wt �ad�
X� Y �� X� � 
 and the induced dilation �r� has r � �
� 
� ��� Choose
X�� � �ad�
X� Y �� X��X�� � �adX� Y �� which are both in F�� andX�� � Y �
which is in F� of the �ltration F � For the induced coordinates� from �����

we obtain x� � y�� x� � y�� x� � �y�y� � �y� or y� �
�
� �




�
x� �

�
�
�

�
x�x��

y� � x�� y� � x�� Then X�y� �
��
��




�
y�� �

�
�
�

�
y��
�

�
�y�

� y�
�
�y�

� Y �y� ��
�
�

�
y�

�
�y�

� �
�y�

� The approximating system is �y � X����y� � uY �����y�

where

X����y� �

�
�



�

�
y��

�

�y�
� y�

�

�y�
� Y �����y� �

�

�y�
�

and this system is STLC at zero� The original system is LTLC at zero but
not STLC� The ���
� bracket is an obstruction to STLC� 
�
��

Our problem now can be roughly stated as follows� For what values k�m
does the homogeneous system ����� admit a smooth ASFC u� 	 Pm�k � or
the homogeneous system ����� a smooth ASFC u� 	 P��mk�k � with u� an
optimal control of a nonlinear regulator problem We next explain exactly
what will be meant by a nonlinear regulator problem for the homogeneous
systems ������ ������

The cost function will be

C�u� �

Z
�

�


eus�t� � h���k�y�t���dt� e � 	 �����

where s � 
 is rational with even numerator� odd denominator� and h���k 	
P��k is positive de�nite with 
 � k to be determined� The maximum prin�
ciple� applied to system ����� with cost functional ������ �see 

�� or 

���
yields the HJB equation

����Y ���m�v��y��s��s��� � �X���k�v��y� � �h���k�y� �����

� � ��s� 
�	s��
	se����s��� �� as e� 	�
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for the value function v� System ����� with cost given by ����� has HJB
equation

����Y �mk�v��y��s��s��� � �X���k�v��y� � �h���k�y�� �����

If v 	 P� is a positive de�nite solution of ����� or ������ the optimal control�
which would be an ASFC� is given� respectively by

u��y� � ����Y ���m�v��y�����s��� ����� ����

u��y� � ����Y �mk�v��y�����s���� ����� ����

In order that u� be smooth� ����� shows it is necessary that either 
 
 s �
� and �
	�s� 
�� � p � 
 be an �odd� integer or �Y ���m�v��y�� �Y �mk�v��y�
have the form �f�y��s�� for f 	 Pm�k � f 	 P��mk�k � respectively� s � �
and even� �When s � �� the two cases give the same control�� Henceforth�
let p � 
 denote an odd integer related to s� when 
 
 s � �� by


	�s� 
� � p� s	�s� 
� � p� 
� �����

Since systems ������ ����� are STLC at zero� their value functions v for
the associated cost ����� are continuous� positive de�nite� and the unique
viscosity solutions of ������ ������ respectively� �See 
��� 
���� In general� one
cannot expect smooth solutions of ������ ����� to exist�

���� The classification problem

Assuming there are no stable manifolds for the rest solution of positive
dimension for the vector �eld X���k�� classify� up to homogeneity preserving
feedback and coordinate transformations� systems of the form ������ �����
which admit a smooth ASFC u� 	 Pm�k � or u

� 	 P��mk�k of the form �����
����� ���������� respectively� where v is a smooth� positive de�nite solution
of the associated HJB equations ������ ������

�� Necessary conditions that ������ �����
have a smooth ASFC of the form ���	
����� ���	
����

The necessary conditions of theorems ��
� ��� of this section depend on
the assumption that X���k� have no stable manifold of positive dimension�
Example ���� following the statement of theorem ��
� illustrates that the
conditions are not necessary if this assumption is violated�

���� The case when 
���� and its approximation 
���� are STLC

We begin with the case of system ����� with HJB eq� ����� and control u�

given by ���������� with �
	�s � 
�� � p � 
 odd� so 
 
 s � �� In order
that the ASFC of the approximating system ����� be a local ASFC for �
�
��
or more speci�cally that theorem ��� applies� we require u� 	 Pm�k � If
v 	 P�� Y

���m�v 	 P��m and u�� as given by ���������� is in Pp���m� � Thus
we require p�
�m� � m� k or equivalently�

�p� 
��
�m� ��
� k� or 
 � �m� k � pm�	p�

p � 
 odd� m � 
� m � k � 	�
���
�
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This is also precisely the relationship k� 
�m� p must satisfy in order that
����� admit a dilation group as a symmetry group� i�e�� have a solution
v 	 P��

Now for v to be positive de�nite� 
 must be an even multiple of each
ri� i � 
� � � � � n� From the �ltration construction giving equation ������
wtY � m � 
� wtX � 	 implies brackets of X � Y have weights greater
than or equal to m� Y �	� �� 	 so we can choose X�� � Y and r� � m� Thus
we require 
 � qm� q � � and even� which� in ���
�� gives

m�p� pq � 
�� k � 	� m � 
� p � 
� q � �� m � k � 	� �����

But �p � pq � 
� � 	 hence ����� can only hold if p � 
� q � �� k � 	�
m � 
 arbitrary� For p � 
� k � 	� eq� ���
� shows 
 � �m� Since
m � r� � r� � � � � � rn and 
 must be an even multiple of all ri� the only
solution is m � r� � r� � � � � � rn�

Furthermore� there is no loss in generality in assuming that m � 
� since
this merely scales the ri and leaves them all integers� i�e�� we may take
�r� � ��� � the standard dilation�

Next� suppose �Y ���m�v��y� � �f�y��s��� s � � even� so u��y� � ��f�y��
We require u� 	 Pm�k or f�y� 	 Pm�k � But� as above� wtY � m� wtX �
	 implies r� � m� Thus if k � 	� f�y� is a constant� hence k � 	 is
necessary and f�y� 	 Pm� But k � 	 means wtX � 	 while Y �	� �� 	
means wtY � m � 
� If we assign wtY � m � �� all nonvanishing �at
zero� brackets will have weights integer multiples of m� i�e� all ri will be
integer multiples of r� � m and hence� with no loss of generality� we can
assume that m � 
� Suppose r� � � � � � rj � 
� rj��� � � � � rn � 
 with
j 
 n� Then wtY � 
 implies we can choose X�� � Y in the �ltration�
Since Y �x� � �

�x�
� this means Y �y� � �

�y�
� Thus f�y� 	 P� must have the

form f�y� �
Pj

i�� �iyi� Also� �Y ���v��y� � vy� �y� � �f�y��s��� s � � even�
means v�y� � �
	��s��f�y��

s � g�yj��� � � � � yn� where g 	 Ps is a positive
de�nite function� Now system ����� has k � 	� m � 
 and control u��y� �
��f�y� which means the right sides of the �rst j equations in the controlled
system are linear functions of y�� � � � � yj� Then for the right side of �����
to be negative de�nite it is necessary that �X���g��	� � � � � 	� yj��� � � � � yn� be
a negative de�nite function of yj��� � � � � yn� But if this were the case� the
solution� x�t� c�� of �x � X���� x�	� � c �� 	 but c�� � � � � cj � 	� would satisfy
x�t� c�� 	 as t��� This contradicts the assumption that the rest solution
zero of the uncontrolled system has no stable manifold of positive dimension�
Thus j � n and r�� � � � � rn � 
�

Geometrically� k � 	 means the line in theorem ��� has slope zero� while
all ri � m means dim span fY ���m��	�� � � � � �adn��X���k�� Y ���m���	�g � n�

With k � 	� m � 
� in the latter case we may choose s � 
 � �� while in
the former q � � so we have 
 � mq � � while p � 
 means s � �� Thus the
cost ����� involves u� while h���k � h�� is a positive de�nite quadratic form�

Here X���k��y� � X����y� which� relative to the standard dilation ��� � means
linear in y� Y ���m� � Y ��� while dim fY ����	�� � � � � �adn��X���� Y �����	�g �
n means system ����� is a controllable linear system� The optimization
problem is the standard �linear� quadratic� regulator problem�� Classical
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theory� e�g� 

��� shows that for any h�� 	 P� the HJB equation ����� has a
positive de�nite solution v 	 P� �i�e�� a quadratic form� and the ASFC u�

has the form given in ���������� The above can be summarized as

Theorem ���� In order that the homogeneous system ������ �which is as	
sumed to have no stable manifold of positive dimension for the zero solution
of the uncontrolled system and to be STLC at zero� admit a homogeneous
ASFC u� 	 Pm�k of the form ���
	����� where v is the value function for
a regulator problem� it is necessary and su�cient that k � 	� m � 
� and
homogeneity be relative to the standard dilation� i�e� Y �	�� �adX� Y ��	�� � � � �
�adn��X� Y ��	� be linearly independent in system ������

Remark ���� In essence� the above states that if the system �
�
� is STLC
at zero and has a homogeneous approximation of the form ����� which admits
an ASFC of the form ���������� the approximation has to be a controllable
linear system and we are in the case of a linear� quadratic� regulator for ������
Also the group of homogeneity preserving transformations consists of the
linear coordinate and linear feedback transformations� A �nice� canonical
representative for the equivalence class of the controllable linear system is
the ��rst order integrator� �y� � u� �y� � y�� � � � � �yn � yn�� �

Remark ���� The group consisting of linear feedback and linear coordi�
nate changes is a subgroup of the �feedback group� of arbitrary �smooth�
feedback and coordinate transformations used in the problem of feedback
linearization� With dilation the standard dilation ��� � the homogeneous ap�
proximation ����� of system �
�
� is the standard linearization� One may
note that if �
�
� is feedback linearizable� its linear approximation will be a
controllable� linear system�

Example ���� This example is to illustrate the reason for the assumption
that the zero solution of the uncontrolled system have no stable manifold of
positive dimension� Let

X�y� � y�
�

�y�
� �y�� � y��

�

�y�
� Y �

�

�y�
�

Then Y �	�� �adX� Y ��	�� W �	� � �ad�
X� Y �� X��	� are linearly indepen�
dent� Also� �adkX�W ��	� �� 	 for all k � 	 so one cannot assign wtX 
 	
without violating property �iv� of a �ltration at zero� Assign wtY � 
�
wtX � 	 which yields �r� � r � �
� 
� �� and X � X���� Y � Y ��� with ho�
mogeneity relative to �r� � The rest solution� zero� of the uncontrolled system
does admit the stable� one dimensional� manifold fx 	 R� � x� � x� � 	g!
The necessary conditions to theorem ��
 are not satis�ed� but here one can
choose 
 � s � � which gives� as left side of ������ ���vy��y��


���y�vy��y��
�y�� � y��vy� � For c� � � 	 su�ciently large� the smooth� positive de�nite
function v�y� � �
	����y� � �y��
 � y
� � cy�� 	 P
 makes the preceding ex�
pression negative de�nite� i�e� equal to some �h�
 	 P
� This v is a smooth
solution of an HJB equation of the form ����� and u��y� � ���vy��y��

��� �
����y� � �y�� is a smooth ASFC in P� �as can easily seen by linearization�
which does not� and need not� depend on y�� a variable which tends to zero
with no control�
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���� The case when 
���� is LTLC
with homogeneous approximation 
����

Again� it is necessary to consider two cases" 
	�s � 
� � p � 
 odd� i�e�

 
 s � � and s � � even� We begin with�
Necessary conditions when 
 
 s � �� Here p and s are related as
in ������ In order that theorem ��� can be applied to show an ASFC u�

for system ����� is a local ASFC for system �
�
�� it is required that u� 	
P��k�mk � If v 	 P�� Y

�mk�v 	 P��mk�� and u�� as given by ���������� is in
Pp���mk��� � Thus it is necessary that

p�
�mk � 
� � 
� k �mk� p � 
 odd integer�

m � 	� k � �
� 
 � � even�
�����

Also� for ����� to admit a dilation group as a symmetry group� for v 	 P� one
needs �Y �mk�v�p�� 	 P��k or �p�
��mk�
�
� � 
�k� and this is satis�ed
if k� 
�m� p satisfy ������ Furthermore� for v to be positive de�nite� 
 must
be an even multiple of each ri� i � 
� � � � � n� Our original coordinate choice
Y �x� � �

�x�
and X�x� �

Pn
j�� aj�x�

�
�xj

means the direction Y �	� cannot

occur as any Lie product of X� Y evaluated at zero� hence the coordinate
change ����� induced by the �ltration� has Y � X�i for some i � 
� � � � � n�
This means ri � wtY � 
�mk and thus it is necessary that


 � q�
�mk� for some q � � and even� �����

Also� in order that each side of ����� be a negative de�nite� homogeneous
polynomial in P��k � it is necessary that �
� k� be an even multiple of each
ri� i � 
� � � � � n�

Lemma ���� When 
	�s� 
� � p � 
 odd� necessary conditions that system
����� admit an ASFC u� 	 P��k�mk of the form ���
	���� are that ������
����� have a simultaneous solution and 
� 
 � k be even multiples of all ri�
This occurs only if m � 	� k � ��pq � p� 
� � �
� p � 
 odd� q � � even�

 � q and both q and �q � k� are even multiples of all ri�

Proof� Substituting for 
 from ����� into ����� gives

�k
m�pq � p� 
�� 
� � ��pq � p� 
�� �����

But �pq�p�
� � 	� If �pq�p�
� � 	� ����� yields k � 	� which is not valid�
Suppose �pq�p�
� � 
� If m � 
� the left side of ����� is zero� the right side
negative� If m � �� since k � �
 the left side of ����� is positive� the right
side negative� This leaves only the case m � 	� k � ��pq � p� 
� � �
� tu

It is interesting� and instructive� to see by example how severe the condi�
tions of lemma ��� are on possible systems�

Example ���� �An example which satis�es all necessary conditions of
lemma ���� but does not satisfy necessary condition �c� of theorem ���
below�� Lemma ��� requires m � 	� 
 � q� hence k � ��p
 � p � 
��

 � k � �
 � p��
 � 
� and these must both be even multiples of all ri� If
for integers ni� mi � ni� since k � ��� �
 � p��
 � 
� � �miri� 
 � �niri
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then ri � �
 � p�	��ni�
 � p��mi� and it follows that 
 � ri � �
 � p�	��
i � 
� � � � � n� If� for example� we want r � �
� �� �� ��� the smallest p � � and
r� � r� � � is attained with n� � 
� m� � �� Then the smallest possible 

is 
 � � which means k � ��� For example� a system on R	� such as

X�y� � �y�
� �y�y
�
��

�

�y�
��y�
� �y

�
��y

�
	�

�

�y�
��y�
� �y���y

�
	�

�

�y	
� Y �

�

�y�

satis�es the conditions of lemma ����
It is instructive to note� for a step in the proof of theorem ���� that since

r� 
 r� and k is an integer multiple of all ri� the coe�cient of �
�x�

cannot
contain a term cyni� � Indeed this would require both r� � k and r� � k to be
integer multiples of r��

The relevant �nonvanishing at zero� brackets are Y � �ad�
Y�X��
�ad�
Y�X�� �ad��ad�
Y�X�� which are� respectively� of types �
�	�� ����
��
����
�� �����
	�� Assign wtX � ��� � k� wtY � 
� Then the above brack�
ets have� respectively� weights 
� �� �� and �� and �r� with r � �
� �� �� ���
as desired� Thus all conditions of lemma ��� are satis�ed� Also X�y� �
X�����y� is homogeneous of degree �� with respect to �r� � One would seek an
ASFC u� 	 P��� Since �r� �� ��� � the system �x � X�x� � uY does not satisfy
condition �c� of theorem ���� below� and hence does not admit a smooth
ASFC u� 	 P�� of the form ����������

Remark ��	� The condition m � 	 means Y �mk� � Y ��� and �adX���k��
Y �����	� � 	 in the homogeneous approximating system ������ Also� m � 	
means wtY � 
 and in theorem ���� brackets of type ��ka � 
� a�� a �
	� 
� � � � � on the line through the �
�	� point with slope k � �
 will have
weight 
� If there are n linearly independent brackets �evaluated at zero� on
this line� one will have r� � r� � � � � � rn � 
� If not� as the line is moved
to the left parallel to itself� linearly independent directions will occur from
brackets of weight � � and there will be some ri � �� tu

Theorem ���� Necessary conditions that the homogeneous system ������
�which is assumed to have no stable manifold of positive dimension for
the zero solution of the uncontrolled system� admit a homogeneous ASFC
u� 	 P��mk�k � m � 	� k � �
� of the form ���
	���� are� �a� k 	
f��������� � � �g� �b� m � 	� �c� homogeneity� in ������ be relative to the
standard dilation ��� � i�e� n linearly independent �at zero� brackets of X���k��
Y ��� lie on the line of slope k through the point ���
� in �gure ��

Remark ��
� One can summarize the essence of theorems ��
� ��� as follows�
In order that the system �
�
� have a homogeneous approximation of either
the form ����� or ����� which admits a smooth ASFC u� of the form �����
���� in Pm�k or of the form ��������� in P��mk�k � it is necessary that one
can assign wtY � 
� wtX � k� k 	 f	������� � � �g and have n linearly
independent �at zero� brackets of X � Y of weight one� i�e� these lie on the
line through �
�	� with slope k� in �gure 
� �Note that this will� of necessity�
imply that these are good� i�e� not �even� odd� types of brackets� which
means the approximating system will be STLC��

Proof� �a� We �rst deal with the case 
	�s� 
� � p � 
 odd� or 
 
 s � ��
Lemma ��� shows that m � 	 is necessary� so Y �mk� � Y ��� which means
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wtY � 
 and in the construction of local coordinates from the �ltration� we
can choose X���x� � Y �x� � �

�x�
which means Y �y� � �

�y�
and Y ��� � �

�y�
�

Also� 
 � q and k � ��p
� p � 
� � 
� p � 
 odd� forces k to be even� i�e�
k 	 f������ � � �g� This means in �gure 
 we consider a line through the
�
�	� point with slope k � ��� Now wtY � 
 � r� � r� � � � � � rn� Lemma
��
	� which follows� will show that it is necessary that all ri � 
� �nishing
the proof of �a��

Lemma ����� If m � 	� which implies Y ��� � �
�y�

� and X���k� has no stable
manifold for the zero solution of positive dimension� it is necessary that all
ri � 
� i � 
� � � � � n�

Proof� Suppose rn � 
� or speci�cally� 
 � r� � r� � � � � � rj 
 rj�� �
� � � � rn� Then for 
 � i � j� v cannot contain a term cyiy

mj��

j�� � � �ymn
n with

c �� 	� mj��� � � � � mn � 	� Indeed� if it did� ri � rn�mj�� � � � �� mn� � l�
But 
 is an even multiple of rn hence dividing the above equality by rn and
using rn � ri gives a contradiction� Thus we conclude

�Y ���v��	� � � � � 	� yj��� � � � � yn� � vy��	� � � � � yj��� � � � � yn� � 	� �i�

Also� if X���k��y� �
Pn

j�� aj�y�
�
�yj

then for � � i � j�

vyi�	� � � � � 	� yj��� � � � � yn�ai�	� � � � � 	� yj��� � � � � yn� � 	� �ii�

�One can also note that ai 	 Pri�k hence it cannot contain a term
y
mj��

i�� � � �y
mj
n since this would require both ri�k and rn � k to be integer

multiples of rn � ri� This means ai�	� � � � � 	� yj��� � � � � yn� � 	 by itself��
From �i�� �ii�� for the left side of ����� to be negative de�nite on the

subspace y� � � � � � yj � 	 it is necessary that �X���k�v� be negative
de�nite on this subspace� If j 
 n this is a subspace of positive dimension
for the zero solution of X���k�� Since we assume no such exists� j � n� i�e�

 � r� � � � �� rn� tu

�b� Next� suppose �Y �mk�v��y� � �f�y��s��� s � � and even� We require
u� 	 P��mk�k � but u� � ��f so f 	 P��mk�k � m � 	� k � �
� and
�f�y��s 	 Ps���mk�k� � For homogeneity in the HJB equation this must also
be in P��k � i�e� it is necessary that s�
 �mk � k� � 
� k� k � �
� m � 	�
s � � even� 
 even� This forces k to be even�

In �
�
�� we had Y � �
�x�

and the �rst component of X was zero so the

�direction� �
�x�

cannot occur as a product of X � Y � evaluated at zero� This
means Y � X�i for some 
 � i � n� in the change to induced coordinates�
Thus wtY � 
�mk � ri for some 
 � i � n�

Again� both 
 and 
 � k must be even multiples of all ri� which means
�k is an even multiple of all ri� In particular� �k � �n��
�mk� for some
integer n�� i�e� k��mn� � 
� � �n�� k � ��� m � 	� This forces m � 	�

We now have k � �� even� m � 	 so wtY � 
 � r� � r� � � � � � rn
and 
� 
� k must be even multiples of all ri� The conclusion that all ri � 

follows from lemma ��
	� tu

Example ����� �The pth power integrator� p � � and odd�� On Rn�
consider the system

�y� � u� �y� � yp� � � � � � �yn � ypn���

i�e�� X�y� � yp�
�
�y�

� � � �� ypn��
�

�yn
� Y � �

�y�
�

�����
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The brackets of interest are Y �	�� �adpY�X��	�� �adp�adpY�X�� X��	�� etc��
which are of type �
�	�� �p� 
�� �p�� p � 
�� �p�� p� � p � 
�� etc� With the
weight assignments wtY � 
� wtX � 
 � p� all these bracket types lie on
the line �see �gure 
� through the �
�	� point with slope k � 
 � p� so all
have weight 
� Then r� � � � �� rn � 
� the dilation is the standard dilation
��� � X�y� � X�p��y� is homogeneous of degree p with respect to ��� � Y � Y ����
and ����� is an STLC homogeneous system of the form ������ Here m � 	�
q � 
 � �� p � � odd and k � 
� p provide a solution of proposition ��
��

Proposition ����� �
��� The pth power integrator� system ������ with p � �
odd� admits an ASFC u��y� � ����Y v��y��p 	 Pp� � � 	� where v�y� �
�
	��yTQy� Q positive de�nite� is a solution of an associated HJB equation
������

Proof� �See appendix 
 for a proof which di�ers from that outlined
in 
���� tu

Remark ����� If one adds a small homogeneous perturbation to the vector
�eld X in ������ i�e� replace X � X�p� by X�p� � �W �p� with W �p� ho�
mogeneous of degree p with respect to ��� � then for � � 	 and su�ciently
small the control u� of proposition ��
� remains an ASFC for the perturbed
system� Indeed� v is a homogeneous Lyapunov function for the controlled
system ������ with trajectory derivative �v 
 	 on the compact unit sphere
Sn�� 
 Rn� Thus for � � 	 small� �v 
 	 on Sn�� for the perturbed system�
and by homogeneity� �v is negative de�nite�

If the restriction that the ASFC be homogeneous is removed� the proof of
proposition ��
�� with no essential changes� yields a proof of

Proposition ����� Let p�� � � � � pn�� � 
 be odd integers� Then for any odd
integer p � 
� the system

�y� � u� �y� � yp�� � � � � � �yn � y
pn��
n�� �����

admits an ASFC of the form u��y� � ���vy��y��
p where v�y� � �
	��yTQy

with Q positive de�nite� However� u� need not be homogeneous�

System ������ and system ����� of proposition ���	� can readily be trans�
formed to �triangular systems� with the coordinate change given in the proof
of proposition ��
�� Results on continuous ASFC for triangular systems can
be found in 
����

Example ����� On R�� consider the system

�y� � u� �y� � y�� �y� � y�� � i�e� X�y� � y�
�

�y�
� y��

�

�y�
� Y �

�

�y�
�

Relative to the dilation �r� � r � �
� 
� ���X�y� � X����y�� i�e�� is homogeneous
of degree 
 while Y � Y ���� This is a system of the form �
�
����� with k � 	�
m � 
� By theorem ���� it does not admit an ASFC u� 	 P� of the form
���������� However� by proposition ��
�� it does admit a linear ASFC u�

of the form u��y� � ���Y v��y�� with v a positive de�nite quadratic form�
However u� is not homogeneous with respect to �r� �

Remark ����� For further work on homogeneous� a�ne systems which
admit an ASFC but do not admit a homogeneous ASFC� see 
�	��
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Example ���	� �Cubic integrator on R��� Let X�y� � y��
�
�y�

� y��
�
�y�

�

Y � �
�y�

� Then Y �	�� �ad�Y�X��	�� and �ad��ad�Y�X�� X��	� are linearly

independent and of types �
�	�� ���
�� ����� respectively� Theorem ��� applies
with m � 	� k � ��� i�e�� the line through the point �
�	� with slope
�� is as desired� The weight assignments wtX � ��� wtY � 	 shows
each of the above brackets has weight one� so �r� has r � �
� 
� 
�� while
X�y� � X����y�� Y � Y ��� are homogeneous of the indicated degrees with
respect to �r� � Theorem ��� applies but lemma ��� gives the sharper condition
�k � � � �pq � p � 
�� The possible values of p� q are then p � �� q � �
or p � 
� q � �� For p � �� q � � one would have v 	 P� �a positive
de�nite� quadratic form� and proposition ��
� assures the existence of an
ASFC u� 	 P� of the form u��y� � ����Y v��y���� For p � 
� q � � one
would have v 	 P	 and seek an ASFC of the form u��y� � ���Y v��y�� The
existence of such a v 	 P	 is an open question�

Remark ����� In the case of the linear regulator� or p � 
 in system ������
the associated HJB equation ����� becomes ���vy��y��

��
Pn

j�� yj��vyj �y� �

�h�� �y� and this has a positive de�nite solution v 	 P� for arbitrary� positive
de�nite� quadratic form h�� 	 P�� For odd p � �� this is no longer the case!
Indeed� consider the case n � �� p � � in ������ The HJB equation �����
becomes ���vy��y��

	 � y��vy��y� � �h�	 �y�� Suppose one chooses h�	 �y� �
y	� � y	� � Then the most general� positive de�nite v 	 P� has the form
v�y� � ay�� � by�y� � cy�� � a� c � 	 and ac � b�	� � 	� Substituting into
the HJB equation with h�	 as above readily shows one cannot solve for
a� b� c �subject to the above restrictions� to yield a solution� Here a positive�
de�nite solution v� in the viscosity sense� will exist for any h�	 	 P	� but
v 	 P� only occurs for special h�	 	 P	� tu

The purpose of the next example is to illustrate that the necessary condi�
tions of theorem ��� for the existence of a smooth ASFC of the form ���������
are by no means su�cient�

Example ���
� �Coron 
���� On R�� let Y � �
�y�

� X�y� � �y�� � ��y� �

y��
�y��

�
�y�

� ��y� � y��
� � ��y� � y��y

�
��

�
�y�

�

Then Y �	�� �ad�Y�X��	�� 
�ad�Y�X�� �ad�Y�X���	�� �ad��ad�Y�X�� X��	�
are the relevant� nonzero brackets� they span R�� and are� respectively� of
types �
�	�� ���
�� ������ ������ Theorem ��� applies with m � 	� k � ��
and all four of the above points lie on the line through the point �
�	� with
slope �� in �gure 
� The weight assignment wtX � ��� wtY � 
 shows
X�y� � X����y�� Y � Y ��� relative to the standard dilation �r� � r � �
� 
� 
��
Then� as in example ��

� the choices p � �� q � � giving 
 � � or p � 
�
q � �� 
 � � may be used in lemma ��� and the necessary conditions of
theorem ��� are satis�ed� This example satis�es the Brockett necessary
conditions� 
��� but not the Coron necessary condition� 
��� for the existence
of a continuous ASFC� Thus for p � �� q � � there is no v 	 P� such that
u��y� � ����Y v��y��� is an ASFC or for p � 
� q � �� there is no v 	 P	 such
that u��y� � ���Y v��y� is an ASFC� For example� with p � 
� q � �� this
means the HJB equation ���� i�e� ����Y ���v��y��� � �X���v��y� � �h�
 �y�
has no positive de�nite solution v 	 P	 for any positive de�nite h�
 	 P
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but for every h�
 � it does have a positive de�nite viscosity solution v� �See

��� 
����

���� �r� Feedback equivalence

Let W �k��x� �
Pn

j�� aj�x�
�
�xj

be a vector �eld� homogeneous of degree k

with respect to a dilation �r� � in the local coordinates x for Rn� A di�eomor�
phism � � Rn � R

n� say x � ��y�� ��y� � ����y�� � � � � �n�y�� transforms
W �k��x� into ���

�
�y�W �k����y��� which we denote by �T�W

�k���y�� A nec�
essary and su�cient condition that � �preserve homogeneity�� i�e� that
�T�W

�k���y� be homogeneous of degree k with respect to �r� in the new
y coordinates is that �i 	 Pri � i � 
� � � � � n� �See 

� for this and fur�
ther such results�� Thus the �r� feedback equivalence group for a system
�y � X���k��y� � uY ����y�� where homogeneity is relative to �r� � consists of
coordinate changes by di�eomorphisms y � ��x� � ����x�� � � � � �n�x�� with
�i 	 Pri and feedback u � ��y� � ��y�� where � 	 P��k � � 	 P� and �
is a new control� Theorem ��
 shows that a necessary condition for system
����� to admit an ASFC u� of the form ��������� is that �r� � ��� � The di�eo�
morphism subgroup which preserves homogeneity relative to ��� is just the
group of linear di�eomorphisms� i�e� x � My� M 	 G
�n�R�� The following
questions now arise� What are the ��� feedback equivalent systems to the
odd power integrators Are there systems which satisfy the necessary con�
ditions of theorem ��
 which are not in such an equivalence class Do any
such systems actually admit a smooth ASFC of the form ��������� 

Let X�y�� Y � �
�y�

be the vector �elds for pth power integrators given

in ������ p � � odd� M 	 G
�n�R� and y � ��x� � Mx the coordinate
di�eomorphism� The systems which are in the ��� feedback equivalence class
of ����� have the form �x � V �x� � �W where

V �x� � M��
X�Mx� � up�Mx�Y �� W � cM��Y� c �� 	� up 	 Pp �����

and � a new control� The �nal two questions� above� are answered by

Proposition ����� Let p � � be odd� a� e � 
� with a odd� e even� such
that a� e � p� We consider the system with

V �x� � �xp� � xa�x
e
��

�

�x�
� � � �� �xpn�� � xan��x

e
n�

�

�xn
� Y �

�

�x�
� �����

System ����� is not in the ��� feedback equivalence group of the pth power
integrator ������ System ����� admits an ASFC of the form ���
	���� where
v�x� � �
	��xTQx� Q positive de�nite� is a solution of an HJB equation of
the form ������

Proof� Clearly V is homogeneous of degree one with respect to ��� � Y
is homogeneous of degree zero� To show ����� is not in the ��� feedback
equivalence class of ������ it su�ces to take the case n � �� With X� Y as
given in ������ calculation using ����� easily shows there is no M 	 G
���R��
c �� 	 and up 	 Pp such that one can transform system ����� to system
������ The proof that system ����� admits an ASFC of the form ���������
with v�x� � �
	��xTQx is given in appendix 
� as remark A
� following the
proof of proposition ��
�� tu
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Appendix �

Proof of Proposition ����� For notational ease in the induction proof
to follow� it is convenient to make the variable change in ������ yn � x�� � � � �
y� � xn��� y� � xn� This gives the system

�x� � xp�� � � � � �xn�� � xpn� �xn � u� Y �
�

�xn
� �i�

For n � 
� v�x�� � �
	��x��� u��x�� � ���Y v��x���
p � �xp� � and

h�p���x�� � xp��� su�ce�

For n � k� assume v�x� � �
	��xTQx� Q positive de�nite� and u��x� �
����vxk�x��

p are such that

k��X
j��

xpj��vxj �x�� ���vxk�x��
p�� � �h�p���x� �ii�

where h�p�� 	 Pp�� is positive de�nite� i�e�� that v is a Lyapunov function
for the system with control u�� This will then also be true if �� is replaced
by any � � ��� Since vxk is a linear function� let vxk�x� �

P
cixi� Note

from �ii� that�

If vxk�x� � 	 for some x �� 	� then
k��X
j��

xpj��vxj �x� 
 	� �iii�

Next� consider system �i� with n � k�
� Make a linear variable change in
only the last coordinate� i�e�� let z� � x�� � � � � zk � xk� czk�� � xk��� c � 	
to be chosen� This gives the system

�z� � zp� � � � � � �zk�� � zpk � �zk � cpzpk��� �zk�� � u �iv�

where �
	c�u has been renamed again as u� Let

w�z�� � � � � zk��� � v�z�� � � � � zk� � �
	���vzk�z� � zk���
��

Then w is a positive de�nite� quadratic form� wz� � vz� ��vzk �zk���c�� � � � �
wzk � vzk � �vzk � zk���ck and wzk�� � �vzk � zk���� We next show that w
is a Lyapunov function for �iv� with control u��z� � ���wzk���z��

p� � � ��
to be chosen� Calculating the �trajectory derivative� �w gives

Pk��
j�� z

p
j���vzj � �vzk � zk���cj�

� cpzpk���vzk � �vzk � zk���ck�� ��vzk � zk���p���
�v�

The expression �v� is homogeneous of degree �p�
� with respect to ��� hence
if it is negative on the unit sphere Sk 
 Rk��� it is negative de�nite and
equal to some �h�p�� 	 Pp��� h

�
p�� positive de�nite�

�a� If z 	 Sk is such that vzk �z�� � � � � zk� � �zk�� � 	� �v� becomesPk��
j�� z

p
j��vzj which is negative by �iii��
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�b� If z 	 Sk is such that vzk � �zk�� �� 	� �v� becomes
Pk��

j�� z
p
j��vzj �

cpzp��k��� Hence for c � 	 su�ciently large� expression �v� can be made

negative on the compact zero set of �vzk � zk��� in Sk and therefore �v�
is negative on an open neighborhood� U � of this set� Then there exists a
#c � 	 such that �vz � zk���

p�� � #c on the compact complement of U in Sk�
and by choosing � � �� su�ciently large� the last term on the right of �v�
dominates to make the expression �v� negative on Sk � U �

The required quadratic form for system �i�� with n � k � 
� is then
w�x�� � � � � xk� �
	c�xk���" the ASFC is u��x� � ��c�wzk���

p and the induc�
tion step is complete� tu

Remark ����� The proof of the existence of an ASFC for system ��	��
proposition ���	� follows exactly as the proof of proposition ���	� above�
except for expression �v� which now becomes

Pk��
j�� �z

p
j�� � zaj��z

e
j ��vzj � �vzk � zk���cj�

� �cpzpk�� � cazak��z
e
k��vzk � �vzk � zk���ck�� ��vzk � zk���

p���
�v��

Now� as in the previous proof� if z 	 Sk is such that vzk�z� � �zk�� �� 	�
from �v�� one gets

k��X
j��

�zpj�� � zaj��z
e
j �vzj �z�� cpzp��k�� � caza��k��z

e
k �

But �p�
� is even� �a�
� and e are even� hence the result follows as in the
previous proof� tu

The author would like to acknowledge the many suggestions� comments
and needs for corrections on the �rst version of this paper� made by an
anonymous referee�
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