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THE CAR WITH N TRAILERS: CHARACTERISATION OF
THE SINGULAR CONFIGURATIONS

FREDERIC JEAN

ABSTRACT. In this paper we study the problem of the car with n trailers.
It was proved in previous works ([9], [12]) that when each trailer is
perpendicular with the previous one the degree of nonholonomy is Fr 43
(the (n 4 3)-th term of the Fibonacci’s sequence) and that when no two
consecutive trailers are perpendicular this degree is n + 2. We compute
here by induction the degree of non holonomy in every state and obtain
a partition of the singular set by this degree of non-holonomy. We give
also for each area a set of vector fields in the Lie Algebra of the control
system wich makes a basis of the tangent space.

1. INTRODUCTION

A car with n trailers is a nonholonomic system; it is, indeed, subject to
non integrable constraints, the rolling without sliding of the wheels. The
configuration of the system is given by two positions coordinates and n + 1
angles. There are only two inputs, namely one tangential velocity and one
angular velocity which represent the action on the steering wheel and on the
accelerator of the car.

The problem of finding control laws was intensively treated in many pa-
pers throughout the literature: for instance by using sinusoids (see the works
of Murray, Sastry and alii [11], [15]) or from the point of view of differen-
tially flat systems (introduced by Fliess and alii [3]).

In general the study of such systems (to prove controllability, to find con-
trol laws, ... ) involves tools from nonlinear control theory and differential
geometry. In particular an important concept for such problems is the de-
gree of nonholonomy, which expresses the level of Lie-bracketing needed to
generate the tangent space at each configuration. This degree comes up for
instance in estimation of the complexity required to steer the system from
a point to another (see [7], [2]).

Laumond ([6]) has presented a kinematic model for the car with n trailers
in 1991 and has proved the controllability for this model. He has also proved
that the degree of nonholonomy of the system is bounded toward the top
by 27*!. Sgrdalen has afterwards proved in [12] that, when no two consec-
utive trailers are perpendicular, this degree is equal to n 4+ 2. The system
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242 FREDERIC JEAN

Ficure 1. Model of the car with n trailers.

configurations corresponding to such cases are called the regular points of
the configuration space (see [1], [8]).

More recently, it has been proved that the degree of nonholonomy is
bounded by the n + 3-th Fibonacci number ([13]) and that this bound is a
maximum ([9],[10]) which is reached if and only if each trailer (exept the
last one) is perpendicular to the previous one.

To close definitively the problem, we still have to study the non regular
points for which the maximum degree of nonholonomy is not reached. For
the car with 2, 3 and 4 trailers, a complete classification of the singularities
has already been done in [4]. The goal of our paper is to extend this classi-
fication to any number of trailers. Let us note that some results given here
have already been presented without proof in [5].

In Section 2 of this report, we are going to write equations, give defini-
tions and notations and construct an induction procedure. Section 3 groups
together the main result of this paper, Theorem 3.1, and some conclusion
on the form of the singular locus and on the degree of nonholonomy. Section
4 is devoted to the demonstration of Theorem 3.1, but the proof of some
technical lemmas are relegated to the appendix.

2. EQUATIONS AND NOTATIONS
2.1. CONTROL SYSTEM

In this paper we are going to use the same representation as Fliess [3]
and Sgrdalen [12] for the car with n trailers. A car in this context will
be represented by two driving wheels connected by an axle. The state is
parametrised by ¢ = (z,¥, o, ...,0,)" where:

e (z,y) are the coordinates of the last trailer,

e 0, is the orientation angle of the car with respect to the z-axis,

e §;, for 0 <7< n—1,is the orientation angle of the trailer (n — ¢) with
respect to the z-axis.

Esaim: Cocv, OCTOBER 1996, VoL. 1, pp. 241-266



THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 243

The kinematic model of a car with two degrees of freedom pulling n
trailers can be given by:

z = cosby vy,

U = sin#fy v,

A .

00 = R Sln(01 — 00) U1,

] — 1 ; . .

02 — Ri+1 (02—|—1 02) Vit1,
. _

071—1 = Rn Sln(en - en—l) Un,s
a,, = wy.

where R; is the distance from the trailer (n — ¢) to the trailer (n — 174 1),
wy, is the angular velocity of the car and v, is the tangential velocity of the
car. v, and w, are the two inputs of the system.

The tangential velocity v; of trailer n — 7 is given by:

e
v; = H cos(8; —6;_1)v,
j=i+1
Let us denote: .
fi = Tjziq cos(6; = 01),
vy = flvg, 1=0,---,n—1.
The motion of the system is then characterized by the equation:

G =wn X7(q) + v, X3 (q)

with
Xp = 55
Xy = cosby [ +sinby fi2 55 T Mfl 300t (2.1)
o et

We will suppose that the distance R; doesn’t depend on ¢ and to simplify
we shall, from now on, consider it equal to 1 (we will come back to this
hypothesis in Subsection 3.4).

2.2. CHARACTERIZATION OF THE SINGULAR LOCUS

We are going now to define the singular locus of the control system
{X7, X7}, and give a characterization of this locus easy to use.
In this section n is fixed and we write X; and X instead of X7 and X7.

Let £1(X1, X3) be the set of linear combinations with real coefficients of
X1 and X;. We define recursively the distribution £y = L (X1, X2) by:

Lr=Lia+ Y [Li L)
i+j=k
where [£;, £;] denotes the set of all brackets [V, W]for V € L; and W € L;.
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244 FREDERIC JEAN

Thus Lj, is the set of linear combinations of iterated Lie brackets of X3
and X5 of length < k. The union £ of all £ is a Lie subalgebra of the Lie
algebra of vector fields on R? x (S')"*!. It is called the Control Lie Algebra
of the system { X, X5}.

Let us introduce some notations. For s > 1 denote by i = (i1,...,%5) a
sequence of s elements in {1,2} and by A, the sets of these sequences such
that ¢;y = 1if s > 1, that is:

A ={(1),(2)},
-/45:{1(:)((17)2.27---77;5)|ij:10r2} if s > 1. (2.2)

The functions u(z) and d(z) indicate respectively the number of occurences
of 1 and the number of occurences of 2 in the sequence ¢ = (¢1,...,15), and
the length of the sequence is |i| = s. Obviously we have u(z) + d(z) = [1].

The vector field [[...[X;, X4, ], ..., X;,_,], X;.] will be denoted by [X;] or
[Xi,,..., X;.] and its value in ¢ by [X;],. By using the Jacobi identity, we
can write a bracket of length < k (i.e. belonging to Lj) as a sum of [X|]
with |7] < k.

Moreover, because of skew symetry of Lie bracket, [X;] = 0 if ¢; = 19
and [Xg, Xip,y ..., Xi] = —[X4,, Xo, ..., Xi,]. Then Ly is generated by the
brackets [X;] such that i € Ay, for 1 <s < k.

For a given state ¢, let Li(q) be the subspace of T,(R* x (S')"*!) wich
consists of the values at ¢ taken by the vector fields belonging to L. We
have an increasing sequence of dimensions:

2=dim Li(q) <---<dimLy(¢) <---<n+3. (2.3)

If this sequence stays the same in an open neighbourhood of ¢, the state
q is called a regular point of the control system; otherwise, ¢ is called a sin-
gular point of the control system (see [1]). Thus the sequence (2.3) at any
state ¢ allows to characterize regular and singular points, i.e., the singular
locus.

To determinate the sequence (2.3), we define, for i € {1,n + 3}:

{ B (q) = min{k | dim Ly(q) > i}
di(q) = min{d | dimspan( [X;],, |j| < B7(q), d(j) < d) >}

In other words, the fact that k = 37(¢) is equivalent to:

dim L >
{dimLZE(i)(q) < i (2.5)

(2.4)

The sequence (2.3) can be deduced from the 57 (¢q)’s, i =1,...,n+ 3, by:
o if 37 € {1,743} such that k = 87 (¢), then dim Ly(q) is strictly greater
than dim Lg_1(¢) and equal to the greatest j such that 37(q) = &,
e otherwise dim Ly(¢q) = dim Lx_1(q).
Thus the functions 8*(q), ¢ = 1,...,n + 3, characterize completely the
singular locus. Hence the paper is devoted to the calculation of these func-

tions. Notice that the functions d?(¢) are not useful in the characterization
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THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 245

of the singular locus, they are only a tool for the computation of the func-
tions 37 (q).

To simplify we will omitt the dependence on ¢ in 5 (¢q) and d}(¢). Accord-
ing to its definition, 87 increases with respect to ¢, for ¢ lesser than dim L(q)
(when 7 is strictly greater than this dimension, 3 is equal to —o0). We
will prove in this paper (in Theorem 3.1) that this sequence is strictly in-
creasing with respect to ¢ for 2 < 7 < n 4+ 3, which means that, for any
k, dim L(q) — dim Lx—1(¢) < 1. In other words, we will prove that, for
2<i<n+3, k=p"Iis equivalent to (compare with (2.5)):

dim L = 1
{ dim LZE?((]) = i—1 (2.6)

We can yet calculate the first values of these sequences.

- L1(q) is two dimensionnal for all ¢, and 5} and 35 are equal to 1. To
span a two dimensionnal linear space we need both X; and Xy whereas
for a one dimensionnal linear space X is sufficient. Then d} = 0 and
dj = 1.

- Ly(q) is generated by the family Xy, X3, [X1, X2] which is three di-
mensional for all ¢ (it is clear from Formula (2.1)), so 85 = 2. Moreover
it is not possible to find another three dimensionnal family of vector
fields which contains “a fewer number of 2”7, then d% = 1.

Finally, for all state ¢:

gr=1 dr=0
gr=1 dp=1 (2.7)
gn=2 do=1.

2.3. INDUCTION PROCEDURE

For ¢ € R? x (SH)"*! and 1 < p < n, we will denote by ¢? the projec-
tion of ¢ on the first (n+3 —p) coordinates, that is ¢ = (z,y,6p, ..., 0,_,)%.

Let us consider now the system of a car with n — p trailers. The states ¢’
belong to R* x (S')"~P*! and the control system {X'"%, X; 77} is given by
Formulas (2.1) with n — p instead of n, that is:

n—p __ &l
Xy =
X27P =cosby fP L sinby [P L 4o f P4t —

2 - 0Jo Bz 0Jo By 11 36, n=p 36

n—p—1

where ¢, = cos(0,,,—0,,-1), S = sin(0,,—0,,_1) an = Cip1 " Cpep.

Hence for any ¢’ we have the sequences $7 "(¢') and d;""(¢), j =

1,...,n — p+ 3. The dimensions of the spaces Ly(X;" ", XJ7")(¢), k > 1,
are Characterlzed by the sequence ﬁ] P(q).

On the other hand, X;7" and X, 7% can be seen as vector fields on R? x
(S')"*+! whose last p coordinates are zero and which values at ¢ depends only
on the projection ¢?. We can then consider £(X{ ™", XJ7") as a subalgebra
of L(XT], XT).
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REMARK 2.1. The motion of a point ¢’ € R* x (S")"7P*+! is characterized
by an equation ¢’ = u1 X|"""(¢') + u2 X, "(¢'), and so depends only on the
state ¢’. On the other hand, the motion of the point ¢* is given by the
projection on the first » — p coordinates of the motion equation of ¢: then
the motion of ¢” depends on ¢ and not only on ¢P.

According to Formulas (2.1), we can write X} as:

X; = SnX?_l + Cnsn—lX?_2 +- e, 'Cn—p—I—QSn—p—I—le_p + (28)

n—p
+Cpn - 'Cn—p—I—QCn—p—I—lXQ

where ¢, = cos(0,, — 0,,—1) and s, = sin(0,, — 0,,—1).

With this relation, for 1 < p < n — 1, we will be able to express a vector
field in £(X7,X7) in function of X7, ..., X77"*! and of vector fields in
LXTT0 X0,

For instance, for p = 1, we have:

XP = s, X e, X!
(X7, X5 = e, X7t = s, X071 (2.9)
X7 X5 X5] = =X+ G X

Hence £(X}, X5) is equal to £(X]™! X071 @ (X]), where (X]) is the
subalgebra generated by X{. Formula (2.8) allows to describe the projec-
tion of L(X},X3) on L(XP™ X571, We will see for instance that the
projection of L (X}, X5) is Lp_1 (X771 X071,

The induction will be done in the following way: we will assume that the
functions 377" (¢") (j = 1,...,n—p+3) are known for any p < n and, by us-
ing the relation (2.8), we will calculate the dimensions of the Ly (X7, X7)(q),
and so the 87'(q)’s (i = 1,...,n + 3), in function of the 577" (¢?)’s.

From now on the dependence on ¢ or ¢” will be omitted if there is no
possible confusion; for example we will write 37 instead of 87 (¢) and ﬁ;_p

instead of 377" (q?).

3. SINGULAR CONFIGURATIONS
3.1. EXPOSITION OF THE RESULT

In this chapter we present the main result of this paper, Theorem 3.1,
which gives the recursion formulas satisfied by the sequence of functions 3”.
The proof of the theorem is given in Section 4.

Let us introduce a sequence a, by:
=1 (3.1)
a, = arctansin a,_1.

This sequence is clearly positive and decreasing, that is: 0 < a, <  for
p > 1. Notice that the recursion relationship is odd, that is if we define an
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THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 247

other sequence a,; by the same recursion relationship and the initial value

- __x - —
ay = —35, we have a; = —a,.

Let us define also some brackets [A™(5,d)] (8 > dor f =d =1) by:
[A"(1,0)] = X7
(r(] = X )
[A"(8,d)] = [X{, X5, ... X3, X{, ..., X]'] for3>2 :
d B—d—1

From this definition we can see that the bracket [A™ (53, d)] is of length 5 and
that XJ occurs d times in it.

With these notations, we have:

THEOREM 3.1.
Vg € R* x (SH"*L) for 2 < i < n+ 3, 87 is streactly increasing with

respect to 1, and we have d}! = ?_—11.

We can calculate the functions 37 (q) by the following induction formulas,
for i€ {3,n+3}:
L. If6, -0, 1 =x3, then:

n _ an—1 n—1
ﬁi — Mi—1 —I_di—l'

2. If3p € [1,n — 2] and € = %1 such that 0y — 0x_1 = cay_, for every
ke{p+1,n}, then:

Bt = Qﬁ?—_f - d?—_f-
3. Otherwise,
Bl =80+ L

Moreover, a basis B" = {B?,i = 1,...,n+ 3} of T,(R? x (SY)"*1) is
given by:

B =[A™(5}, d})], (3.3)

AR
3.2. FORM OF THE SINGULAR LOCUS

Let us study the sequence 3" = (57)i=2,. .nt+3 (We remove 7 because
it is always equal to 55). The level sets of this sequence give a partition
of the configuration space. For example, Figure 2 shows us the partition
obtained for n = 3. Since each area is a cylinder with respect to the di-
rection #y — fy, we have just shown the projection of these cells on a plane
01 — 89 = constant. The complement of the four lines are the regular points
of the system and corresponds to the values (1,2,3,4,5) of the sequence /3°.

For n > 3, let ¢ be the projection of ¢ on the first n+1 coordinates. Theo-
rem 3.1 allows us to calculate the values of 3" (q) in function of 3772 (¢%). We
illustrate it in Figure 3, where we represent the set of points ¢ = (¢%, 0,1, 6,,)
wich have the same projection ¢2.
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Let us consider now a point ¢ such that 6y — 0x_y # £7 for k =2,...,n.
It is clear (for instance by looking at Figures 2 and 3) that there exists a
neighbourhood of ¢ in which the sequence 3" is constant. Conversaly, if there
is an integer k, 2 < k < n, such that 8 —6,_; = =7, such a neighbourhood
doesn’t exist. Then we have determined the regular and singular points (see
also [12] and [1]).

?93' 0,
3 (1,2,3,4,6)
i
n

- T (12347
0wy 66

- Ty ~ | 12345)

7, <

3(1,2,3,5,8) (1,2,3,5,7)

FiGURE 2. Partition of the configuration space (n = 3) by
the values of the sequence (33, 53, 53, 82, 83).

en_ enlA en_ enlA
B G B
s T,
A E
E——m, i a '{
_ TC/2 _ TC/2 HM p+2 4
”””””””””” 0  m e.,-6, | 0 |ay [me, -6,
m, -1, oyt P
- T | N - T,
5 C b C
q2 in case 3 q2 in case 1 or 2

A Bl = ﬁ?—_zz +2 B:pg = ﬁ?—_zz + d?—_22 +1
C:pp =267 +1  D:ff =205 +d

E: 5= ﬁ?—_zz + Qd?—_zz Fpt = 2@?_‘22 - d?—_22 +1
G:pr =301 —diT) H:pp =367 —2d77)

FicUure 3. Cells of the subset (¢%,6,_1,6,).

Esaim: Cocv, OCTOBER 1996, VoL. 1, pp. 241-266



THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 249

THEOREM 3.2. The singular locus of the system is the set of the points for
which there exists k € [2,n] such that 0y — 0p_y = 7.

3.3. APPLICATION TO THE DEGREE OF NONHOLONOMY

The degree of nonholonomy of the system at a point ¢ is the degree from
wich the sequence (2.3) is constant, that is the degree r such that:

Lr-1(q) G Li(q) = Lrya(q) = --- = L(q).

With our notations, this degree r is given by the greatest 57, for : < n4-3.
Thus Theorem 3.1 implies that the degree of nonholonomy of the system is
equal to 37, 5 at any point ¢, and then the rank of the Control Lie Algebra
at any point is n 4 3.

Let us recall the Chow theorem (also called the Lie Algebra Rank Con-
dition): if the rank of the Control Lie Algebra at any point ¢ of the config-
uration space is equal to the dimension of the tangent space in this point,
the system is controllable (see for instance [14]).

This condition is satisfied here, therefore the system is controllable. We
are meeting a classic result, wich was first proved by Laumond in 1990 ([6]).

By using Theorem 3.1, we can study the function 37,5 and find some
other results about the degree of nonholonomy (these results were already
proved in [12],[13], and [10]):

THEOREM 3.3.

(i) At a regular point, that is a point such that 0, — 0,_1 # £5 for every
k € [2,n], the degree of nonholonomy of the system is n + 2.

(i) The mazimum of the degree of nonholonomy is the (n+3)-th Fibonacci
number F,ys (recall that the Fibonacci sequence is defined by Fy = 0,
=1, Foya = Fop1 + F,), and this mazimum is obtained if and
only if all the trailers are perpendicular (except the last one), that is if
Op — Op—1 = =5 for every k € [2,n].

ProoF.

This theorem is obtained by applying the recursion formulas of Theorem
3.1 and by using the values for n = 0 given by Formula (2.7): g =2 = F}
and df =1 = Fj.

|

Hence we see that n +2 < 87,3 < F,y3. Moreover, for n <4, 87,5 can
take all the values from n+ 2 to Fj,43, but this property is no more true for
n > 4.

3.4. CASE WHERE THE DISTANCES BETWEEN THE TRAILERS ARE NOT
ALL EQUALS

We have assumed (see Subsection 2.1) that the distance R; between the
trailer (n —¢) and the trailer (n — ¢4 1) is independent on 7 and equal to 1.
If we remove this hypothesis, the result is the same as Theorem 3.1, except
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that we have to replace the case 2 by:
2 bis.If dp € [1,n — 1] such that 0y — 01 = car_p,(p) for every k €
{p+1,n}, then:
Bl = Qﬁ?—_f - d?—_ll
where the sequence ai_,(p) is defined by:

al(P) — 92
ap—p(p) = arctan(R]:il sinag_p,—1(p)), for k>p+1.

The proof of this result is similar than the one of Theorem 3.1, but requires
more notations. Therefore we don’t give it in this paper. The difference with
the case R; = 1 is that the sequence of angles wich gives singularities de-

s

pends on p. For instance, if R,4yo # R,11 = Ry, az(p — 1) is equal to §
whereas az(p) is not.

4. PROOF OF THEOREM 3.1

In this chapter, n > 1is fixed. The proof is organized as follows: in a first
time, we study the relationships between the Lie Algebra for the n-trailers
system and the Lie Algebras for the systems with less than n trailers. In a
second time we use these relationships to establish the induction formulas
for the functions 87 (¢). The main point of the proof is the first part, that
is Lemma 4.1. This kind of proof is inspired by [10].

4.1. PRELIMINARY RESULT

We have seen in Subsection 2.3 that, for 2 < m < n, a vector field in
L(X7], X7) can be decomposed in a linear combination (with functions as
coefficients) of X7, ..., X"*! and of vector fields in £(X]*, X*). Lemma
4.1 gives such a decomposition and allows to conclude, in some particular
cases, on the nullity or non nullity of the decomposition coefficients.

We will denote, for m < n:

©m = 0m - 0m—1

Cm = COSQm (4.1)
Sm = SN, )
ty = SN Qg — COS .y, sin @, 1.

LemMa 4.1, Let p, 1 <p<n—1andi € Ay, i # (1) (the sets A; are
defined in Formula 2.2). Then there exist functions hy(@n—pt1,--Pn),
n—p+1<k<n—1and fi(pp—ptis...,¢n) in C(S?) depending on i
such that:

n—1 d
XPT= D mXi+) D AIXT
k=n—p s=1 €A,
where d = max{1,d(i) —p+1}.
Moreover, if |i| > p+ 1, then:
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THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 251

1. we have:
Jo= 3 (enmpt) O (tampi2) 7 (1) gy (42)
bely
where the functions gy ((Pn—pti,-..,9n) € epend on b,l an
h h ] b1 (Pr—pt ©® C>(8%) d d b,l and
i and the set I} C ZPT' satisfies:

P
ILC{b=(bo,-yby) [d(l) =bo > -~ > b, >0, Y b; < i = [I3;
1

j:
2. if b € I is such that b, = 0, then Zf;i by < d(z) —|l|;
3. if we denote by IZ’ the following subset of I;:

p
IF=A{be |y b=Iil -}
7=1
for everyb € I, there exist an integer o, > 0 and a function G(p,_pi1,
L b Prn—p+
<oy n) which depends only on |1, ||, d(2), d(I) and b such that:

91 = 0 Gy il i)d(5),40)

4o af [XP1=[A"(B+ (p— 1)+ 1,8+ (p—1)8)], with >35> r > 1, and
if [X_ln_p] is such that | € Ag and d(l) = ¢, the sequence (0,...,0,r)
belontqs to Il‘" (the definition of the bracket [A™(3,d)] is given by (3.2));

5. ifp=1, |1'|_2 3, and d(3) = |i| — 1, then the coefficient of [Xln_l] such
that [ € Agiy and d(l) = d(2) — 1 is:

filpn) = (ea)™72,

ProOOF. The proof is quite long and technical, so it is done in the appendix
(where the lemma is divided in four parts: Lemmae 5.1, 5.2, 5.3 and 5.4).

The point 3 implies that functions G'(¢,—pt1, ..., pn) doesn’t depend on
the sequences ¢ and [ but only on the length ||, |{| and on the “number of
2”7 in these sequences (namely d(Z) and d(l)). The form of the sequences 7
and [ acts only on the integer oy, and then not on the sign of g, ;. The exact
form of G'(¢n—p+1,-..,%n) is given in Lemma 5.3 but it is not useful here.

REMARK 4.2. It appears from this lemma that the terms c,—p41, th—pi2,
..., ty have a particular part in the decomposition (4.2) (it will be confirmed
in what follows). Thus it is interesting to notice that all of these quantities
are zero if there exists € = £1 such that 8, —0,_; = eay_, fork = p+1,...,n.
In this case, the function f; can be non zero only if there exists b € I; such
that by = -+ - = b, (we set 0° = 1).

4.2. Proor

4.2.1. PLAN OF THE PROOF. We are not going to prove directly Theorem
3.1 but the following proposition, which implies the theorem.

ProOPOSITION 4.3. Let n > 1. Then, for every state ¢ we have:

e (37 increases strictly with respect to i (fori > 1),
[ ] dn f— 7.7‘_11’
K3 =
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o - ifd1 <p<n—1ande==x1 such that p,_py1 = €ay,..., o, = €a,
(a, is defined by (3.1)), then:

ﬁ?:ﬁ?_‘f{-l fori=3,...,p+2
Br=p"0+pdZ) fori=p+2,...,n+3

- otherwise, B = ﬁf__ll +1fori=3,...,n+4+ 3,
o {B" = [A"(8",dM)],,i = 1,...,n+ 3} is a basis of T,(R* x (SH)"*+1)
(the definition of the brackets [A™(53,d)] is given by (3.2)),
e cvery vector [X['] such that i € Apgrn and d(i) = df has a positive
coordinate on the basis vector B (recall that, if t € As and s > 1,

then iy =1 (see (2.2)).

The first four points of this proposition are equivalent to Theorem 3.1
(the induction formulas for 37 are the same but expressed in a different
way). The last point of the proposition is an induction hypothesis required
for the proof and then is omitted in the theorem.

The proof will be done by induction on n. We assume that Proposition
4.3 is true for every m < n, and we will prove that it is true also for n by
proceeding as follows:

- for each ¢ and i we have ”candidates” for 7 and d (given by the
proposition);

- in Lemma 4.5 and Corollary 4.8, we prove that these "candidates” are
less than 8" and d7;

- with Lemma 4.9, we establish that there exists a basis of T,(R* x
(S1)"*+1) formed by vectors the length (and number of XJ') of which
are equal to the ”candidates”, for ¢ = 1 to n + 3;

- by using Lemma 4.7 we prove that 3" and d! are indeed equal to the
?candidates”;

- Lemma 4.10 allows us to establish the last point of Proposition 4.3 and
so to conclude.

The form of Proposition 4.3 implies that we have to distinguish several
possibilities for the state ¢:

e J ¢ =41 such that ¢, = eay,

e dp > 2 and e = £1 such that ¢,_,41 = €ar, ..., 1 = €a,_; and

©n = €lp,
e dp > 2 and e = £1 such that ¢,_,41 = €ar, ..., 1 = €a,_; and

¢ # €a, and # tay,
e such a p > 2 doesn’t exist and ¢,, # +a;.

We can resume these possibilities in two cases:

g€ (a) ifdpe{l,...;,n—1}and,if p>1, Je=+1
such that ¢, # +ay and, if p > 1,

Preptl = €@, ooy Pl = €dp_1, Pn 7 €Qp (4.3)
qge (b)) ifIp, 1<p<n-—1, and € = £1 such that
Gneptl = €A1, ..., Pp = €ayp.
For instance the generic case is ¢ € (a) and p = 1. In this case, ¢, # £7
(since a; = % from (3.1)) and there is no sequence @,_p11,...,9,_1 equal
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to €aq, ..., €cap_y for some ¢ = +£1. Notice also that, in both cases (a) and
(b) the € must be the same for ¢,_py1,..., ¢n.

REMARK 4.4. If ¢ € (b), then the functions ¢;,_p41, th—pt2, ..., ty (defined
by (4.1)) are all zero. If ¢ € (a), then ¢;,_pp1 = t_pyo =+ - =t,—1 = 0 but

t, # 0 and ¢, # 0.

4.2.2. RECALL OF SOME DEFINITIONS. Let us recall here some definitions
used in the proof of Proposition 4.3. For each definition we indicate the

original reference number.
- Set A; (Formula (2.2)):

Ar=1{(1),(2)},
As={t=(1,4g,...,05) |, =1or2}if s > 1

- Sequence a, (Formula (3.1)):

_ T
{ ay 2
@, = arctan sin a,_q

- Brackets [A" (53, d)] (Formula (3.2)):
[A"(1,0)] = X}
[A"(1L, D] = X3
[A"(8,d)] = [X7, X9, X3, X{s .. XT] for > 2

d B—d—1
- The basis B” = {B",i = 1,...,n+ 3} of T,(R* x (S')"*1) (Formula
(3.3)):
Bt =[A"(6, d7)]q

- Functions of ¢,,, for m < n (Formula (4.1)):

Pm = 0m - 0m—1

Cm = COSQm

Sm = SN,

ty = SN Qg — COS .y, sin @, 1.

- Sets [; and ;" (Lemma 4.1):

p
BC b= ooty b= d() > by > > b, > 0,365 < Jil — |1}
7=1

(4.4)

IF={be ] by =il - I} (4.5)

J=1

4.2.3. INEQUALITIES. We are going now to prove some inequalities for d}
and 3, and also some inclusion relationships between linear spaces. We
begin with d7, for which the inequality is the same in all of the cases.

LEMMA 4.5. Let n > 2. Then, for1=2,...,n+ 2, we have:

n n—1
di Z i—1
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Proor. Lemma 4.1, with p = 1, implies that a bracket [.X ] (j # (1)) can
be written:

2 Z filn) [XP71). (4.6)
s=1le

Let d < ﬁn_l. We have:
span( [X[g, [j] < 87, d(j) < d)

IN

span( [X1],, d(j) < d)
= Span< X?v [Xf_l]qlv |l| < d >
C span{ X[ [Xp 0, 1] < 010 )

N

From the definition (2.4) of ﬁZ |, the dimension of the last linear space
is strictly inferior to ¢« Then we have d} > d, which implies d? > ﬁi—l .
|

REMARK 4.6. If we suppose that Proposition 4.3 is true for every m < n,
that implies that d;”"™ increases with respect to ¢. Then, by using the same
kind of proof as in Lemma 4.5, we can see that:

span [Xz_m]q"u d(j) <d!™™ ) Cspan( B{™",....B" ") (4.7)

The relationships for 3] are more complicated because there are different
cases according to the values of ¢ and ¢.

LEMMA 4.7. Letn > 2. Let us assume that Proposition 4.3 is true for every
m < n. Then:

1. ifie[3,...,n+3],

<O and j # (1) = [X]], € spand B BIS )
2. ifge(b)and i €p+2,...,n+3],
I < B +pdiZ) and j # (1)
= [XJ], € span( X7, XYL BITE BT )

We can give a weaker formulation of this lemma:

COROLLARY 4.8. Let n > 2. Let us assume that Proposition 4.3 is true for
every m < n. Then:

1. ifie[3,...,n+3],
> B+ 1
2. ifge(b)and i €p+2,...,n+3],
> B8+ pdiZ).
Proor. The corollary is a direct consequence of the lemma. Moreover, if
lj] < B1= 11, then d(j) < ﬁ?__ll. According to Formula (4.6), the first part of

the lemma is obvious. Thus we have just to prove the second part of the
lemma.
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Let i € [p+2,...,n+ 3] and j (j # (1)) such that [j| < 8777 +pd").
According to Lemma 4.1 the bracket [X7'] can be written:

n—1 d
[X71= > meXP+) > AN (4.8)

k=n—p+1 s=11lc A,

where d = max{1,d(j) — p+ 1}.

If |j| < p+2, then d =1 and [X7], is a linear combination of Xt
X777 BT and By TP (recall (3.3) that B ™" = X["P(¢*) and B} " =
X7 q))-

If |j| > p+2, we are going to prove that, in the sum (4.8), either [X,"""] »

belongs to span( B"",...,B{_” | ), either fi = 0. First Lemma 41 gives
the form of the functions fi(@n—pt1,...,¢n):

fi= Z(Cn—p+1)bo_bl (tn—p+2)bl_b2 T (tn)bp_l_bpgél'
bely

Since ¢ belongs to case (b), the functions ¢,_,11,...,t, are equal to 0 (see
Remark 4.4). Thus, if the function f; is non zero, we have, from Remark
4.2:

bop=by=---=b,=d()
and, by using the definition of the set [; (see (4.4)):
pd(l) < |71 = 1.

Therefore, if |I| + pd(l) > |j], the function f; is zero at ¢.

On the other hand, if a vector [X;""],» doesn’t belong to the space
span{ By ", .. .,Bf__pp_l ), we have necessarily |[| > ﬁf__pp and d(l) > d?__pp

(see (4.7)). Thus, we have:
1 +pdll) > B +pd")

> ]l
Hence the vector [X], is a linear combination of Xt .,Xf_p-l'l and
n—p n—p -
By B

4.2.4. PARTICULAR VECTOR FIELDS. Let us assume that Proposition 4.3
is true for a given m such that m < n. Then it is clear that the vectors
{X7,..., XU BR, ..., B2, 5} form a basis of T,(R? x (S")"*!). On this
basis, the coordinates of a vector X € T,(R? x (S")"*!) are denoted by:

(7 (X)) AT (XD, - vmgs (X))

LEMMA 4.9. Letn > 2. Let us assume that Proposition 4.3 is true for every
m < n. Then:
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1. if g € (b) or (a) and i € [3,...,p+ 2], and if the vector BY is defined
by:

Bf = [A™( ?—_11 + 17@1—_11)]!17
then v (BP) is non zero.

2. ifqg € (b) and i € [p+2,...,n+ 3], and if the vector B is defined by:
B = [A™(B5) + p =), 5770,
then 'yf__pp(Bf) is non zero.
3. ifq€(a) and v € [p+2,...,n+ 3], and if the vector BY is defined by:
BY = [AM(625 + 1, 625,

""P(BP) is non zero.

then ;)

LEMMA 4.10. Let n > 2. Let us assume that Proposition 4.3 is true for
every m < n. Then, with the notation of Lemma 4.9:

L. if g € (b) or (a) and i € [3,...,p+ 2], every vector [X7], such that
lj] = B+ 1 and d(j) = Bl (and jy =1 if 7| > 1) satisfies:
SIS
V5 (B
2. if g € (b) and t € [p+ 2,...,n + 3], every vector [Xz]q such that
jl =82 +pdiZ) and d(j) = BiY (and j; = 1) satisfies:
n—p n
Yicp (X]]
# >0
Pyi—p (le)
3.ifq € (a) and © € [p+2,...,n+ 3], every vector [X?], such that

J

|l| = ﬁf__ll + 1 and d(l) = ﬁf__ll (and j; = 1) satisfies:
(X
Vis, (B
REMARK 4.11. When ¢ € (b), the vector B’ has two different definitions,

P2
namely [A”( ;;ll—l—l, ﬁ;;ll)] and [A™(8y " +pd; ", ﬁ;;ll)] These definitions
are compatible if ;:11 +1 and 85" +pd; " are equal. Let us calculate these
quantities (for ¢ € (b)):

- we know that 357" = d;™" =1 (see (2.7)), then:
By P 4pdy " =p+ 1,
- by hypothesis Proposition 4.3 is true for m < n, then we have:

Thus the two definitions of B”

42 are compatible.

Proor or LEMMAE 4.9 AND 4.10.
We are going to prove both lemmas together, for instance in the case
where ¢ € (a) (recall that the cases (a) and (b) are given by (4.3)). In
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this case, for i < n 4 3, the only vector [X”] such that j € A iy , and

( ) = ﬁf 1 is BP'. Therefore, if Lemma 4.9 is true, Lemma 4. 10 in the case
q € (a) states only that 1 > 0!

By hypothesis, we can apply Proposition 4.3 to ¢! and we obtain:
”_l_dfll—l—l fori=3,...,p+2

{ =0T+ (0= fori=p+2,...,n+3

If + < p+2, the required property is given directly by the part 5 of Lemma
4.1 (recall that, when ¢ € (a), ¢,, # 0 from Remark 4.4).

If ¢ > p+ 2, we proceed as in the proof of Lemma 4.7 and write Bf as:

n—1 ﬁz‘n—_ll
Yoo Xi+ D> Y RIXT

k=n—p+1 s=1 leA;

The coefficient of B” on B! is equal to:

-p
-p
B

Vo) (B = Z D RS X, (4.9)

s=1 I€A.
CLam.
o If|ll < 57, 0rd()<d?pp, then v 0 ([X;7"]) = 0,
o U1+ (p— A > B = B+ (p— 1) A7, then = 0.

Proor oF THE cLAIM. The first point is a direct consequence of the defi-
nition of 37" (2.4) and of Formulas (4.7).
For the second point, we use the part 1 of Lemma 4.1:

fi= Y (Cnmprn) 7" (Lampr2) T2 ()P0 gy (4.10)
bely
Since ¢ belongs to case (a), the functions ¢,,_p41,...,¢,—1 are equal to 0
(Remark 4.4). Thus, if the function f; is non zero, we have:
bo="by=---=by,_1 =d(l). (4.11)

Let us assume that |I|+(p—1)d(l) > 577}, thatis 8/ — |1 < (p—1)d(0).
The definition of I; (see (4.4)) and the part 2 of Lemma 4.1 implie that
SP2lb: < )il = |I] = 1, and so that P71 b; < (p — 1)d(l) (recall that here

'} = |i| = 1). Then, in this case, we can not have the relation (4.11). The
claim is proved.

This claim allows us to reduce the sum (4.9) to

VLB = Y filenpr e en) Y XTD) (4.12)
leA gnep
d(l) = d"pp
CLAIM.
o Ifl € Agn—p and d(l) = A7), then v P([X]"7"]) is non negative,

B P
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o the sign of fi is the same for all | € Aﬁﬁ_p such that d(l) = d!"" (i.e.

t—p p

there exists o = £1 such that, if | € Agn—p and d(l) = d;77, then

t—p —p’
fi=7lfl),

o if [X[""]= B0, then fi(@n—pt1,---,¢n) v, ([X; 7)) is non zero.

PrROOF OF THE cLAIM. The first point is given by Proposition 4.3, which is
true for n — p by induction hypothesis.
A function f; is given by Formula (4.10) and is non zero if and only if

there exists b € I; such that by = by = --- = b,_; = d?__pp and b, > 0, i.e.
if (d727,...,diZF 1) belongs to I} (defined by (4.5)). Then, according to
Lemma 4.1, part 3, if f; is non zero, we have:
d" P
fr= ()" ey Ggnop | gnmr ) pya ($=pts -0 En)

and the sign of this quantity depends only on || (|{| = ﬁ?__pp) and on d(I)

(d(l) = d”)). Therefore, the second point of the claim is proved.
Finally, by definition of the coordinates, v;” "(B; ") = 1 and the part 4 of

Lemma 4.1 implies that (d?__pp7 .. .,d?__pp, 1) belongs to Il'" if (X7 = Bf__pp.

Then the claim is proved.

According to this claim, the terms of the sum (4.12) are of same sign and
non all zero, then v "(BF') is non nul,

4.2.5. PROOF OoF PROPOSITION 4.3. The base case n = 0 is obvious. Let
us suppose that the proposition is true for every m < n and consider for
instance that ¢ € (b).

Lemma 4.7 and Lemma 4.9 imply that, for ¢ € [3,..., p+ 2], there exists
'yf__ll # 0 and W;_; in span{ X7, Bf_l, .. .,B?__Ql ) such that:
By =2 B+ Wi, (4.13)
where B = [A"(B!7! + 1, 751)].

Moreover it is easy to see that:
span( X7, X3, [XT, X3]) = span{ X7, X771, X371)
Therefore, for ¢ € [2,...,p+ 2], we have:
span{ X1, X7, BY, .. ,Bf} = span( X7, Bf_l, .. .,B?__ll ). (4.14)

Let us consider the linear space spanned by X?,XS,BQ, .. .,B;}_l_z. Ac-
cording to the case 2 of Lemma 4.7, it is included in the one spanned
by X7, ..., X77PH O BPTP OBITPand its dimension is p + 2 (from equal-
ity (4.14)). Then:

Span< X?ngv Bgv e -vB;+2> = span< X?v e -7X?_p+17 B?_pv B;_p >
(4.15)

Esaim: Cocv, OCTOBER 1996, VoL. 1, pp. 241-266



THE SINGULAR STATES FOR THE CAR WITH N TRAILERS 259

Fori € [p+2,...,n+3], we use the same reasoning as for ¢ € [3,...,p+2].
We set B = [A" (ﬁn p—l— d:” pp, ﬁz—l )], and we obtain that the linear space:

) .
span( X{,...,X{"* Bl B

is equal to span({ XP,..., X"t Br P o BIZ) | ). Hence, by using

the equality (4.15), we have, for i € [p+2,...,n+ 3]:

span( X7, X7 B%,...,B?

K3

1 _ _
)y =span({ X7,..., X"t pr P LB ).

(4.16)

Finally, from equalities (4.14) and (4.16) we conclude:

e < gt forie[3,....,n+ 3]
gro< B+l forlE[Q,...,p—l—Q]
pr < ﬁ?__pp—l-pd?__pp forie[p+2,...,n+3]

By using Corollary 4.8, we have the values of 37 and d? and the basis
required. Thus we have proved the first four points of the proposition.

For the last point, let @ € [3,...,n + 3] and [XT], such that j € Ag» and

d(j) = d?. Suppose, for 1nstance7 that ¢ € (b) and i € [3,...,p+2]. Formula
(4.13) implies that:

B =7 1(Bn) Bn11‘|‘WZ 1

and Lemma 4.7 implies that there exists W/_, in span{ X", B}™', ..., B!'}')
such that:

[Xf]q = 7?—_11([X£]q) B + Wi

Therefore, the coordinate 'yf([XZ]q) of [Xz]q on the basis vector Bl is

equal to:

72 1 ([XZ] )
72 1 (Bn)
which is > 0, according to Lemma 4.10.
For ¢ € (b) and ¢ € [p+2,...,n + 3], the coordinate v/'([XF],) of [X7],
on the basis vector B is equal to:
vicp (X719
v, (BY)

which is > 0, according to Lemma 4.10.

The proof for ¢ € (a) can be done in the same way. Then Proposition 4.3

is proved.
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5. APPENDIX: PROOF OF LEMMA 4.1

To prove Lemma 4.1, we divide it in three different part, the lemmas 5.1,
5.2, 5.3 and 5.4 and the goal of this appendix is to prove these four results.
We begin by Lemma 5.1, which establish some relationships between the Lie
Algebras £(X}, X5) and £(X7! X571, This lemma gives the part 5 of
Lemma 4.1, and also provide a base case for the next lemma. Such a result
has already been proved in [10].

Let us recall that many notations are gathered in Subsection 4.2.2. In
particular the functions ¢, and s, used in the following lemma are defined
by (4.1).

LEMMA 5.1. Let n > 1 and i # (1). Then there exists some functions
Fi(¢n) € C>(SY) such that:

(X[ = Fy(en) [X771].

Moreover, for [i| > 3, if d(i) = |i] — 1, then the coefficient of [ X'~ 1 such
that [ € Agiy and d(l) = d(z) — 1 is:
Fifipn) = ()0

Proor. We proceed by induction on |i|. For |i] < 2, the result is a conse-
quence of the following formulas (see (2.9):

{ X5 = 5, X' pe, X!
(X, X)) = Xy - s X

With this formulas we can calculate the bracket [Xf] such that ¢ € As
and d(2) = |7] — 1:

(X7, X2 X5 = X7 4 [Xph X))

(5.1)

and verify that the coefficient of [Xf_l, Xg_l] has the required form.

Let us assume now that the lemma is true for |i| = k and consider a
bracket [X7] such that j € Agi1. The sequence j can be written either
(4, 1) either (2,2) and we can apply the induction hypothesis to [X], that
is: B

d(i)

=2 > Aled) X[

s=11lc A,
Thus, if j = (4, 1), we have d(i) = d(j) and:
d(j)
X7 =S ST (7R [
s=11lc A,

Ifl' = (4, 2), by using the expression (5.1) for X7, [X]”] is equal to:

35 (X L4 3 LN e .
s=1 e As s=11lc A,
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Hence [X7] is of the required form. Moreover, if d(j) = [j| — 1, then

Jj=1(,2) and the sequence 1 is such that d(¢) = |7] — 1. A sequence I’ such
that |I'| = d(j) and d(I') = d(j) — 1 is equal to ({,2) and the coefficient of
[X(nl;)l] is:
ol = cn () 072 = (¢,) D)2
| |

We are going now to prove the part of Lemma 4.1 which concern the
bracket of length inferior than p+ 1. This result gives also the base case for
the proof of Lemma 5.3.

LEmMMA 5.2. Let p, 1 < p < n—1and i # (1) such that |7 < p+ 1.

Then there exist some functions hy(pp—pi1,..., ), n—p <k <n—1and
fo(@n—ptis ooy n) in C°°(SP) such that:
n—1
(XP1= > h XP+ 2 X577
k=n—p

Moreover, there exists g(@n—_pt1, ..., en) in C(SP) such that:
o if|i| =p+1 and d(i) = p, then:
Jo=—Sn_pr1nprs - (€)P 2+ Cupia 9,
e otherwise:
fo= Cn—pt+1 9.

ProoOF. We make the proof by induction on p. For p = 1, the result is a
consequence of the formula (5.1). Let us assume now that the lemma is true
for an integer p — 1, and consider i # (1) such that |¢| < p+4 1. Lemma 5.1
implies that:

d(i)
(X1 => ) RIX

s=11€A,;

where Fj = (¢,)¥ D=2 if |[| = d(i) and d(l) = d(i) — 1.

By applying the induction hypothesis (with p — 1) to each [Xl”_l]7 we
have: )

n—2

(X[ = > g XP+ fag X370,

k=n—p

thus [X] can be written:

n—1
[Xgn]: Z Pr(n—ptis- -5 ¢n) Xf"’f?(@n—p-l-lv---v@%) X;_p

k=n—p

where

d(i)
2= Fifag
s=1]eA
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If d(2) < p, every fy;is equal to ¢,,_p41¢9; and then f; can be written ¢,,_p419.

If d(i) = p (and so |i| = p+ 1), then there is a bracket [X;'~'] such that
L€ A, and d(I) = p— 1 and for this bracket: )
Fra FL = (=sn-pr1€npis - (cam1)" ™" + cnmpirgy) ()"
Therefore we have the required properties.
|

We are going now to prove the parts 1, 2 and 3 of Lemma 4.1.

LemMMA 5.3. Let p, 1 <p <n—1andi € Ay such that |i| > p+ 1. Then
there exists some functions hy(@n—pt1,-..s¢n), n—p+1<k<n—-1and
Jil@n—pt1s- -y 0n) in C(SP) such that:

n—1 d
XM= ) e X{+) ) AT (5.2)

k=n—p+1 s=1]cAs
where d = max{1,d(i) —p+1}.

Moreover,

1. we have:

F= Y (enmpt) 7 (fmpy) 70 (1) gy (5.3)
bely

where gy 1 (Pn—piiy---s@n) are in C°(SP) and I; C ZPT' satisfies:
P

1CAb= (b by) [0 = by > > b, > 0, S < Jil — [1]):
=1

2. if b € I is such that b, = 0, then Zf:_ll by < d(i) —|l;
3. if we denote by Il+ the following subset of I;:

P
IF={ben | b=}
=1

then, for every b € Il'", there exist an integer oy > 0 such that the
Junction gy 1(Pr—pt1,-- -+ ¢n) is equal to:

s b Capya e ()7

< (e enmpra) 1 (1) H0
)bp—l -1

Go1 = p (1)

X (CTL .« Cn_p+38n_p-|—1)bl_1 e (_t;’L—l
(st oD (g =01 (5.4

where t! = % and t,, is defined by (4.1).

Proor. We proceed by induction on |].

Base case: |i| = p+ 1.
Lemma 5.2 implies that a bracket [X['] such that i € Ap4q is of the form

(5.2) and that the coefficient f; of XJ " satisfies Condition 1 with:
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- L={1,...,1),(1,0,...,0)}if 2] = p+ 1 and d(3) = p,
- I, ={(1,0,...,0)} otherwise.

These sets verify obviously Condition 2. We can see also that I;' =0in
the second case, I = {(1,...,1)} in the first case and, according to Lemma
5.2, we have:

— -2
9(1,1) = —Sn—pt1Cn—pts ()77

Thus the point 3 is also true.

Induction step: let us assume that the lemma is true for |o] < m (m >
p+ 1) and consider a bracket [X7] such that j € Ay41.

- If jmg1 = 1, that is j = (4, 1) with |i] = m.
By applying the induction hypothesis to [Xf] and using the fact that
[X7] = —X{.[X]], we obtain that [XT7] is equal to:

n—1 d
Y CXTh)XEHY Y XTI
k=n—p+1 s=1]cAs

Since d = max{1,d(i) — p+ 1} = max{1,d(j) — p+ 1}, [X]] is of the

form (5.2). The coefficients of the brackets [X,"""] are equal to —X7.fi.
According to the induction hypothesis, we have:

J1=) (Cnmpr) 7 (b pg2) 72 () gy
>

bely

and then, we can write —X7'. f; as:

D (Cnmpr) T (ampr2) T ()P T (D = 0p) () g +
bely

Y (Camprt) T Hampr2) T () T (<X ).
ben

This coeflicient satisfies Condition 1 since:
bi+-tbpo+ b+ 1) < i =l +1=1j] -1,
and b, +1 < b,y (if b,_1 = by, the corresponding term in (5.5) is zero).

Condition 2 is also satisfied since, from the induction hypothesis, b, = 0
implies that SP71 b; is strictly inferior than d(i) — |I| = d(j) — |I|]. Moreover,
to have by + -+ +bp_1 + (b, + 1) = |l| — |, it is necessary that (bg,...,b,)
belongs to I;", and then (b,_1 —by,)(—t,)gs; is in the form (5.4) and so prop-
erty 3 is satisfied.

- If jmg1 = 2, that is j = (4,2) with [i] = m.

We proceed in the same way as above: we apply the induction hypothesis
to [X /'], which expression is then given by Formula (5.2). Since [X7] is equal
to [X[, X7], we can write it as ¥’ 4 3" where: -
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e Y isthesum,fork=n—p+1,...,n — 1, of the terms:
e X" is thesum, fors=1,...,d and [ € A, of the terms:
o =X XT

For completing the induction step, we have to prove that all the terms
¥}, and X7 are of the form (5.2) (for a length [j] and a “number of 27 d(j))
and satisfy the conditions 1, 2, 3 of the lemma.

Recall Formula (2.8), which states that X7 is equal to:
SnX?_l + Cnsn—lX?_2 +- e, 'Cn—p—I—QSn—p—I—lX?_p‘F
+Cp Cn—p—I—QCn—p—I—lX;_p-

By using this formula, we can expand a term X} in:
n—1
o= Y XX 4 gy
t=n—p+1

where Ry (@n—pt1, -3 Pn)s 91 (Pneptis -« o @n) and gh(@n_pt1s- .., ©n) be-
long to C°°(S?).

This expansion is in the form (5.2). Moreover, the functions g; and g}
are in the form (5.3) with the sets [; = {(0,...,0)} and I, = {(1,...,1)},
so Conditions 2 and 3 are trivially satisfied. Therefore the terms ¥} are of
the required form.

By using again Formula (2.8), we can now expand X, in:

(Af) [Xf_p] +CnCnpr2Snpr1fi [X(nL_lZ))] +Cn e Cnpr2nprifl [X(n;zz))]
5.6)

—~

-1 _9 _
where A = — (san +CnSn1 X{ T 4t e Chpr2Sn—p 1 X p).

Thus X7, can be write in the form (5.2). We denote by f/(¢n—pt1s-- ., ¢n)

the coefficient of [X;7"] in this expression. The only non zero coefficients

are obtained for I’ = [, (I,1) and (I,2). Let us prove that these coefficients
have the required properties.

We are going now to prove that we can associate to every f/ a set fﬂ
of p-tuples which satisfy the properties required by the lemma. Recall that
I; denotes the set associated to the function f; in the decomposition of the
vector field [X[].

Case I' = (I, 1).
According to Formula (5.6), we have: f}, = ¢, -+ ¢ppraSn—py1 fi. Since

7] =[] = |i] = [I] and d(j) — || = d(2) — |I], we set Iy = I and we can check
that Conditions 1, 2, 3 are satisfied.
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Case I' = (1,2).
According to Formula (5.6), we have: fl’_, = Cp - Cp_pt1 f1. In this case
d(l') = d(l) + 1, so we set:

Iy ={b=(bo+1,b1,...,0,) | (bo,-..,b,) € I}

It is again easy to check that Conditions 1, 2, 3 are satisfied (for Condi-
tion 3, notice that II‘J' consists in the (bg+ 1,...,b,) such that (bg,...,b,)

belongs to I;7).

Case I’ = 1.
In this case f, = A.f;. Since XJ* = % = 8<pm + 8@ , the vector
field A (defined by (5.6)) can be written:
J . J . J
Sp, — in —Cplp17—— —
89971 89971—1 ! 89971—2
t + K 0
—CpCppd3lp—pr2 .
? ? 8S‘Qn—p—l—l 89‘971—])
Since fi(@n—pt1;-..,¢n) doesn’t depend on ¢,_,, we doesn’t need the
expression of the function K. The form of the function fi(¢n—pt1,...,¢n)

is given by the expression (5.3), therefore f, = A.f; is the sum, for b € I;,
of: B

(Cnmpt1) 0 T (lr ) 1T (1) P 0
X (bo = b1)en -+ CnprasSu—pr19p
+ (Cnmpt1) T (Enpa) T () P T by — by sl g
+ (Cnmpt1) T (bnpa) T () P TGy, (5UT)

where G 1(@n—p+1, - - -» pn) belongs to C>(SF).
According to this expression, f], can be written in the form (5.3) with the
set:
p

In =10 J{(bo, .., bi+1,...,bp) | (bo, ... by) € [y and bi_y > b;}.
=1

This set jﬂ has the form required in the part 1 of the lemma. Moreover, if
be fll is such that b, = 0, it is obtained from a o’ € I; such that b, = 0, and
then 3071 b4 < d(i) — |I]. Since 32020 b; < PN 0E 41, and d(j) = d(@) + 1,
Condltlon 2 is satisfied.

At last, II‘J' consists only of elements (bo,...,b;+1,...,b,), 1 <1 < p, such
that (bo, .. .pr) belongs to /;. Then the expression (5.4) for (b, ...,b,) and
Formula (5.7) imply that Condition 3 is satisfied.

Finally we have proved that all the terms X} and X /l can be written in
the form (5.2) with the properties 1, 2, 3 of the lemma. Therefore the sum
of these terms, that is [X]”]7 have the required form. That completes the
proof of the induction step, and then the one of the lemma.

|
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Lemma 5.4. Let 8, 6 and r such that 3 > & > r > 1, and [X]'] = [A"(8 +
(p—1)8+r, B+ (p—1)0)] (see (3.2). Then, if [X'""] is such that |I| = 3
and d(l) = §, the sequence (6, ...,0,1) belongs to Il+'

PrROOF. Lemma 5.2 implies that, for [A"(p+1,p)], (1,...,1) belongs to 1.
For [A™(p+ B,p+ [ —1)], by using formula (5.6), we can see that, if |I| = 3
and d(l) = 6, (§,1,...,1) belongs to I;". By using now formula (5.7), we see

that, for [A"(p+ S +rp+B+r—1)],r<é—1,(6r+1,1,...,1) belongs
to IZ’, and so on until [A"(8+ (p— 1)+ 7,8+ (p— 1)d)].

Thanks to Jean-Paul Laumond who suggested the topic and especially to
Jean-Jacques Risler who has guided this work.
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