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LOWER SEMICONTINUITY OF MULTIPLE INTEGRALS
AND CONVERGENT INTEGRANDS

ZHIPING LI

ABSTRACT. Lower semicontinuity of multiple integrals fﬂ f(z,ua, Pa)dp
and fﬂ fa(z, uq, Pa)dp are studied. It is proved that the two can derive
from each other under certain general hypotheses such as uniform lower
compactness property and locally uniform convergence of fo to f. The
result is applied to obtain some general lower semicontinuity theorems
on multiple integrals with quasiconvex integrand f, while f, are not

required to be quasiconvex.

Keywords: Lower semicontinuity, convergent integrands, lower precompact-
ness, weakly precompact, quasiconvex.

1. INTRODUCTION AND PRELIMINARIES

Let € be a measurable space with finite positive nonatomic complete
measure i, let f, f5: Qx B™ x RN — RU {+oc} be extended real-valued
functions satisfying certain hypotheses, and let u : Q@ — R™, P: Q — RN be
measurable functions in two linear topological spaces U and V respectively.

We consider integral functionals of the form

10.7) = [ fle.u(o). Pa)) dp (1.1)
and
I,(u, P)= /Qfa(x,u(x),P(w))d,u. (1.2)

The main purpose of this paper is to study, under certain general hy-
potheses on U, V, f and fg, lower semicontinuity theorems of the form

I(u,P) < lim,_,.I(ua, Pa), (1.3)

o — OO

I(U,P) < lim, Ioz(uompoz)v (14)

o — OO

and the relationship between them. The study of the relationship between
(1.3) and (1.4) was motivated mainly by the needs of convergence analysis
for numerical solutions to some problems in calculus of variations. For ex-
ample, in many cases, we have lower semicontinuity theorems of the form
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170 ZHIPING LI

(1.3), however, for one reason or another, the sequence (u,, P,) obtained
by numerical methods is often a minimizing sequence with respect to I,(-)
rather than with respect to (-), and a lower semicontinuity theorem of the
form (1.4) is needed for convergence analysis (see Li [1]). In some applica-
tions it is equally important to know under what conditions (1.3) can be
derived from (1.4) (see §3).

Some useful results are established in this paper on the relationship be-
tween (1.3) and (1.4). These results are then applied to establish some gen-
eral lower semicontinuity theorems on multiple integrals with quasiconvex
integrands. It is worth noticing that in these theorems f, are not required
to be quasiconvex which allows us to choose f, more freely in numerical
computations.

For better understanding of the background and relevant known results,
and for the later use of this paper, we first introduce some definitions and
hypotheses.

DEFINITION 1.1. A function f : Q@ x R™ x RN — R U {+o0} is called
L ® B— measurable, if it is measurable respect to the o-algebra generated
by products of measurable subsets of Q and Borel subsets of R™ x R,
DEFINITION 1.2. A function f : Q x R™ x RN — R is a Carathéodory
function if

(1): f(-,u, P) is measurable for every u € R™ and P € RV,

(2): f(z,-,-)is continuous for almost every z € .

DEFINITION 1.3. A function f:Q x R™ x RN — RU {+oc} has the lower
compactness property on U x V if any sequence of f~(z,u,(z), Py(z)) is
weakly precompact in L'(2) whenever (1): u, converge in U, P, converge
in Vi and (2): I(ua, Pa) < C < oo forall o =1,2,---. f has the strong
lower compactness property on U x V if any sequence of [~ (2, uq(z), Py(2))
is weakly precompact in L!(Q) whenever (1) holds. Here f~ = min {f,0}.

The assumption of lower compactness property provide us more freedom
in applications than the nonnegative assumptions. For example, let U be
L1(Q;R™), 1 < q < 400, with strong topology and V be LP(Q; RN), 1 <
p < 400, with weak topology, let g : Q x R™ — RY be such that

(2, WP < clu]’ +b(x)

for some constant ¢ > 0 and function b(-) € L(Q), where p’ = -1, and let

F:Qx R™ x RN — R satisfy

[l u, P) = (g(x,u), P) = cr|ul” + by (2)
for some constant ¢; > 0 and function b;(-) € L'(Q), where (Q,P) =
Z?;l Q; F;, then it is easy to verify that f has the strong compactness prop-
erty on U x V.
DEFINITION 1.4. A sequence of functions fz : Q x R™ x RN — RU{+o0} is
said to have the uniform lower compactness property, if f (x,uq(z), Py(2))

are uniformly weakly precompact in L'(2), in other words (see [2, 3]),
Esaim: Cocv, JUNE 1996, voL. 1, pPp. 169-189



SEMICONTINUITY OF INTEGRALS AND CONVERGENT INTEGRANDS 171

N (2, uq(z), Py(2)) are equi-uniformly integral continuous on €2, i.e. for any
€ > 0 there exists § > 0 such that

[ 57 onae), Pa(e) dal < ¢
N

for all v, 8 and any measurable subset Q' C Q satisfying ¢(Q') < &, whenever
g () converge in U, P,(-) converge in V and Ig(u,, P,) < C < oo for all
and [.

DEFINITION 1.5. A sequence of functions f, : Q2 x R™ x RN — RU {+oc0}
is said to converge to f : Q x R™ x RN — R U {400} locally uniformly
in Q x R™ x RN, if there exists a sequence of measurable subsets ; C Q
with p(Q\ €;) — 0 as [ — oo such that for each [ and any compact subset
G C R™x RN

falz,u, P) — f(z,u, P), unifomly on ; X G, as o — o0.

DEFINITION 1.6. A sequence of functions f, : Q@ x R™ x RN — RU {40}
is said to converge to f : Q x R™ x RN — RU {+0cc} locally uniformly in
the sense of integration on U x V, if there exists a sequence of measurable
subsets €; C Q with p(Q\ ;) — 0 as [ — oo such that

[ gleale) Pla) dus o ule), P(2)) dy
U\E(u,P,K) Q\E(u,P,K)

uniformly in U x V for each [ and any fixed K > 0, where

Euw,P,K)={2€Q:|u(z)|> K or |P(z)]>K}.

REMARK 1.7. In numerical computations of singular minimizers, truncation
methods turned out to be successful (see [1]). In such applications, f, can
be as simple as

falz,u, P) = min{—a, max{a, f(z,u, P)}}

which converge to f locally uniformly in Q x R™ x RN if f is a Carathéo-
dory function, and which have the uniform lower compactness property on
U x V if f has the lower compactness property on U x V.

REMARK 1.8. When Q is a locally compact metric space, €; in definition 1.5
and definition 1.6 can be taken to be compact subsets of €. In such a
case, to say that f, converge to f locally uniformly in © x R™ x RV is
equivalent to saying that f, converge to f uniformly on every compact
subset in Q x R™ x RN. Especially, if f, converge to f uniformly on every
bounded subset in Q x R™ x RN then f, converge to f locally uniformly in
Qx R™ x RN if f,, f are Carathéodory functions and f, converge to f in
meastre on every bounded subset in Q x R™ x RN then f, converge to f
locally uniformly in the sense of integration on U x V.
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172 ZHIPING LI

REMARK 1.9. To cover more applications, we may consider f,, f as map-
pings from U x V' to {measurale functions g : @ - RU {400} }. This allows
us to consider, for example, interpolations of f(z,u(z), P(z)) in finite ele-
ment spaces. In fact, definitions and results in this paper can be extended
parallely to such mappings without difficulty, as we will see that in the proofs
of the theorems f, are related to f only as such mappings.

DEFINITION 1.10. (See [4, 5, 6]) A function f: R™*™ — R is quasiconvex
if

[ 1P+ Dol de 2 7P) )

for every P € R™" ¢ € CHQ';R™), and every open bounded subset
Y C R", where p is the Lebesgue measure on R". Let € C R™ be open and
bounded. A Carathéodory function f:Q x R™ x R™*" — R is quasiconvex
in P if there exists a subset £ C Q with p(£) = 0 such that f(z,u,-) is
quasiconvex for all z € Q\ IV and v € R™.

ExaMPLE 1.11. Let Q C R?, n = m = 2. Then the function
f(Du) = |Dul? — (tr Du)?

is quasiconvex (in fact it is polyconvex, see [6, 9, 10]) and is unbounded be-
low. In addition, f has the strong lower compactness property on L (£2; R?*?)
with weak topology for all p > 2. If V is taken to be L*(Q; R**?) with weak
topology then f has a slightly weaker lower compactness property which can
be described by Chacon’s biting lemma [5, 7, 8, 3] (see lemma 3.6)
Let
D(Q; R*) = {v: Q@ — R* | v is measurable }.

We assume that U C D(Q; R™) and V C D(Q; RY) are decomposable, i.e.
if v(-) belongs to one of them, then xr(-)v(-) belongs to the same space
whenever T is a measurable subset of Q, where y7(-) is the characteristic

(2) 1, if €T,
) =
A 0, if z¢T.

We assume that U and V satisfy the following hypotheses on their topolo-

function of T":

gies:

(H1): If v,(-),a = 1,2,--- belong to one of the spaces and converge

there to zero and if p T, — 0, then x7,(-)v.(-) also converge to zero.

(H2): The topology in U is not weaker than the topology of convergence

in measure; the topology of V is not weaker than the topology induced
in V by the weak topology of L'(Q; RV).

It is easy to see that if U is taken to be L4(Q; R™), 1 < ¢ < 400, with
strong topology and V' is taken to be LP(Q; R™) with weak topology for
1 < p < +oo or weak™ topology for p = 400, then (H1) and (H2) are
satisfied. This covers most applications in Sobolev spaces. For applications

concerning Orlicz spaces see for example [2].
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REMARK 1.12. Here and throughout this paper, assumptions and state-
ments are referred to sets with measure-negligible projections on €, i.e.
they hold on a subset Q' C Q with p Q' = u Q.

In Reshetnyak’s result ( see theorem 1.2 in [11]),  is taken to be a local
compact metric space, f, fo : @ x RN — R are nonnegative functions such
that for any € > 0 there is a compact set A C Q with u(Q2\ A) < ¢ and
f(z,u), fo(z,u) being continuous on A x RN f(z,), f,(z,-) are convex for
almost all z € Q, and f, — f locally uniformly in Q@ x RY as a — oo, and
V is taken to be L'(; RV) with weak topology.

In the case when f(z,u,-)is convex, (1.3) was proved (see loffe [2]) under
the hypotheses that f satisfies lower compactness property and U | V satisfy
(H1) and (H2), and (1.4) was proved (see Li [12]), by using (1.3) , under the
hypotheses that f has the lower compactness property, f, have the uniform
compactness property and f, — f locally uniformly in Q x R™ x RN.

The results of the type (1.3) concerning quasiconvexity of f(z,u,-) and
P = Du can be found in [5, 6]. The following theorem, which will be used
in §3, was established by Acerbi and Fusco [5, 6].

THEOREM 1.13. Let Q C R™ be bounded and open. Let
F(u) = / f($7U,Du) de, wu€ I/VIJD(Q;]%m)7
Q

where 1 < p < 00, and where f:Q x R™ x R™*" — R satisfies

(1): f(--,) is a Carathéodory function;

(2): f(z,u,-) is quasiconvex;

(3): 0 < f(a,u, P) < a(z)+C(|uP+ |P|P) for every z € Qu € R™

and P € R™*"™ where C' > 0 and a(-) € L'(Q).

Then, the functional w — F'(u) is sequentially weakly lower semicontinuous
on WHP(Q; R™), ie. (1.3) holds for P = Du and P, = Du, with u, — u
in WHP(Q; R™), where and in what follows "—7 means "converges weakly

tO??

Ball and Zhang [6] generalized the above result to cover the case when
|[f(@,u, P)| < af@) + C (Jul” + [P[7),

and proved that (1.3) holds on each Q\ F), where {£}} is a nonincreasing
sequence of measurable subsets of € with limg_,., p Fr = 0.

In §2, It is shown, under certain general hypotheses, such as uniform
lower compactness property and locally uniform convergence of f, to f (see
theorem 2.1 for details), that (1.3) and (1.4) can somehow be derived from
each other, and the results are further developed into a theorem concerning
I'-limit (see theorem 2.8, for I-limit, [-convergence and their applications
in calculus of variations see for example [13, 14]). These results generalized
the result of Li [12] which was proved for the case when f(z,u,-) is convex.
In §3, the results established in §2 are applied to prove some lower semi-

continuity theorems of the form (1.3) and (1.4) for quasiconvex integrands,
Esaim: Cocv, JUNE 1996, voL. 1, pPp. 169-189
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which generalize the results of Acerbi and Fusco [5], Ball and Zhang [6] and
Li [12].

2. LOWER SEMICONTINUITY AND CONVERGENT INTEGRANDS

The following theorem establishes the relationship between the lower
semicontinuity theorems of the form (1.3) and those of the form (1.4).
THEOREM 2.1. Let 2 be a measurable space with finite positive non- atomic
complete measure p. Let U and V satisfy (H1) and (H2). Let {uy},u € U
and {P,}, P € V be such that

Uy —u, in U, (2.1)

and

P,— P, in V. (2.2)

Let f,{fz} : Q2 x R™ x RN — RU {+o0} satisfy
(1): f,{fs} are L @ B- measurable;
(ii): £ (0, u(e), P(), (2, ta(2), Pal2)), and f5 (2, ua(e), Pa(e))
are weakly precompact in L1 (2);
(iii): f. — f locally uniformly in Q x R™ x RN,

Then, we have (a):

/ flz,u, P)dp < li_ma_mo/ Jolz,ug, Py) dpu, (2.3)
Q Q

provided that
fle,u, Pydp <lim,_,.. | flz,ua, Py) dp, (2.4)
Q7 Q7
Jfor all measurable subset Q' C Q;

and (b):

/ flz,u, P)dp < li_ma_mo/ flz,ug, Po) dp, (2.5)
Q Q

provided that f,{fg} satisfy a further hypothesis
(iv): fT(z,us(z), Py(z)) < a(z) + fT(z,us(z), Py(z)), where a(-) €

L1(Q) is nonnegative;

and

/ flz,u, P)dp < li_ma_mo/ Jolz,ug, Py) dp. (2.6)
Q Q

To prove the theorem, we need the following lemmas.
LEMMA 2.2. Let {us},u € U and {P,}, P € V satisfy (2.1) and (2.2) re-
spectively. Let
EYNE) ={x€Q:|uy(z)] > K},
E2(K) ={z€Q:|P,(2)| > K},
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and
E (K)=ENK)U F2(K). (2.7)

Then
wFEL(K) — 0, uniformly for o as K — oo.

ProoF. For any € > 0, since u € U, there exists Ky(€) > 1 such that
pf{e € Q:ju(z)| > K}y <e€/2, VK > Ki(e).
Thus, by (2.1) and (H2), there exists «(€) > 1 such that
pELNK) <¢€/2, Va>ale and K > Kj(e)+ 1. (2.8)
Since u, € U for each «, we have
I}i_r}noo pELY(K) =0, for each a.

Thus, for o € {1,2,---,a(€)}, there exists K3(¢) > 1 such that

pENEK) <€¢/2, Yae{l,2,---,a(e)} and K > Ky(e). (2.9)
Let K(¢) = max{K(¢) + 1, K3(¢)}, then (2.8) and (2.9) give
pENEK) <€e/2, Ya>1 and K > K(e). (2.10)

On the other hand, it follows from (2.2) and (H2) that

| 1R@ldn <,
Q
for some constant C' > 0. Thus, for any € > 0 there exists K (¢) > 1 such
that
pEA(K)<e/2, Ya>1 and K > K(e). (2.11)
Hence the lemma follows from (2.10) and (2.11). o

LEMMA 2.3. Let f,{f,} satisfy the hypotheses in theorem 2.1. Let f4 :
Q x R™ x RN — R be defined by

fa(z,u, P) = min{A, f(z,u, P)}. (2.12)

Let {uy },u € U and {P,}, P € V satisfy (2.1) and (2.2) respectively. Let
{Q;} be a sequence of measurable subsets of Q, the existence of which is
guaranteed by the hypothesis (iii) for f,, such that

p(Q\Q) —0, as [ — oo, (2.13)
and
fo — f,  uniformly on Q; x G, (2.14)

for each | and any compact set G C R™ x RN,
Suppose

/ foz($7uoz7poz) d,u < Cv
Q

for some constant C' > 0.
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Then, for any € > 0, A > 1, there exist [(¢) > 1 and a(e, A,l) > 1 such
that

Jo, Fa@ ua, Pa)dp < fo fole, wa, Po) dp+ €

(2.15)
Vi>1(e) and «> ale Al).
Proor.
le falz,ug, Py du
= foOf x ua? du—l_fQ\Ql(_fa(xvuavPa)) d:“‘l'
—I_fQ (fA Ty Ugys oz) - foz(x uomPoz)) d,u
= Jo falw,ua, Po)dp+ 1y + 1.
By (2.1), (2.2), (2.13) and (ii), there exists {(¢) > 0 such that
h= fol “tees s P
< fQ\Ql fo (@, ua, Po)) dp (2.16)
< €/2, it 1> 1(e).

By (2.12), we have
Iy le\Ea(K)(f(xvuosza) - foz($7uoz7poz)) dp+
+ fEa(Ix") (A - fOé($7 Uary Poz)) d,u
= Iy + Iy,

where F, (K) is defined by (2.7).
By lemma 2.2, F,(K) — 0 uniformly for o as K — oo. Thus it follows
from (ii) that there exists K (e, A) > 1 such that

Iy < fEa(K) (A - fo? ($, Uor, Pa)) d,u
< ¢/4, if K> K(e A).
Let K = K (e, A), then
GK)={ue R":|ul < K}x{PeR":|P|I<K}

is a compact set in R™ x RN. It follows from (2.14) that there exists
a(e, A, 1) > 0 such that

|I21] < €/4, Ya > a(e A,l).

IN

Thus, we have
o] < €/2, Ya>ale Al). (2.17)
Thus (2.15) follows from (2.16) and (2.17). o

LEmMMA 2.4. Let f,{f,} satisfy the hypotheses in theorem 2.1. Let {u,}, u €
U and {P,}, P €V satisfy (2.1) and (2.2) respectively. Let

Floa,A) ={2 € Q: f(z,uy(2), P,(z)) > A}.
Suppose
/ fol@, ua, Po) dp < C, (2.18)
Q
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for some constant C' > 0.
Then, for any € > 0 and K > 1, there exist A(e) > 1 and a(e, K) > 1
such that

jF(a, A) < pBo(K) +

if A> A(e) and o> ale K), (2.19)

where I, (K) is defined by (2.7).

Proor. By (iii), there is a sequence of measurable subsets {€;} in © such
that

p(2\Q) —0, asl— oo, (2.20)
and
fo — f, uniformly on Q; x G, (2.21)

for each [ and any compact set G C R™ x RN.
For any ¢ > 0, by (2.20), there is /1(¢) > 1 such that

p(Q\ Q) <e€/2, if 1> (e). (2.22)
By (2.18),

le\Ea(K) flx,ug, Py) dp
= Jonma ) F (@10, Po) = fol@, ua, Fy)) dp
—I_fQ\(Ql\Ea(K))(_foz(wyUa,Pa)) du+C
= hL+6L+C

It follows from (ii) that

L < / (= f7 (2, Pa)) it
O\ (2 \Ea(K))
< /Q (= [ (s s P)) dp
< C, (2.23)

for some constant C > 0.
It follows from (2.21) that there exists a(l, K') > 1 such that

|Il| Sle\Ea(K) |f($7uompoz)_foz($7uompoz)|d:u
<1, Va > ofl, K). (2.24)

Thus we have

/ f(2,ug, Py)dp < Cy, Va > ol K), (2.25)
Q\Ea(K)

where Cy = C' + (1 + 1 is a constant.
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Denote Q7 = {z € Q : f(z,us(z), Py(z)) < 0} and fT = max{f,0};
then, by (2.25)

le\Ea K) f+(ac,ua, o) dpt

< Janea A( T (@, ua, Po)) dp+ Cy

= f(Ql\Ea K))nQs (= f(z,ua, o)) dpu+ C2

= Jonmaoynas (fal@ e, Po) = f(2, tta, Pa)) dp
—I_fQZ\Ea(Ix’))nQa( Ja(@, ua, Bo)) dp+ Cy

le\Ea K) |f($ U, Po) = fal@, wa, Po)| dp
—I'fQ (@, U, Pa)) dp + Cs.

It follows from this and (2.23)7 (2.24) that

/ Iz, ua, Py)du < Cy, Ya > al, K), (2.26)
Q\Ea(K)

where ('3 = ('] + (5 4+ 1 is a constant.
Now (2.26) implies that there exists A(¢) > 0 such that
pler € U\ Fo(K): flz,ua(2), Py(z)) > A} < €/2,
if A> A(e) and o > a(l, K). (2.27)

Since
Fla, A) C EL(K)U(Q\ Q) U F(I, K, a, A),
where
F(l, K, 0, A) = {z € 0\ Eo(K) : (2, ua(z), Palz)) > A},
we have
pF(a, A) < pEa(K) + 1 (Q\ Q) + p F(I, K, o, A).

Taking [ = [1(¢) and a(e, K) = a(li(¢), K), by (2.22) and (2.27), we
conclude that (2.19) is true. o

Proor or THEOREM 2.1.
Without loss of generality, we assume that

/ foz($7uoz7poz) d,u < Cv
Q

for some constant C' > 0. It follows from (iii) that there exists a sequence
of measurable subsets {;} of Q such that

Q C Uy, Y, and llim (2N Q) =0, (2.28)
—+00
and
fo — f, uniformly on  Q; X G, (2.29)

for each [ and any compact set G C R™ x RN.
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Let E, (K) be defined by (2.7). It follows from lemma 2.2 that there exists
an increasing sequence {K;} such that

sup {p Es(K;)} < oc. (2.30)
1 1<a<oo
Let ¢, > 0,2 = 1,2,--- be a decreasing sequence of numbers satisfying

lim; 400 ¢, = 0. Let A; = A(ei/Qi), L, =1le), o =max{a(l;, K;),
ale, A, 1)} and F; = Floy, A;) = {x € Q: f(a,uq,(2), Py (x)) > A}
where A(:), «af-, -) are defined by lemma 2.4 and {(-), «(:, ;) are defined
by lemma 2.3. Then, by lemma 2.3, we have

fa, (@, ug,, Py,) du < / Joi (@ ua,, Pa,) dp+ ¢ V1, (2.31)
U,

and by lemma 2.4, we have
S T F < (1 Ea(Ki) + €/2') < 0. (2.32)
=1 =1

Let H; = ((2\ Q) U (Ui F})) and G = Q\ H;. It follows from (2.28)
and (2.32) that

G; CGjpq, V4, and lim (Q\G;) = (2.33)

j—oo

Thus, by the definition of f4. and I}, we have

fG (%, Uq,;, Pa,) dp

le \F [, oy, Poy) dp —I_f(Qll.\Fi)\G (= [ (2, ua,, Po,)) dpt
Jaop T @ tags Pag) dpe + Joyg, (=7 (25 ey, Poy)) dp
Jeup Tac (@ uan Pa) dp + [y (=17 (2, w0y, Pay)) dp, Vi > .

IN A

It follows from this and (2.31) that

fG (@, Uy, Py,) dp
< fQ fa € uozlv )d:u
—I—fH (@, w0y, Poy)) dp +e, Vi>J. (2.34)
Let i — oo in (2.34). By (2.4), we have

fG (,u, P)du
< h_mz_mofgfoz $7uai7P ) dp
T e g, (= s Pa) it (2.35)

By (ii) and (2.33), we have

lim (sup/H (—f (z,ua,, Py,)) du) = 0.

J—00 i>1
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It follows from this and (2.33), (2.35) that

Jo flz,u, P)dp =limj_q fG (,u, P)du
Sh_mz_mo fQ fozl $7uai7Pa,‘) d,u

This completes the proof of (a).
Next, we prove (b). Without loss of generality, we assume that

/ fla,un, Py)dp < C < oo (2.36)
Q
It follows from (ii), (iv) and (2.36) that

/ foz($7uoz7poz) dp < Ch < oo.
Q

By (2.6), for any ¢ > 0, there exists @(¢) > 0 such that

/Qf(x,u,P) dp < /Qfa(x,ua,Pa) dpu+e¢ Va > a(e). (2.37)
By (ii), for any ¢ > 0, there exists é;(¢) > 0 such that
|/Q/ I (2, un, Po)dp| <€, YuQ <6 (e), (2.38)
|/Q/ I (@ ug, Py dp| <€, YuQ < 6(e). (2.39)
By (iv) and (ii), for any ¢ > 0, there exists d;(¢) > 0 such that
f () o, o) dpe
< FH(@ ua, Po) du+ / a(w) dp
< f@ e, Py)dp+e, VO CQand pQ < dy(e).  (2.40)

Q/
Let
E,(K)={z€Q:|uy(z)| > K or |P,(z)| > K}.
By lemma 2.2, for any § > 0 there exists K (§) > 0 such that
ply(K) <6, VK > K(6). (2.41)

By (iii), there exists a sequence of measurable subsets §; C Q such that
p(2\ Q) = 0as ! — oo and f, — f uniformly on €; x G for each fixed [
and compact set G C R™ x R™. Thus, for any & > 0 there exists /(§) > 1
such that

Q\ Q) <8, VI>10), (2.42)

1
and for any € > 0, [ > 1 and compact set G C R™ x RN there exists
a(e,l,G) > 0 such that

|foz($7v7Q) - f($7U7Q)| <
for all @ > af(e,l,G) and (2,v,Q) € Q X G.
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Now, by taking
0 = min{dq(€), 82(€) },
K = K(9),
L= 1(6),
G={(v,Q)e R" xRN : |v] < K and |P| < K}

and
ale) = max{a(e), ale, l,G)},
we get from (2.37) — (2.43) that

IN
5
N
=
S

g
o

=
_|_
[

($ Uy oz) d,u‘|‘6

< / flz,ug, Py d,u—l—/ iz, ug, Py) dp + 3¢
QU\Ea(K) O\(U\Ea(K))

< /f(w,ua,Pa) dp+4e, Yo > ale).
Q

IA

5

=

&

2

=
-
Q
&
8
&
=
+

S

/

©

=

&

s

>

This and the arbitrariness of ¢ imply (2.5). o
COROLLARY 2.5. [f the hypothesis (iii) is replaced by the hypothesis

(ii))": fo — [ locally uniformly in the sense of integration on U x V,
in theorem 2.1, the conclusions of the theorem still hold.

ProoOF. Since in the proof of theorem 2.1 the hypothesis (iii) was only used
to show that there exists a(e, [, K') > 0 such that

[t Pa) = v, Pa) dul < /4
Q\Ea(K)

for a > a(e, [, K), the result follows. O
COROLLARY 2.6. If the hypothesis (ii) is replaced by the hypothesis
(i1)': f has the strong lower compactness property and {f.} have the

uniform lower compactness property,
in theorem 2.1, the conclusions of the theorem still hold.
Proor. The proof of the part (a) of theorem 2.1 remains valid, since (ii)’
and the assumption [ fo (2, uq (), Pa(2)) du < C' < oo give (ii).
The proof of the part (b) of theorem 2.1 still holds, because (ii)’, (iv) and
the assumption [, f(z,us(2), Pa(z)) dp < C' < oo imply

[ fateuato) Py d < € < o0

and hence (ii). ]
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THEOREM 2.7. Let €2 be a measurable space with finite positive non-
atomic complete measure p. Let U and V satisfy (H1) and (H2). Let
F AL} i QxR x RN — RU {400} satisfy
(1): f,{fs} are L @ B- measurable;
(i1)": f has the lower compactness property and f, have the uniform
lower compactness property.
(iil)": fo — f locally uniformly in the sense of integration on U X V;
(iv)’s fH(z,v,Q) < alz)+ fH(z,v,Q) for all (v,Q) € R™ x RN, where
a(-) € LY(Q) is nonnegative.
Let {uy},u € U and {P,}, P € V be such that

Uy — U, m U,

and
P, — P, m V.
Suppose
[ s P dp < tim e [ Fue P dn
Q Q
Then

/ Flasu, P) dp < lim, .. / @y ua, P dp.
Q Q

Proor. Without loss of generality, we may assume

/fwua P,(z))dp < Cp < 0.

Thus (ii)”, (iv)’ give (ii). Tt is easily seen that (iv)’ imply (iv). Hence the
theorem follows from the same arguments as in the proof of the part (b) of
theorem 2.1. O

So far, only individual sequence {(u,, F,)} satisfying (2.1) and (2.2)
is considered. If all sequences {(u,, P,)} satisfying (2.1) and (2.2) are
considered at the same time, some I'-convergence results can be obtained
from the above theorems. First, recall that the I'-limit of a sequence of
integrals I,(-,-) can be defined by

PO, V7)) limyyoo Lo (u, P)
= inf{lim I (ua, Pyt (ua, Po) = (u, P)in U x V}

o — OO

provided it exists and the topologies of U and V are metrizable [13, 14]. We
have the following theorem as a consequence of theorem 2.1 and theorem 2.7.

THEOREM 2.8. Let €2 be a measurable space with finite positive non-
atomic complete measure p. Let U and V' satisfy (H1), (H2) and be metriz-
able. Let f,{f,} :Q x R™ x RN — RU {+00} satisfy

(1): f,{fs} are L @ B- measurable;

(i1)’: f has the lower compactness property and f, have the uniform
lower compactness property.

(ii))": fo — f locally uniformly in the sense of integration on U X V.
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Then, (a):

/f(x,u,P) dpu <T(U™,V7) lgn I,(u, P), (2.44)
provided that I(u, P;QY) = [, f( z), P(x))dp is lower semicontinuous
at (u, P) e U x V for all measumble subsets Q' CQ;
and (b):

/ flz,u, P)dp < li_ma_mo/ flz,ug, Py) dp (2.45)

Q Q
for all (ug, — (u, P) in U XV, ie. [ f(a,u, P) du is lower semicon-

Py
tinuous at (u, ;3) € U x V, provided that f,{f.} satisfy a further hypothesis
(iv)’s fH(z,v,Q) < alz)+ fH(z,v,Q) for all (v,Q) € R™ x RN, where
a() € LY(Q) is nonnegative;
and

/ fle,u, P)dp <T(U™,V7) 1i_>m I,(u, P).
Q x o0

COROLLARY 2.9. Let Q be a measurable space with finite positive non-
atomic complete measure p. Let U and V' satisfy (H1), (H2) and be metriz-
able. Let f,{f.} :Qx R™ x RN — RU {+00} satisfy

(1): f,{fs} are L @ B- measurable;

(i1)": f has the lower compactness property and f, have the uniform
lower compactness property.

(ii))": fo — f locally uniformly in the sense of integration on U X V.

(iv)’s fH(z,v,Q) < alz)+ fH(z,v,Q) for all (v,Q) € R™ x RN, where
a(-) € LY(Q) is nonnegative.

Then
/f(x,u,P) du=TU",V7) lgn I,(u, P), (2.46)
provided that I(u, P;Q) = [, f( z), P(x))dp is lower semicontinuous

at (u, P) e U XV for all measumble subsets Q' C Q. In addition, we have
in this case

r(U=, V") lim Ja(u,P):n_ma%o/gfa(x,u(x),za(x))du. (2.47)

a— 0O

ProOOF. By theorem 2.8, we only need to show that

[Py deztin, o [ oot Pe)de (2a8)
Q Q
This can be easily verified by using the inequality

Jo fla,u(z), P(X)) du
fQ foz(wvu(x)vp(X)) du

v

—I_le\E(K)(f(xv w(x), P(X)) = fa(w,u(z), P(X))) du
= Jov@npaoy fo (@ u(X), P(X)) dp
+ Javaneay (@ u(X), P(X)) du
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for all [ > 1 and K > 0, where
EK)={zeQ:|u(z)]> K or |P(z)| > K},

and by using lemma 2.2 and the hypotheses (ii)”, (iii)’ and (iv)’. |

3. LOWER SEMICONTINUITY THEOREMS
FOR QUASICONVEX INTEGRANDS

In this section, some lower semicontinuity theorems in the form of (1.3)
and (1.4) are established for quasiconvex integrand f(z,u, P). In the fol-
lowing, U is taken to be LP(Q2; R™) with strong topology and V' is taken to
be LP(Q; R™*™) with weak topology, where 1 < p < oo, and pu is taken to
be the Lebesgue measure on R".

THEOREM 3.1. Let Q C R"™ be open and bounded. Let f: Qx R™ x R™*™ —
R satisfy

(1): f(,-,-) is a Carathéodory function;

(ii): f(x,u, P) is quasiconvex in P;

(iii): f has the strong lower compactness property on U X V ;

(iv): f(z,u, P) < a(z)+ b(x)(|ul? + |P|P) for every x € Q, w € R™ and

P € R™*™ where a(-),b(-) € LY(Q) are nonnegative functions.

Let {fg} : Q@ x R™ x R™*™ — R satisfy

(a): fs(-,-, ) are L @ B- measurable;
(b): fs have the uniform lower compactness property;
(c): fg — [ locally uniformly in Q x R™ x R™*".
Let
Uy —u, in WUP(Q; R™). (3.1)

Then

/ flz,u, Du) dp < li_ma_mo/ Jolz,ug, Duy) dp. (3.2)
Q Q

To prove the theorem, we begin with the following lemmas.

LEMMA 3.2. Let Q C R™ be open and bounded. Let f : Qx R™ x R™*™ — R
satisfy (i) —(iv) in theorem 3.1. For all integers 3 > 1, let functions fz :
Qx R™ x R™*™ — R be defined by

fo(@,u, Py = max{~B, f(z,u, P)}.
Let uy, — u in WH2(Q; R™). Then, for each fived § > 1,

[ doteuta) Dty dp < i [ ol nalo). Dusta)) die (33)
Q Q

PROOF. Let
Eb K)y={z¢€Q:|b(z)| < K}.
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Denote x () the characteristic function of the set E(b, K). It is easily
verified that the functions
]Zﬁ,K = XK fﬁ +8, 82>21, K>1
satisfy the hypotheses of theorem 1.13. Hence we have
Ja YK () fa(z, u(ac}, Du(z)) dp
< Lo fi o () (0, 4a(e), Dua(s)) di
Since
Jo i @) oo, u(@), Dule)y du
> Jo 5 (@ u(e), Du(e)) dp+ Jo xi (2) fF (2, u(z), Du(2)) du

and
Joxx (@) fo(@, ug (@), Dug () du
< Jo Sl nale), Duste)) dp +
| Jo (1= XK (2)) fi (2, ua(), Dua(2)) dp|
< fﬁfﬁ(xvua(x)vDua(x)) d,u—l—](K,oe,ﬁ)?
we have

/Qfg_(w7U(w)7DU(w)) du+/Qxf((w)fg(x,u(x),pu(x))du

<l | folotale) Dug(o)) dpt T DK, 0, 9),
Q
for fixed K and 3. (3.4)

By (iii) and the definition of fg, we know that for any ¢ > 0 there exists
K (€) > 1 such that

I(K,a,p)<e€ VYa,p, and K > K(e),

since im0 1 (2\ E(b, K)) = 0.
Thus (3.3) is obtained by letting k& — oo in (3.4) and passing to the limit.
a

LEMMA 3.3. Let Q C R"™ be open and bounded. Let f: Qx R™ x R™*™ — R
satisfy (i) —(iv) in theorem 3.1. For all integers 3 > 1, let functions fz :
Qx R™ x R™*"™ — R be defined by

f‘ﬁ(wv U, P) = max{—ﬁ, f($7 U, P)}
Let uy — w in WHP(Q; R™). Then
[ 5t Due dn <t [ o o) Do) dpe 35)
Q Q

PRroOF. Denote
F(9) =l [ Jo(o, (o). Do) di (3.6)
Q

Since fg > fay41 for all 3, F(B) is nonincreasing. On the other hand, it
follows from (iii) that F'(3) is bounded from below. Hence limg ., F(5)

exists. Denote the limit by F.
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Since [ < fﬁ for all 8, by lemma 3.2, we have

/Qf(aa u(x), Du(z)) dp < F. (3.7)

Given € > 0, by (3.6) and F(3) > F, there exists a(e, 3) > [ such that

[ dstevale), Dua(e)) du> F - ¥azalep). (39
Q
Let
T@) = [ (Falo o). Dt () = fyleuaa). Dug(2) d
We have
H@B) 2 [y Fales ta(e), Dual®)) di
fE(a,ﬁ) 7@, us(2), Dug(z)) dp, Vo> 5,
where F(a, f) ={z € Q: f~(z,uq(x), Dus(x)) < —3}. Hence, by (iii), for
any € > 0 there exists §(€) > 0 such that
I{a,3) > —¢, VB> B(e) and a > 3. (3.9)
It follows from (3.8) and (3.9) that
fQ Jfa(wv uo (), Duy(x)) dp
= Ja o (@ wa(@), Dug (@) du+ I, )
> F—2¢ VYa>a(eB(e)).
Since ¢ > 0 is arbitrary, this and (3.7) imply (3.5). o

LEMMA 3.4. Let Q C R"™ be open and bounded. Let f: Qx R™ x R™*" — R
satisfy (1) —(iv) in theorem 3.1. Let us — u in WHP(Q; R™). Then

>
>

Flaule), Dute)) i <l [ fo,0a(0), Do) diss - (3.10)
Q Q'

for all measurable subset Q' C Q.
PROOF. Let o be the characteristic function of . Let f = vo f, fﬁ
i) - (i

max{—3, vo: f}. It is easily verified that f satisfies the hypotheses (
in theorem 3.1 as well. Hence, by lemma 3.3, we have

v

[, (), Du(@)) dp < My | fule, wa(e), Dua(@)) du,  (3.11)
Q7 Q7
where f, = max{—a, f}.
By (iii) and the definition of fa, we know that fa have the uniform lower
compactness property and f, — f locally uniformly in Q x R™ x R™*",
Thus (3.10) follows from (3.11) and the part (a) of theorem 2.1. 0

PrOOF oF THEOREM 3.1. The conclusion follows directly from lemma 3.4
and the part (b) of theorem 2.1. ]
In theorem 3.1, the hypothesis that f has the strong compact property is

not essential. Actually, we have the following stronger result.
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THEOREM 3.5. Let Q C R™ be open and bounded. Let uy, — u in WP(Q;
R™). Let f, fg : Q@ x R™ x R™*" — R satisfy (i), (i), (iv) and (a), (c) in
theorem 3.1 respectively, and satisfy also the following hypothesis

(h): f5(2,us(2), Duy(2)) are weakly precompact in L*(Q).
Then

[ st D de < tim e [ oo, Du) d
Q Q

Proor. Let fN = max{f,—N} and fY = max{f,, —N}. Then, for each
fixed N > 0, fN and fY satisfy (i) — (iv) and (a) — (c) in theorem 3.1
respectively.

Thus, by theorem 3.1, we have, for each fixed N > 0,

/QfN(av7 w, Du) dp < lim,,_, /Q N (@, Uy Duy) dp. (3.12)

Let N — oo, by (h) and by passing to the limit in (3.12), we get the result.
O

The following lemma is a version of Chacon’s biting lemma (see [5], see
also [7, 8, 3]).
LEMMA 3.6. Let Q@ C R"™ be bounded and measurable, and let g, be a
bounded sequence in L1(Q). Then there exist a subsequence 9o, 0f go and
a nonincreasing sequence of measurable subsets Fy with limp .o p Fr = 0
such that g, are weakly precompact in LY(Q\ Ey) for each fized k, i.e. for
any € > 0 and fized k there exists §(e, k) > 0 such that

| s @ldi <, i,

provided that Q' C Q\ Ey, and p(Q) < 6(¢, k).
LEmMMA 3.7. Let Q@ C R" be open and bounded. Let f,{fg} : @ x R™ X
R™*™ — R satisfy
(L): f(z,u,P) and fg(z,u, P) are bounded below by —(a(x)+b(z)(|ulP+
|P|P)), where a(-),b(-) € LY(Q) and a(z) > 0, b(z) > 0, Vo € Q.

Let uy — uw in WHP(Q; R™). Then there exist a subsequence Uy, of uy and a
nonincreasing sequence of measurable subsets Fy with limyg_, . pt By = 0 such
that [~ (2, o, (x), Dua;(2)), fo, (¥, ta;(x), Dug;(x)) are weakly precompact
in LY(Q\ Eyx) for each fived k.

Proor. By lemma 3.6, there exist a subsequence u,; of u, and a nonin-
creasing sequence of measurable subsets F, with limg_, ., ¢t Ex = 0 such that
ho,(2) = (Jta; (2)|” + |Dug, (2)|?) are weakly precompact in L'(Q\ Ey) for
each fixed k.

Let £}, = {x € Q:|b(z)] >k} and E} = F,UE).Then F, are nonincreas-
ing with limg e pt By, = 0 and g, (z) = a(@) + b(z) (|ua, (2)[P + | Dug, (2)[?)
are weakly precompact in L*(2\ E}) for each fixed k. This and the hypoth-

esis (L) give the result. ]
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THEOREM 3.8. Let Q C R™ be open and bounded. Let f,{fg} : Q2 X R™ X
R™*™ — R satisfy

(1): f,{fs} are Carathéodory functions;

(ii): f(x,u, P) is quasiconvex in P;

(ii): 1, 0, )| < afe) + (&) ([l + [PIP) and |fa(e,u, P)| < a(e) +
b(z)(|ulP + |P|P) for every x € Q, u € R™ and P € R™*", where
a(-),b(-) € LY(Q) are nonnegative functions;

(iv): fg — [ locally uniformly in Q x R™ x R™*".

Let

Uy —u, in WHP(Q; R™). (3.13)

Then there exist a subsequence u,, of u, and a nonincreasing sequence
of measurable subsets Fy with limy_,. pt Ey = 0 such that

fQ\Ek Sf(@,u, Du)dp < lim; fQ\Ek Ja, (2, u0,, Dug,) dp,

3.14
for each k. ( )

Proor. By (iii), (3.13) and lemma 3.7, there exist a subsequence u,; of u,
and a nonincreasing sequence of measurable subsets Fy with limg_, . pt Fx =
0 such that f3 (2, Ua,(2), Duy (x)) are uniformly weakly precompact in
LY(Q\ E).

Let f* = Xao\E, S and fc’j] = Xa\E, Ja,;- Applying theorem 3.5 to fk,fc’j]
and u,,, we obtain (3.14). ]

The author wishes to thank Professor J.M. Ball and the referee for their
valuable comments and suggestions.
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