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ON THE CONTROLLABILITY OF THE 2-D
INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH
THE NAVIER SLIP BOUNDARY CONDITIONS

JEAN-MICHEL CORON

ABSTRACT. For boundary or distributed controls, we get an approxi-
mate controllability result for the Navier-Stokes equations in dimension
2 in the case where the fluid is incompressible and slips on the boundary
in agreement with the Navier slip boundary conditions.

Keywords: Controllability, Navier-Stokes equations, Navier slip boundary
conditions.

1. INTRODUCTION

Let Q be a bounded nonempty connected open subset of R? of class C"*°.
Let T'# be an open subset of T' := 9Q and let Q# be an open subset of Q.
We assume that

I'#*UQ# £0. (1.1)
We denote by n the outward unit normal vector field on I' and by 7 the unit
tangent vector field on I' such that (7,7n) is a direct basis of R% The set I'#
is the part of the boundary and Q# is the part of the domain Q on which
the controls acts. The fluid that we consider is incompressible so that the
velocity field y satisfies

div y = 0.

On the part of the boundary I'\I'# where there is no control the fluid slips;
it satisfies

y-n=0on\['* (1.2)
and the Navier slip boundary condition [24]
= i (0y Oy J_ #
oy-7+(1—7)n (8$j —I—GQCZ.)T =0on I"\I (1.3)

where 7 is a constant in [0,1), n = (n!,n?), 7 = (v1,7%), and where we

have used the usual summation convention. Note that the classical no-slip
condition, due to Stokes,

y=20 (1.4)

corresponds to the case @ = 1, which is not considered here. The slip
boundary condition (1.3) with @ = 0 corresponds to the case where there
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the fluid slips on the wall without friction. It is the appropriate physical
model for some flow problems; see [16] for example. The case T € (0,1)
corresponds to a case where there the fluid slips on the wall with friction; it
is also used in models of turbulence with rough walls; see, e.g., [17]. Note
that in [3] F. Coron has derived rigorously the slip boundary condition (1.3)
from the boundary condition at the kinetic level (Boltzmann equation) for
compressible fluids. Let us also recall that C. Bardos, F. Golse, and D.
Levermore have derived in [2] the incompressible Navier-Stokes equations
from a Boltzmann equation.
Let us point out that, using (1.2), one sees that (1.3) is equivalent to

oy-T+curl y=0on I\I'*
with o € C°°(I';R) defined by
2(1 —7)k(x)

-0
v r 1.5
T veel] (1.5)

ofz) =
where k is the curvature of I' defined through the relation % = k7. In
fact we will not use this particular character of (1.5) in our considerations;
Theorem 1.1 below holds for any ¢ € C°(I';R).
The problem of approximate controllability we consider is the following
one: let T > 0, let yo and y; in C°°(Q;R?) be such that

div yo = 0 in Q, (1.6)

div y; = 0in Q, (1.7)

yo-n =0 on D\I'#, (1.8)
y1-n =0 on I\T'# (1.9)

oy - T 4 curl yo = 0 on T\I'¥, (1.10)
oy -7 +curl y; =0 on T\I'#. (1.11)

We ask whether there exist y € C°°(Qx[0,T];R?) and p € C*(Qx[0,T]; R)
such that

13} R
S Ay (y-V)y+ Vp=0in @\Q%) x 0,71, (1.12)
divy = 0in Q x [0, 7], (1.13)
y-n=0on (I\T'*) x [0,T], (1.14)
oy -7 +curl y =0on (I\I'#) x [0,7], (1.15)
y(-,0) = yo in Q, (1.16)

and, in an appropriate topology, we have

y(-,T) is “close” to y;. (1.17)

That is to say, starting with the initial data yo for the Navier-Stokes equa-
tions, we ask whether there are solutions which, at a fixed time T, approach
arbitrarily closely to the given velocity field y;.
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Note that (1.12) to (1.16) have many solutions. In order to have unique-
ness one needs to add extra conditions. These extra conditions are the con-
trols. Various possible controls can be considered. For example, a possible
choice for the controls is

y-non I'* x [0,7], (1.18)
oy -7+ curl y on I'* x [0, 7], (1.19)

89 . 4
E —Ay+(y-V)y+ Vpin Q% x [0,T]. (1.20)

More precisely, let y, € C*°(Qx[0, T]; R?) and p, € C*(Qx[0, T]; R) be such
that (1.12) to (1.16) hold for (y, p) = (ys, ps). Let us consider the following
Cauchy problem: find y € C°°(Q x [0,T];R?) and p € C°°(Q x [0,T];R)
such that (1.12) to (1.16) hold and

y-n=ys -non# x[0,T],

oy -7+ curl y = oy, - 7+ curl y, on ['# x [0,7],
% —Ay+(y-V)y+ Vp= aayts
has, up to an arbitrary function depending only on time added to p, one and
only one solution which is (y,p) = (ys, ps). One can also use for the control
(1.18), (1.20), and curl y on I'# x [0, T]. Another possibility for the control
is (1.20) and y on T'# x [0,T].
Let d € C°(Q;R) be defined by

d(z) = dist (2,T) = Min {|z — a'|;2" € T'}.
Our controllability result is

TuEOREM 1.1. Let T > 0, let yo and yy in C*°(Q,R?) be such that (1.6),
(1.7), (1.8), (1.9), (1.10), and (1.11) hold. Then, there exist a sequence
(y*;k € N) of maps in C°(Q x [0,T];R?) and a sequence (p*;k € N) of
functions in C*(Q x [0,T];R) such that, for all k € N, (1.12), (1.13),
(1.14), (1.15), and (1.16) hold for y = y* and p = p* and such that, as
k — +oo,

— Ay, + (35 - V)ys 4+ Vp, in QF x [0, 7]

/ d“ly* (-, T) = 1| = 0, Y > 0, (1.21)
Q

Y (-, T) = y1lw=1.000) = 0, (1.22)
and, for all compact K included in Q U T#,
|yk(-,T) — Y1l oo (x) + | curl yk(-,T) — curl y1|p(xy = 0. (1.23)

In this theorem, and throughout all this paper, W=1°°(Q) denotes the
usual Sobolev space of first derivatives of functions in L= () and | [y-1,(q)
one of it’s usual norms, for example the norm given in [1, Section 3.10].

REMARK 1.2. a) The question of the approximate controllability of the
Navier-Stokes equations for incompressible fluids has been raised by
J.-L Lions in [20] and [21] for the no-slip boundary condition y = 0 on
(D\['#) x [0,T].
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b)

e)
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Note that (1.21), (1.22), and (1.23) are not strong enough to imply
v (., T) - yilr2() — 0. (1.24)

But, in the special case where ¢ = 0 in I'\I'#, Theorem 1.1 still holds
even if one requires also (1.24); see Remark 2.4 below.

Let us point out that, if I'# = I', there is, of course, no difference
between the slip case and the no-slip case. Theorem 1.1 is, up to
our knowledge, new even if I'# = I'; in this special case the proof of
Theorem 1.1 can be strongly simplified. If I'# =T, we get from (1.23)
that y* (-, T) — y in the Sobolev space H' () as k — oo, i.e. we prove
approximate controllability in H!(Q). So we give a positive answer
to J.—L. Lions’s conjecture [20]-[21] in dimension 2 when I'# = T.
Similarly, if, for some g > 0, {z € Q;d(z) < g0} C Q#, we get the
same result, i.e., approximate controllability in H'(2) for the Navier
boundary condition and for the no-slip boundary condition. To see
it, let, for &’ € (0,20/2), Q' = {& € Qd(z) > £'}, let [V = 9, let
Ig, ...\, ..., I, be the connected components of I', and let I'# be
the union of the I': such that Min { dist (z,I'#);2 € I} < <'. Apply
Theorem 1.1 with Q' for Q, Q' N Q# for Q#, T# for T#, and ¢ > 0
small enough. Then, for the (yk,pk) given by Theorem 1.1, extend p*
to all of Q, modify in a suitable way y* in {z € Q;d(z) < 2¢'} and
finally extend in a suitable way the new y* to all of Q.

Of course, by density, Theorem 1.1 still holds if y; is only of class C'1.
Moreover, as it will follow from our proof, one can also assume less
regularity on yp if one requires only that (yk,pk) are of class C'™ on
Q x (0,T]. See Remark 3.1 below for more details.

E. Fernandez-Cara and J. Real in [11] and E. Fernandez-Cara and
M. Gonzélez-Burgos in [10] have proved that, for 2-D and 3-D incom-
pressible fluids, the linear space spanned by the y(-,7") such that, for
some p: Q x [0,T] = R, one has (1.12), (1.13), (1.16), and the no-slip
boundary condition, is dense, with respect to the L*-norm in the set
of y1 : @ — R? satisfying (1.7) and y; = 0 on ['\I'#.

A.V. Fursikov and O.Yu Imanuvilov have proved in [13] [14] that, if
['# =T, then one has exact zero controllability in large time, i.e., for
any yo satisfying (1.6), there exist 7" > 0, y and p satisfying (1.12) to
(1.16) and y(-,7") = 0. In [15], they have recently obtained the same
result in the more general situation where ¢ = 0 in T\I'#. Again if
I'# =T, A.V. Fursikov has proved in [12] the exact zero controllability
in large time in dimension 3.

In [9] C. Fabre has obtained, in every dimension, an approximate con-
trollability of two natural “cut off” Navier-Stokes equations (with the
no-slip boundary condition).

As in our proof of the controllability of the 2-D Euler equations of in-
compressible perfect fluids [7, 8], the strategy of the proof of Theorem 1.1
relies on a method described in [5] and [6] under the name of “the return
method”. This was introduced in [4] for a stabilization problem. Roughly
speaking it consists in looking for (y, p) such that (1.12) to (1.15) hold with
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ON THE CONTROLLABILITY OF 2-D NAVIER-STOKES EQUATIONS 39

y=%pr=0

y(,0)=y(-,T) =0 in Q, (1.25)
and such that the linearized control system around (g, p) has a controllability
in a “good” sense. With such a (y,p) one may hope that there exists (y, p)
— close to (y,p) — satisfying the required conditions, at least if yo and y;
are “small”. For a suitable choice of (y, p), we will see that this is indeed
true, even if 39 and y; are not small. Note that the linearized control system
around (y, p) is

% — A2+ (y- V)24 (2-V)yg+ Vo =0in (Q\QF) x [0,7],  (1.26)
divz = 0 in Q x [0, 77, (1.27)

z-n=0on (T\I'*) x [0,T], (1.28)

oz-74curl z=0on (I\['*) x [0,7]. (1.29)

In [19] J.-L. Lions has proved that if ¥ = 0 this linear system is approxi-
matively controllable; in fact he has treated the no-slip case - i.e. the case
where one replaces (1.28)-(1.29) by z = 0 on (I'\I'#) x [0, 7] - but his proof
can be easily adapted to the boundary conditions considered here. Unfortu-
nately, if one takes y = 0, it is not clear how to deduce from the approximate
controllability of the linear system the existence of (y,p) satisfying (1.12)
to (1.17), even if yo and y; are small, for example in a sense given by a
C™-norm. For this reason, we will not use (y,p) = (0,0), but a (7, p) similar
to the one that we have constructed in [8] to prove the controllability of
the 2-D Euler equations of incompressible perfect fluids; this (y, p) is in fact
“large” so that, in some sense, “A” is small compared to “(y-V)+( -V)y”.

Our paper is organized as follows: in Section 2 we prove Theorem 1.1
when T# = () and then, in Section 3, deduce the general case from this
particular case.

2. PROOF OF THEOREM 1.1 WHEN ['# = ()

In this section, we assume that I'# = (); hence, by (1.1), Q# # (.
Let us prove a slightly stronger result than Theorem 1.1; this will be
useful when we will study the case I'# # (). Let ¢ € C*(T';R) be such that

/Fc =0. (2.1)

We are going to prove that Theorem 1.1 still holds if, in the statement of
this theorem, one replaces (1.8), (1.9) and (1.14) respectively by

yo -n = ¢ on T\I'¥, (2.2)
y1 -n = on T\I'", (2.3)
y(z,t) -n(z) = ((x), Y(z,t) € (T\[#) x [0,T]. (2.4)

Note that Theorem 1.1 corresponds to the case { = 0 and that ¢ is given (it

is not a control).
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Of course, reducing if necessary Q#, we may assume without loss of gen-
erality that

OF C Q, (2.5)

O#F = OF, (2.6)
Let us assume the following proposition, whose proof is given in Appendix
A,
PrOPOSITION 2.1. There exists a constant C* and there exisis a function
C:(0,400) = (0,400), such that, for all ¢ > 0, there exist §° € C*(Q x
[0, T];R) and 5° € C>(Q x [0,T];R?) satisfying

A =0 in (Q\QF) x 0,17, (2.7)

880;1 =0onl x[0,17, (2.8)

Support 6° is included in Q x [T/4,T), (2.9)

Support §° is included in Q x [T/4,T), (2.10)
06° 0%6°

— | < .

‘ 7 ‘ 5oz | S¢€on I' x 0,17, (2.11)

y* = V6° in (Q\QF) x [0, 7], (2.12)

div y° =0 in Q x [0, 7], (2.13)

and such that the following property holds: for all (zo,z) in C°°(;R?)?
such that

div 20 = 0 in Q, (2.14)
div zy = 0 in Q, (2.15)
zo-n=¢onl, (2.16)
zi-n=Conl, (2.17)

there exist 2 = Z(z9,21) in C°(Q x [0, T];R?) and 7 = 11°(z0, 21) in
C>(Q x [0, T];R) satisfying

8;; (V) (2 V) VRS = 0 in (Q\QF) < [0,T],  (2.18)
7 =0 in Qx[0,T/4], (2.19)

2f =z in Q x [0,T/4], (2.20)

(2, T) = 2 (x), Yo € Q such that d(z) > ¢, (2.21)

div 2 =0 in Q x [0, 7], (2.22)

2% (x,t) - n(x) = ((x), Y(x,t) € T x [0,T], (2.23)
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125 (s T Loy < €7 (120l 020y + 1211220
+leurl zo| 0 (q) + [curl ZI|LOO(Q)> . (2.24)

les@xpaies < CE) (olor@an + |alos@es) - (225)
Before going into the details of the proof, let us first briefly explain how
we use Proposition 2.1 to construct solutions (y,p) to our controllability
problem. We choose § > 0 “very small”. During the interval of time [0, (1 —
0)T'] we use no control: on this interval of time (y, p) is a solution of (1.12),
(1.13), (1.15) (1.16), and (2.4) with Q% = § and I'#* = @ . During the
interval of time [(1 — 6)7, 7] we decompose (y,p) in the following way
y=y+z+ R p=p+r+tyg,
where

e the map y is obtained by the following scaling of y°

and the function p is defined by

_ 1 /06 1 2 t—(1-§)T
)= —— Z Ve L Sl
o) == (G + 51w ) (o =20,
where 3° and 6° are defined in Proposition 2.1. Let us emphasize that
(y, p) satisfies (1.12), (1.13), and (1.14); moreover it satisfies “almost”

(1.15), at least if ¢ is small enough (see in particular (2.11)).
e the functions z and 7 are obtained by scaling z* and 7% in the following

way
z@o:f@ﬁ;ggm37

J

(1) = %ﬂf (wﬂ) ,

where z° and 7° are defined in Proposition 2.1 by taking

20 =y(,([1=0)T), 21 =y
e (R, q) is a correction term defined so that (y, p) is a solution of (1.12),
(1.13), (1.15), and (2.4), with [(1 — )7, T] instead of [0, T].
Note that, by construction,
y(-,T)=2(z,T)+ R

and z°(-,1") is “close” to y; if € is “small”. So it suffices to check that R is
“small”. We will prove that this is indeed the case if “c is small and ¢ is
very small”. Rouhgly speaking the reasons are the following. For & “very
small” the first leading term of

Iy + = _ _ _ _
QED _ A(g+2)+ (42 - D)+ )+ T+
is the term of order 1/6%, which is
W o o
2 T W V)V,
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and the second leading term is the term of order 1/§, which is

0z

ot

By construction these two terms vanish. Moreover y + z satisfies (2.4) and,

for § “small”, the leading term of y + z, which is g, satifies “almost” (1.15)

if ¢ is “small”. Note that, in the case where o = 0 on I', y satifies (1.15)

exactly for all . This is why, as mentioned above in b) of Remark 1.2, we
get a better convergence in this case; see also a) of Remark 2.4 below.

Let us now give the details of the proof. Let y* in C*°(Q x [0, T]; R?) and

p*in C°(Q x [0, T];R) be such that
ay*

—Ay+(y-V)z+(2-V)y+ Vr.

9 (y* - V)y*+Vp*=0in Q x [0,7T], (2.26)
div y* = 0in Q x [0, T7, (2.27)
y"-n=Conl x[0,T], (2.28)

oy -T+curl y =0o0n I x[0,7], (2.29)
y*(-,0) = yo in Q. (2.30)

The existence (and uniqueness up to an arbitrary function depending only
on time added to p*) can be proved by standard techniques; see [18, Chapitre
1, Théoreme 6.10] for the case o0 = 0, ( = 0, and Q simply connected; see
also [23] for 3-D Navier-Stokes equations.

Let § € (0,1/2] and let Q° = Q x [(1 — §)T,T]. For £ > 0, let y*°
C(Q%R?), 2% € C=(Q%R?), p™° € C™(Q";R), 7% € C(Q";R) be de-

fined by
1 1-HT
70 = 17 ( ] (2:31)
#en = 200 (o ) e
I a0c 1, 1 — 6T
Pet) = ( NG ) (+ 02000 e
wi e = 310 0= T (o D) e
for all (z,t) € Q°. Note that, by (2.10) and (2.31),
7 =01in Qx [(1-8T,T — (36/4)T], (2.35)

and, by (2.20) and (2.32),
229z, t) = y*(a, (1= 8)T), Y(a,t) € Ax [(1 = 8T, T — (36/4)T]. (2.36)
Similarly, by (2.9) and (2.33),

PFPO=0in Qx[(1-8)T,T — (35/4)T], (2.37)
and, by (2.19) and (2.34),
75 =01in Q x [(1=0)T,T — (36/4)T). (2.38)
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Let F=9 : Q x [0,T] — R? be defined by
F=°2 =0in Q x [0, (1-6)T), (2.39)

9
Fo0 = 2 (570 4 270 = AP 4 (7 V) + (550 V)

+ (77 - V)7 4+ Vit + Vs in Q°. (2.40)

Then — see in particular (2.35) to (2.40) — F=% € C*(Q x [0,T];R?). For
a = (aj,a3) € R? let at = (—ag,a;). By standard techniques — see also
(2.35) —, one shows the existence of y* in C°°(Q x [0, T]; R?) and p=° in
C>(Q x [0, T];R) such that

d g,6 _
L AP V) = 0 D [0, (1 H)T], (241)
8y675 e,6 e,6 e,6 2,6 €,é
o~ AV AT V)Yt Vptt =
+ (curl g% (y=° — 5% — 22N L in Q x [(1 = T, T], (2.42)
div y*° =0 in Q x [0, 77, (2.43)
% n=Conl x [0,77], (2.44)
oy™® -1 +curl Y% =0on I' x [0,7], (2.45)
¥ (-,0) = yo in Q. (2.46)

For simplicity, let us write y, p, z, 7, §, p, F, Q instead of y=°, p=°, 299 79,

g=d, p=0, F=9, Q°%. From (2.7), (2.12), (2.6), (2.31), and (2.33), we have

% —AG+§-Vi+Vp=0in (QQF) x [(1-6)T,T], (2.47)
curl g =0 in (Q\Q¥) x [(1 = §)T,T). (2.48)
From (2.18), (2.31), (2.32), and (2.34), we get
%—I— (J-V)z+ (2-V)g+ Vr =0in (Q\Q#) x [(1 -6)T,T],
which, with (2.40) and (2.47), implies that
F=0in (Q\Q%) x [(1-8§T,T). (2.49)

From (2.41), (2.42), (2.48), and (2.49), we obtain (1.12). From (2.43) to
(2.46), we obtain (1.13), (1.15), (1.16), and (2.4). So, in order to finish the
proof, it remains only to check that, given a compact K C €, given g > 0
and v > 0, we have, for a suitable choice of £ and 4,

/ d"ly(T) =yl <, (2.50)
Q

[y (- T) = yilw-100(0) < v, (2.51)
lcurl y(, T) — curl y1|peo gy < v (2.52)

Esaim: Cocv, May 1996, VoL. 1, pp. 35-75.



44 JEAN-MICHEL CORON

Let us first point out that, by (2.26) to (2.30), (2.41), and (2.43) to (2.46),
we have

y=y on Qx[0,(1-3T). (2.53)
Let R € C*(Q;R?) and ¢ € C*°(Q;R) be defined by
R=y—-—y—=z (2.54)
g=p—p—r. (2.55)
By (2.40), (2.42), (2.54), and (2.55), we have
JR
v AR+ ((R+y+2)-V)R+ (R-V)(y+ =2)

—Az4 (2-V)z — (curl )) R + Vg =01in Q. (2.56)

From (2.13), (2.22), (2.31), (2.32), (2.43), and (2.54), we get
div R=01in Q. (2.57)
From (2.8), (2.12), (2.23), (2.31), (2.32), (2.44), and (2.54), we obtain, with

=[(1=9)T. 7],
R-n=0onl x1I. (2.58)

From (2.7), (2.12), (2.5), (2.31), (2.32), (2.45), and (2.54), we get, with
w =curl R,

oR-T+w=—0y-7T—oz-T—curl zon I xI. (2.59)
From (2.10), (2.31), and (2.54), we get
R=y—zonQx{T}. (2.60)

We fix a compact K C 2 and two real numbers > 0 and v > 0. By (2.21),
(2.24), and (2.32), there exists 9 > 0 such that, for any ¢ € (0, 0] and for
any ¢ € (0,1/2],

/ d“|z(-,T) —y1| < v/2,
Q

|2, T) = yrlw-1.00) < V/2,
curl z(-,T) = curl y; on K.

Hence, by (2.60), in order to get (2.50), (2.51), and (2.52), it suffices to
check that, for suitable choices of € € (0,¢¢] and of § € (0,1/2],

/d“|R(-,T)| <v/2, (2.61)
Q
|R('7T)|W—1v°°(9) < V/27 (262)
From (2.10), (2.20), (2.31), (2.32), (2.53), and (2.54), we have
R=0o0nQx{(1-¥8§T}. (2.64)
Let us denote by C;(g),j > 1, various positive constants which may depend
on T, Yo, y1, ... ,92%, and ¢, but are independent of § in (0,1/2] and of s in

I. Furthermore let us denote by €, j > 1, various positive constants which
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may depend on T', yo, y1, . . . , Q%, but are independent of § in (0,1/2], of s in
I, and of ¢ in (0, 1]. For example, from (2.11), (2.12), (2.25), (2.31), (2.32),
and (2.59), we get the existence of C'y > 0 and C(g) > 0 such that, for all
£ € (0,1] and for all § € (0,C,(s)71],

9
|w|L°°(F><[(1—5)T,s] < Cl (5 + |R|Loo(§x[(1_5)T7s]) s Vs e I. (265)

Taking the curl of (2.56), we get, using (2.13), (2.22), (2.31), (2.32), and
(2.57),

aa—b: —Aw+ ((R+y+2)-V)w+ (R-V)curl z
— Afcurl 2) 4+ (z- V)(curl ) =0in Q. (2.66)
For s € I, let

I'=[(1-8T,s], Q' =Qx1T.

In order to obtain a pointwise estimate on w one uses the following lemma,
whose proof is given in Appendix B,

LEMMA 2.2. Let f € C*([0,+00);[0,400)) be such that

f8) = s, Vs € [0.1] (267
0< f/ <1 in[0,+00), (2.68)
f= ; in [2, +00). (2.69)

Let v € (0,1) and 3 € (0,1) be such that
a+p=1. (2.70)

Then there ewists a positive real number C' such that, for any t* € (0,C71,
for any 1 € C(Q x [0,t*];R), for any X € C*(Q x [0,t*];R?), and for any
Y € C®(Q x [0,t];R?) such that

%—A¢+((X+Y)-V)¢<O in T % [0, 1], (2.71)
< 1onl x[0,t7], (2.73)
ay
o < — 1 x—1 * .
‘an O™t on I' x [0,¢7], (2.74)
Y -n=0onT x][0,t7, (2.75)

we have, for all x in Q and all t in (0,t*],

3B
(@, ) < (exp CHX [T (guo,47)) (€XP CLZ [ V2Y | oo (x[0,04)))

(e~ (et («i)a))) - (276)
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In (2.76) as well as in the remaining part of this paper

0%y
IV2Y | Lo (ax[o,ev])) = ‘W
L1 e (@x[0,t4])
Lo N
O101, Lo (x[0,¢%]) dz} LOO(QX[O,t*])‘
We take § € (0,C(2)71] and we apply this lemma with
X(z,t) = (R+2)(z,t + (1 = &T), (2.77)
Y(z,t) =gz, t 4 (1 - )T), (2.78)

1
¢($7t) = =
Co (5 + [Blr=(on)
—t|R| e gn|Veurl z|peqry — t| = Acurl z + (2 - V)curl Z|LOO(Q/)] . (2.79)

[tw(z,t+ (1 -9)T)

a= %, (2.80)
8= % (2.81)
= s — (1—8)T (< 8T). (2.82)

Using (2.66), and (2.77) to (2.79), we get (2.71). From (2.64) and (2.79),
we get (2.72). From (2.65) and (2.79), we get (2.73). Note that, by (2.7),
(2.11), (2.12), (2.31), and (2.78), (2.74) holds if, for some Cy > 0, ¢ < C;*
and for some C3(c) > 0, § € (0,Cq()7 ). From (2.8), (2.12), (2.31), and
(2.78), we get (2.75). Moreover, by (2.31), (2.78), (2.81), and (2.82), we
have, for some C3(g) > 0,

2V ooy < L, VE € [0,87], V6 € (0,C3(2) 71 (2.83)

We choose a function f € C°°([0,+00);[0,400)) satistying (2.67) to (2. 69)
and apply Lemma 2.2 together with (2.25), (2.32), (2.77), and (2.83); w

get the existence of Cy > 0 and C4(g) > 0 such that, if ¢ € (0,C} 1], f
§ € (0,C4(2)71], and if

S|R[T oo (gny < 1, (2.84)
then, for all (x,¢) in Q x [(1 — 8)T, s],

jwi@, )] < Cale) (0| R|poe(qry +9)

—I—C4( + Rl )exp( (Cj&)af((g;))ﬁ))' (2.85)

In order to deduce estimates on R from (2.85), we use the following lemma,
whose proof is given in Appendix C,
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LEMMA 2.3. Let f € C*°([0,+00);[0,400)) be such that
f(s) =s, Vs €]0,1], (2.86)

1< f(s) < s, Vs €1, 400). (2.87)

Let o € (0,1] and let 5 € [0,1) be such that (2.70) holds. Then there
exists a positive real number C' such that, for any A in [1,400), for any B
in [0,4+o0), for any B* in [0,+oc), and for any ¢ in C*(R) such that
A € L(Q) and satisfying

|AY| < B+ B exp(—A” f(APd%)) in Q, (2.88)
=0 onl, (2.89)
one has
|V¢|<C(B—|—B*) in Q (2.90)
X m i, .

VA

B*
ol <€ (B4 ) e 0] (2.91)

B*\ .~

|| < C (B + 7) in €. (2.92)

Let us first finish the proof of Theorem 1.1 when €2 is simply connected
(with T# = ), and with (2.2), (2.3), and (2.4) instead of (1.8), (1.9), and
(1.14) ). Then one can write

R=V'tp:=(Vy)t, (2.93)

where ¢ € C°°(Q; R) satisfies
Ap =win Q, (2.94)
¢=0onl. (2.95)

Then, it follows from (2.85) and Lemma 2.3 — see (2.90) — that there exist
Cs > 0 and C5(g) > Cy(e) such that, if e € (0,C5 1), if § € (0,C5(2)~1], and
if (2.84) holds,
€
R (o] ! < C T =
Rl < Cs 7
Hence, if £ € (0,C5'/2] and if § € (0,C5()™'], then

1

Note that, by (2.64), (2.84) holds if s is close enough to (1 — §)T". Hence,
by (2.96), (2.84) holds for all s € I if £ € (0,C5"/2] and § € (0,C5(2)7!];
therefore, by (2.96),

|RlL~(q) < 05%, Ve € (0,C51/2], V8 € (0,Cs(e)™1]. (2.97)
Using (2.85), (2.97), and Lemma 2.3 — more precisely (2.91) and (2.92) -,
we have shown the existence of C's > 0 and Cg(g) > C5(¢) such that, for any
g in (0,C5'], any & in (0,Ces()™1], and any g in (0, 1],

lw| < Cse in K x [(1-0)T,1T1,
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lo| < Cge in Q x [(1-=8T,T],

C
"V (-, T)| pyqy < 765. (2.98)

These imply (2.61) to (2.63) if, for some C7 > 0 and Cr(g) > 0, ¢ € (0,C7"]
and § € (0,Cr()71].
We now turn to the case where {2 is not simply connected. Let [y, ... ,I';,
, ['y be the connected components of I'. For i € [1, g], let £ € C°°(Q;R)
be defined by

A& =0in Q, (2.99)
¢ =0on\I}, (2.100)
&€ =1onl;. (2.101)

Let ¢ € C°(;R) be still defined by (2.94) and (2.95). Then there exists a
(unique) A = (Aq,..., ;) € R such that

g
R=V%p+ ) \Vie (2.102)
=1
With suitable integration by parts, one easily shows, using (2.23), (2.32),
(2.94), (2.95), (2.99), (2.100), (2.101), and (2.102), that, for all i € [1, g],

OR 1o < (d A
G ]_1 (—dt /Qvg vgf), (2.103)
Lei 352
/QAR-V &= [ws, (2.104)

i o 9 0p O¢

9¢i 9gt 9gl ag
+Z/\ / (3901 dwy 3—9023901)7 (2:165)

/Q((R-V)y—l—(y-V)R—(curl g)RL) -ngi:/w(y-vgi), (2.106)

Q

¢ ¢
T 871 8n

/((R-V)z+(z-V)R)-ngi:/curl 2Vip. Ve + ¢
Q Q

g

- / Ve V(z-VE) + ZAj/ (curl 2)V4EE Ve, (2.107)
Q

]:1 FJ

/ Vq-V+ie =o. (2.108)
Q
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Let us point out that, by (2.100) and (2.101), one has for any (ay, ...., a,) in
RY,

(ZajVij = ) = (a; =0,V5 €[1,g]).

J=1
Hence

the matrix (/ Ve viei1<i<yg, 1<j< g) is invertible.(2.109)
Q

Let
g

A=Al
=1
We take the scalar product of (2.56) with VL&' and integrate the resulting
expression over Q. Then, using (2.25), (2.32), (2.103) to (2.108), and (2.109),
one gets that, for some Cs > 0 and Cs(¢) > 0, one has, for all 7 € [1, g,

dX;
] < Ca (luion + 1ot Olus@y Pl It Ol

15 TE,Oli@) + Cs(e) (1+ Vel + M) . (2110)
Note that, by (2.5), (2.7), (2.8), (2.11), (2.12), (2.31), (2.100), and (2.101),
one has, for some Cy > 0 and Cy(e) > 0,

2

7 VE| < 09§d+ Cole) 5 in @, Ve € (0,1, ¥ € (0,1 (2.111)

Straightforward computations shows that, for some C'jg > 0,

/d’exp—A%f(dQA%) < % Vi€ {0,1,2}, VA €[l,+o0). (2.112)
Q A2

Again, from (2.85) and Lemma 2.3, we get the existence of Cj; > 0 and
Ci1(g) > 0 such that, if e € (0,C1), if & € (0,Cy1(2) 7Y, and if (2.84) holds,

£
IVelpes(gy < Cu%, (2.113)
/ |d“V (-, C“ e, (2.114)
[@lreo(gry € Crie. (2.115)

From (2.85), (2.112), and (2.84), we get the existence of Cy3 > Cj; and
C2(g) > C11(2) such that, if £ € (0,C1), if 6 € (0,Cy9(2) 1] and if (2.84)
holds, then, for all ¢ in I,
€
|wlzeo(gry < 01257
(e D)z < Cra
" 1 A T
@) S Gy
|dw (-, t)|L1(a) < Chae,
|d*w(-, 1) p1) < Cra(e) V3,
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which, with (2.64), (2.102), (2.110), (2.111), and (2.113), imply that, for
some C13 > 0 and some Cj3(¢) > 0, one has, if § € (0,C43(c)7}]

|A|Loo(1/) < 0138. (2116)
In addition, using (2.102), for some C'14 > 0, one has
[Rle=(@) < Cra (IVeliseon + Al )+
which, with (2.113) and (2.116), implies that

€
| Rl (qr) 14( 11\/3 13
Hence there exist Cy5 > 0 and Cy5(¢) > 0 such that, if ¢ € (0701_41] and if
§ € (0,C15(2)71, then

2

Note that, by (2.64), (2.84) holds if s is close enough to (1 — §)T". Hence,

by (2.117), (2.84) holds for Q@ = Q' if ¢ € (0,C'] and § € (0,Cy5(2) Y]

which, with (2.85), (2.102), (2.114), (2.115), and (2.116), shows that (2.61)

to (2.63) hold if £ € (0,C¢'] and & € (0, () for some Cy > 0 and some

C6(¢) > 0. This ends the proof of Theorem 1.1 when I'* = §.

REMARK 2.4. a) It would be interesting to know if more careful estimates
could lead to a better convergence than the one given by (1.21) and
(1.22). For example one may wonder if, for suitable choices of § and ¢,
one could get, instead of (1.21) and (1.22), the stronger statement

Y (. T) =yl g2y — 0. (2.118)

In order to get such a convergence it might be interesting to take for §
a function of g, with £ small enough, and to get some new estimates on
#° and y° constructed in Appendix A. But, in the special case where

oc=0onT, (2.119)

(284) = (\/S|R|L°°(Q’) < Cise € 1) . (2117)

it follows from our construction that Theorem 1.1 still holds even if
one requires also (2.118). Indeed in this case (2.59) becomes

w=—curl zon I' X I, (2.120)
and therefore (2.65) becomes
|wlpeerxa-syrm < Cir(e),

for some Cy7() > 0. Using this inequality and the same arguments as
above, we now get that

| Rl (q) < Chs(e)Vo (2.121)
if ¢ € (0,Cg] and & € (0,C5'(2)] for some Cyg > 0 and some Cyg(e) >
0. Hence, if we let

e = 1/]67 6= 1/(018(1/l€) + kclg(l/k)2)7
(", 0") = (9,p) (= (v7°, p™)),
we get (1.23) and — see in particular (2.24) -
|yk('7T)|L°°(Q) < Chg, Yk > Cis,
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which, with (1.23), gives (2.118). Let us point out that, when (2.119)
holds, our proof can be simplified. Indeed, in this case,

curl z=0o0onI'x [
and so, with (2.120),
w=0onl x1. (2.122)

From (2.66), (2.94), (2.95), (2.102), (2.110), and (2.122), we get, with-
out using Lemma 2.2 and without using Lemma 2.3,

|R|Loo(Q) < 019(8)5

if e € (0,Cp4] and & € (0,C75!(g)] for some Cg > 0 and some Cig() >
0, which is stronger than (2.121). Let us remark also that, still if (2.119)
holds, one does not need (2.11) of Proposition 2.1 and that Proposition
2.1 with (2.11) omitted is already proved in [8]. Note that (2.119) holds
if € is the ball of radius 2(1 — @)/@ and that — take & = ¢ = 0 in the
proof given in the next section — Theorem 1.1 still holds even with
(2.118) required if, more generally,

o=0in I\['*.

b) The reason for which we have not been able to treat the no-slip bound-
ary condition (1.4) is that, with this boundary condition, we have not
been able to get good enough estimates on w.

3. PROOF OF THEOREM 1.1 WHEN I'# £ ()

Throughout all this section, we assume that
I'# (. (3.1)

Let yo € C°(Q;R?) and y; € C°°(2;R?) be two maps such that (1.6), (1.7),
(1.8), (1.9), and (1.10) hold; note that we do not assume that (1.11) holds.

Let €2 be a bounded nonempty connected open subset of R? of class C'°°, let
Jo € COO(Q;RZ) and let gy € C“(Q;Rz) satisfying

QcQ, (3.2)

(T\['#) C T := 99, (3.3)

I'#cQ, (3.4)

div o = 0 in Q, (3.5)

div §; = 0 in Q, (3.6)

Yo = o in Q, (3.7)

y1 =91 in Q. (3.8)

One easily checks that such €, o, §; exist. Let 6 € Coo(f; R) be such that
& =oin T\I'*#. (3.9)
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Fix some T' > 0 and take a function x € C*°(R;R) such that
x=1in (—OO,T/4]7

X =0in [T/2,+00). (3.10)
Let y € C* (5 X [O,T];RQ) and p’ € O™ (5 X [O,T];R) be such that
ay' ) -
N - Ay’ + ( -V)y' +Vp' =0in Q x [0,T], (3.11)
div y' = 0in Q x [0, 7], (3.12)

+ (1 X(0)g1 - (x), V(z,t) € T x[0,T], (3.13)

Qv
A
\_/
=g
S
A
\_/

a(x)y (z,t) - 7(z) + curl ¥/ (z,t) = x(t) ( - T
+curd 5oe) Yo € Fx T, (818

y'(-,0) = go in (3.15)
where nn denotes the unit outward normal vector field to the boundary of
Q and where 7 denotes the unit tangent vector field on I' such that (7,7#)
is a direct basis of R% Let K be a compact subset of QU I'#. By (3.2)
and (3.4), K is a (compact) subset of Q. Let us point out that in the
previous section (1.11) was not used. We apply the result of this previous
section with Q instead of Q, Q\Q instead of Q#, y/(T/2) instead of yo, i1
instead of y,[T/2,T] instead of [0, T],and 7, - 7 instead of (. Then it follows

that, given v > 0 and g > 0, there exist y”’ € C* (5 X [T/Q,T];Rz) and
p’ e (5 X [T/Q,T];R) such that

"

Support (%yt

S AV ) @) < (.11 (316

T
divy” =0in Q x [5 T, (3.17)
" ~ ~ ~ ~ T
y'(x,t) - n(x) =41 - (), V(z,t) €T X [§7T]7 (3.18)
- " S

y' -7 +curly" =0on ' x [57T]7 (3.19)

T T =
v'(5) =y (5) on Q, (3.20)

2 2

T T
"5 = P6S 3.21
| reg= [ veg, (3:21)
" (-, T) = g1l oo (i) + leurl y"(, T) = curl §1]pe (i) < v, (3.22)
ly" (. T) - §1|W_1,00(Q) < (3.23)
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(" (- T) = 51) | gy < v (3.24)
where d = dist (-,T). Let § : Q x [0, 7] — R? be defined by
j=y in Qx[0, Z) (3.25)
j=1y"in Qx [%, 1], (3.26)
and let p L Q) x x [0,7] = R be defined by
p=p inQx [0%), (3.27)
p=p"in Qx [%, 7). (3.28)

From (3.10) to (3.14), (3.16) to (3.21), and (3.25) to (3.28), we get that
g and p are of class C'™°. Let us define y € C>(Q x [0,T;R?) and p €
C*(Q x[0,T];R) by

y =7 in Q x [0,7], (3.29)

p=pin Q x[0,T]. (3.30)
From (3.2), (3.11), (3.16), (3.25), (3.26), (3.27), (3.28), (3.29), and (3.30),
we get
8t ~Ay+(y-Vy+Vp=0in Qx[0,7T7];

from (3.2), (3.12), (3.17), (3.25), (3.26), and (3.29), we get (1.13); from
(1.8), (1.9), (3.3), (3.14), (3.18), (3.25), (3.26), and (3.29), we get (1.14);
from (1.10), (3.9), (3.14), (3.19), (3.25), (3.26), and (3.29), we get (1.15).
From (3.2), (3.8), (3.15), (3.25), and (3.29), we get (1.16). From (3.2), (3.8),
(3.22), (3.23), (3.26), and (3.29), we get

ly(,T) = yilpe(xy + |eurl y(-, T) — curl y1| oy < 7,

[y, T) = y1lw—1.00 () < 1.
Note that, by (3.2),
d<din Q,
which, with (3.2), (3.8), (3.24), (3.26), and (3.29), implies that

|y (- T) = yi) oy < v

This ends the proof of Theorem 1.1.

REMARK 3.1. Theorem 1.1 still holds if one assumes 3y to be of class C'
provided that, instead of requiring that (y*, p¥) are of class C* on [0, T] x Q,
one requires only that they are of class C* on (0, 7] x Q and continuous on
[0, 7] x Q and in (1.12), (1.13), and (1.15) one replaces [0, 7] by (0,7]. This
follows directly from our proof when I'# = (). When I'# % {), it suffices to
now choose gy to be of class C'! only and to replace (3.13) and (3.14) by

y'(z,t) - a(x) = yo(z,1), V(x,t) € T x [0,T],

a(x)y'(z,t) - 7(x) + curl o (2, ) = x1(x, 1), V(z,t) € T x [0,T],
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where yo and y; are such that

Xo € C*(Qx (0, T R),
X1 € 00(5 X [OvT]vR)v
X1 € C™(Qx (0,T];R),

70) = %o
\1(2,0) = #(@)go(e) - 7(x) + curl io(a), Va 1) € I,
X0($7t) = ~1($) ) 7~”L($)7 V($7t) S [ x [T/QvT]v
Vi(e,8) = 5(2)g (@) - 7(z) + curl g (@), V(z,1) € T x [1/2,T].

In fact one can consider yg which are even less regular. Indeed, using the
class of weak solutions of the Navier-Stokes equations introduced by J.-L.
Lions in [18, Chapitre 1, Théoreme 6.10], one sees that it is enough to assume
that yo € H'(Q) and curl yo € L™ ().
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APPENDIX A. PROOF OF PROPOSITION 2.1

Let us first recall that, with condition (2.11) omitted, this proposition is
already proved in [8]. For X € C*(Q x [T1,T2); R?) such that
X-n=0on I x [Ty, Ty,
let us denote by ¢* the flow associated to X, i.e. the map ¢ in C*(Q x
(11, Ty] x [Ty, T2); Q), (x,t1,t2) — ¢~ (2, t1,t3) defined by
D™
oty
¢X (x,t,t) =z, Vo € Q, Vt € [t1, 1)
Let us denote by B(z,r) the closed ball in R? of radius r centered at € R”

Reducing Q#, if necessary, we may assume that Q¥ is a nonempty open
subset of R? of class C'™ satisfying (2.5) and such that

= X(¢X7t1)7

Q¥ is connected and simply connected. (A.1)

We will use the following lemma, whose proof is deferred.

LEMMA A.1. For any x in Q, there exists r(z) € (0,d(x)) such that, for
any € > 0, there exists 5% in C*(Q x [0, 1];R) such that

67 = 0 in 0 x ([0, i] U [%, 1]) , (A.2)

AGF =0 in (Q\Q¥) x [0,1], (A.3)
09

= 0 on I' x [0, 1], (A4)
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806,1’ 8206,1’
< .
‘ 97 ‘ 5.7 <eonl x[0,1], (A.5)
oV (B(a,r(2)),1,0) C QF. (A.6)

Let us fix 7 > 0 so that the following property holds:

(P) for all x in Q with d(z) < 7, there exists a unique P(z) € I' such that
d(z) = |z — P(x)| and, on {z € Q;d(z) < 7}, application P is of class

c*,
Let us recall that we denote by I'g, ..., I'y the connected components of I'.
Note that (P) implies that, for all ¢ € [0, g] and all j € [0, g] with i # j,
{z € Q; dist (2,1;) <5} N {z € Q; dist (z,T;) < 5} =0. (A7)
Let
€ (0,7) (A.9)
and let
Ko ={z € Q;d(z) > ¢}. (A.9)
We assume ¢ > 0 small enough so that — recall (2.5) —
OF C K. (A.10)
Let z1,...,2j,..., 2, be a finite sequence of points in € such that
Ko C UJL, Bz, (). (A.11)
Let to = T'/2, let t,, 4 (1/2) = T For j € [1,m], let
ti1 =to+ (j — 1)£+% (A.12)
t]_t]__+£—t0+j%. (A.13)

Let ¢ > 0. Let 6° € C*°(Q x [0, T]; R) be defined by
6° = 0in Q x [0, to]
and by, for all j € [1,m],
4m 4m

0% (z,t) = 704771%(9@ —(t—1tj_1)), V(o,t) € A X [tj_1,t;

- 1l (A14)

4m

R o 4m —
6°(z,t) = —T04m’ Iz, T(tj —t)), V(z,t) € 2 x [tj_%,tj]. (A.15)

Then — see in particular (A.2) to (A.5) — (2.7), (2.8), (2.9), and (2.11) are
satisfied. Note that, by (2.7), (2.8), (2.9), and (A.1), there exists ¢° in
C>(Q x [0, T];R) such that

Vi = —V16° in (Q\Q%) x [0, 77,

Support ©° C Q x [T/4,T).
Let
gs — VL¢6.
Then (2.10), (2.12), and (2.13) hold.
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The only step that remains is to construct Z° and II°. Let zp € C* (4R
and z; € C°°(Q;R?) be such that (2.14) to (2.17) hold. For simplicity omit
the index . Let w® € C°°(Q x [0, T];R) be defined by

0O

T (VO-V)w®=01in Q x [0,7], (A.16)
w?(+,0) = curl z in Q. (A.17)
Let 1* € C°°(Q;R) be defined by
Ap* = w0 (-, T) in Q, (A.18)
Pp*=0on I (A.19)
Let b € C*°(R;[0, 1]) be such that
b=1in (oo, %], (A.20)
_ .3
b=0in [Z, +00); (A.21)
let b € C*°(;R) and, for i € [0, g], let b; € C°°(Q;R) be defined by
/d _
b(z) = b ( f)) , Vo € Q, (A.22)
. — [ dist I'; —
bi(z) =b (%) , Vo € QL (A.23)
Let €% € C°°(Q; R) be such that
Support AE® ¢ QF, (A.24)
/ ALY £ 0, (A.25)
Q
€ =1 on Iy, (A.26)
€% =0 on I'\Ip. (A.27)
Let A= (A;;;0<¢<¢,0<j<g) be the matrix defined by
g
Ay= [ % i) e .91 (229
r, on
Let us check that
A is invertible. (A.29)
First, let us point out that, by (2.99), (2.100), (2.101), and (A.28),
Ay = [ VEVEL W) € Lo (A.30)
Q

Hence, by (2.109), if (A.29) does not hold, there exists (a1,...,a,) € RY

such that
90 < g
N - ;a] /Fl an’ Vi € [0,g],
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which gives

/QAfoz 850 zg: / jz:aj/QAgf. (A.31)

But (A.31) is in contradiction with (2.99) and (A.25). Hence (A.29) holds.
Let ¢° € C°°(Q;R) be such that

AP? = curl zg in Q, (A.32)
¥O=0onTl, (A.33)
let = € C*°(Q;R) be such that
AZ =0in Q, (A.34)
9= _ ConTy (A.35)
on 7 '
by (2.1) such a Z exists. Then there exists a (unique) (A7,...,A)) such that
g
2=Vl + VE+ Y AVEE (A.36)
7=1
Similarly, let 1! € C°°(Q;R) be such that
At = curl 21 in Q, (A.37)
¥'=0onT, (A.38)
and let (A{,...,A}) be such that
g
=Vl £ VE+ ) AlvEe (A.39)
7=1

v (A.29), there exists one (and only one) (po, ... ,u,) € R9T! such that
g g
8 - 8 0
7=0 7=1

We define ¢ € C>° (% R) by

=0y (1= b+ > (1 =€) (A.41)

=0
and @ € C*(Q x [O,T];R) by
G(,T) = Ad in Q. (A.43)

By (A.6), there exists 7 > 0 such that, for all j € [1,m] and for all z in
Bz, r(z)),

<L . —
dist (¢W4’"’ J(x,l,O),Q\Q#) > ). (A.44)
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Let b% € C°°(Q;R) be such that

Support b# C QF, (A.45)
b (x) = 1, Yo € QF such that dist (z, Q\Q%) > 7. (A.46)
Let g € C*°(R;R) be such that
T
=0in [ —o0, — A4
¢g=0in ( 00, 21m] (AA4T)
T

For j € [1,m], we define by induction on j, w’ € CO(Qx[t; —(1/2) tiv/2i R)
by requiring

W (z,t) = (1 —g(t — tj_%)b#(x))wj_l(x,t 1)

i=3
ol 1 PR, (A9
for all (z,t) in Q x [ti—(1/2)) ti—(1/2) + (T/(20m))] and
dw? T
ow’ J— —t. 1 ). .
T + (VO -V)w! =0in Q X (] + 50 +§) (A.50)

Using (A.2), (A.13), (A.15), (A.42), (A.48), (A.49), and (A.50), one sees
that w’ is of class C* on Q x [tim(1/2)s tig(1/2))- Let w: Qx[0,T] = R be
defined by

w=w’in Q x [0,], (A.51)

w:wjinﬁx( 7]_|_] Vj € [1,m]. (A.52)

Again one easily checks that w is of class C'*. Moreover, by (A.17) and
(A.51), it satisfies

w(+,0) = curl z. (A.53)

By (2.12), (A.2), (A.12), (A.13), (A.15), (A.16), (A.45), (A.49), (A.50),
(A.51), and (A.52), one has

Jw

5, T V)w=0in (Q\Q#) x [0,T]. (A.54)

We claim that
w@,T)=e(z,T), Yz € Q. (A.55)

Let us first consider the case where d(z) > §. Then, by (A.9), (A.11),
(A.44), and (A.46), there exists j € [1, m] such that

i
bF SV (£,1,0)) = 1. (A.56)
From (A.13), (A.50), and (A.52), we get
4 T T
= oE — ] Vo [ = . ]
w(z,t;) =w (qﬁ (w,tj_% + 20m7t]) ,t]__ + QOm) (A.57)
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But, using (A.2) , (A.13), and (A.15), we have
Vo | = T VH%’EJ -
¢ wvtj_%+M7tj :¢ ($7170)7

which, with (A.12), (A.48), (A.49), (A.56), and (A.57) implies that
_ - _ T
w(x7tj) =& ((bve (x7tj_% + QO—m,t]‘) ,tj_%) . (A.58)
But, by (A.2), (A.13), (A.14), and (A.42),

T
-~ ve (- , _ (Ve[ ,
(0% (s gt ) ms) =2 (7 (100 11)

which, with (A.58), gives
w(z,t;) =w(z,t;). (A.59)
Moreover, from (A.12), (A.13), (A.14), and (A.15), we get
oYz, tiiy ;) =z, Yo € Q, Vi € [1,m],
which, with (A.2), (A.12), (A.13), (A.15), (A.42), (A.49), (A.50), and (A.52),

implies that for all 7 € [1,m] and all 2 in Q,
w(a, tig) =0(z, timg) = w(z, ;) = @z, t). (A.60)
From (A.13), (A.59), and (A.60), we get
wz,T)=w(z,T).
Let us now study the case where d(Z) < /2. Then, by (2.99), (A.7), (A.8),
(A.9), (A.10), (A.18), (A.20), (A.21), (A.22), (A.23), (A.24), (A.41), and
(A.43),
&, T)=w’2,T),
which, with (A.16) and (A.42), implies that
@(0V(2,t,T),t) = ¢V (2,,T),1), Vt € [0,T]. (A.61)
In particular, by (A.51),
OV s, T)sty) = WO(@V(2,11,T),t1)
w(@V (w1, T),ty),

which, using again (A.2), (A.12), (A.13), (A.15), (A.42), (A.49), (A.50) and
(A.52), implies that

Hence (A.55) holds.
Let 1 € C*°(Q x [0, T];R) be defined by

Ay =win Q x [0,T], (A.62)
p=0onI x[0,1]. (A.63)

From (A.32), (A.33), (A.53), (A.62), and (A.63), we get
¥(-,0) =% in Q. (A.64)
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Note also that, by (2.101), (A.7), (A.8), (A.19), (A.21), (A.23), (A.26), and
(A.41),

1@ =0onlT,
which, with (A.43), (A.55), (A.62), and (A.63), implies that
(-, T) = in Q. (A.65)
Let (A;; ¢ €[0,9]) € COO([O T);R)9*! be such that (see (A.29))
g
ZA” pr / Vi, Vie[0,g], (A.66)
7=0
2 (0) = A%, Vi e [1,g], (A.67)
Ao(0) = 0. (A.68)
Finally, let z € C*°(Q x [0, T]; R?) be defined by
g
Z2=V4hp+ VE+ Y AV (A.69)
7=0

From (A.29), (A.36), (A.51), (A.62), (A.63), (A.66), (A.67), and (A.69), one
gets (2.20). From (A.34) and (A.69), one gets (2.22). From (2.100), (2.101),
(A.26), (A.27), (A.35) (A.63), and (A.69), one gets (2.23). Straightforward
estimations show that (2.24) hold for C* large enough (independent of zg, z;
and £.) Usual estimates give (2.25) for C'(¢) large enough but independent
of zp and z;. Let AJ = A} = 0. From (A.64), (A.65), (A.66) (A.67), and
(A.68), one gets

o0 o
ZA” ) = 812 A ;b vi € [0, g]. (A.70)

However, by (A7), (A.8), (A.20), (A.Ql) (A.22), (A.23), (A.28), and (A.41),

o aw ¢
r, on Z,u] . oOn
8 *
= ¢ ZA”,[L]7
which, with (A.29), (A.40) and (A.?O)7 1mphes that
A(T) = A}, Wi € [0, g]. (A.71)

From (A.21), (A.22), (A.23), and (A.41), we get
Vi (z) = Vb (z), Yo € Q such that d(z) > ¢
which, with (A.39), (A.65), (A.69), and (A.71), implies (2.21).
It remains to check the existence of 7 such that (2.18) and (2.19) hold.

It follows from (2.12), (2.13), (2.22), (2.99), (A.24), (A.34), (A.54), (A.62),
and (A.69) that

curl (%z +y-Vz+z- Vy) =0in (Q\Q#) x [0,7]. (A.72)
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Using (2.5), (2.7), (2.8), and (2.12), one gets

[ 5vete vy =0 vie g (A.73)
I
and that, by (A.28), (A.66), and (A.69),

0z

8t -7=0, Vi €[0,9] (A.74)

The existence of 7 such that (2.18) and (2.19) hold follows from (2.10),
(2.20), (A.1), (A.72), (A.73), and (A.74).

Let us now turn to the proof Lemma A.1. Let us first prove the following
LEmMA A.2. For any x in

VO(Z); 0 € C®(:R) such that A8 = 0 in Q\QF and%:o on I'} = R2
d
n

Indeed, if this lemma does not hold, there exist z in Q and V in R? such
that

V#0 (A.75)
and, for all # in C*°(;R) such that
Af =0 in Q\QF
and such that

0
% =0onlT,
one has
V.Vé(z) =

Let a € Q#¥\{z}. For a € Q#, let ¢* € L'(Q) N C>®(Q\{a,a};R) be the
solution of

Ap® =§, — §; in €,

/99“207
Q

8(1
5; =0onl.

Then, an easy density argument shows that
V-V (Z) =0, Ya € QF\{a,z}
and, so by analyticity of @ € Q\{a,z} — V¢*(Z) and by the connexity of

N\{a, 7},

V.-V (z) =0, Va € Q\{a, z}. (A.76)
But usual estimates on the Green functions show that
T —
VS‘Q ( ) |— a|2
which is in contradiction with (A.75) and (A.76). This finishes the proof of

Lemma A.2.
Let now fix x € Q. Let F' € C*°([0, 1]; ) be such that

F0) =z, (A.77)

+0(1) as a — 7,

F(1) € QF, (A.78)
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F' is an embedding. (A.79)
Let h € C*([0,1]; [0, 1]) be such that
1
h=0in [0, Z] , (A.80)
) 3
h=1in [Z, 1] , (A.81)
and let F' € C*([0,1];Q) be defined by
F(t) = Foh(t), vt € [0,1]. (A.82)
It follows easily from Lemma A.2, (A.77), (A.78), (A.80), (A.81), and (A.82)
that there exist an integer [, [ many functions hy, ..., hyin C*°([0, 1];R) and
[ many functions ', ...,8" in C*(Q;R) such that
13
Support h; C [Z, Z], Vie [1,1], (A.83)
A =0in Q\Q¥, Vi € [1,1], (A.84)
éi
8871 =0on T, Viell,l], (A.85)
and, if
— l —
6(z',t) = Zhi (t)0'(z"), V(2',t) € Q x [0, 1], (A.86)
=1
then
oV (x,t,0) = F(t), vt € [0,1]. (A.87)

Let v be a closed Jordan curve of class C'°° and let » > 0 be such that, if
we denote by Q7 the bounded connected component of R?\~,

yUQY CQ, (A.88)

VO (B(x,r),t,0) C X, Vi € [0,1], (A.89)
¢V (B(x,r),1,0) C QF, (A.90)

QF ¢ yuUQ. (A.91)

The existence of such v and r follows easily from (A.77), (A.78), (A.79),

(A.82), and (A.87). By (A.91) there exists a nonempty open ball Qf& such
that

OF c 0F, (A.92)

OFn(yuQ) =0. (A.93)

Let us assume, for the moment being, that the following lemma holds
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LemMma A.3. For any u € C*(v;R), for any v € C*(I;R), and for any
v > 0, there exist § € C°(Q;R) such that

A6 =0 in N\QF,
L

%:0 on F7

gl —

‘ b oo <
d dv
—(0lr) — — .
‘dr( Ir) dr cyr) <V

Let € > 0 be fixed. Let v > 0 and let i € [1,[]; by Lemma A.3, applied
with w = 0 and v = #'|r, there exists ' € C*°(Q;R) such that

A#" =0 in Q\QF, (A.94)
02’

8871 =0on I, (A.95)
‘| <, (A.96)

lco )

d . d _.
—(O|p) — — (@' A.97
O | <n (A.97)

Let 65% := 6 € C*°(Q x [0, 1];R) be defined by
l
0(a' 1) =D hi(t)(6' = 6')(a'), V(a',1) € A x [0,1]. (A.98)
=1

and take =7 = 6, with v small enough. From (A.83) and (A.98), we get
(A.2). From (A.84), (A.92), (A.94), and (A.98), we get (A.3). From (A.85),
(A.95), and (A.98), we get (A.4). From (A.97) and (A.98), we get (A.5) if v
is small enough. Let us check (A.6) for v small enough. Let K; be compact
subset of Q7 such that

¢V (B(x,r),t,0) C interior of Ky, Vt € [0,1]. (A.99)

The existence of such a compact subset follows from (A.89) (recall that
B(z,r) is a closed ball.) By (A.86), (A.93), (A.94), (A.96), and (A.98),

there exists a constant C' which does not depend on v such that
V0 — V0| 1o (1, x]0,1]) < C,s
which, with (A.90) and (A.99), implies (A.6) if v is small enough.

Finally we prove Lemma A.3. Note that this lemma is a controllability
result. We proceed as J.—L. Lions in [19, Chapitre 2, Section 5.3] where a
related result is proved. Assume that Lemma A.3 is false. Then there exist
a bounded measure M on Q and a distribution w € D'(T') on I of order 1
such that

Support M C #, (A.100)
ow
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0
< w 78@ >pi(1),p(T) —I—/ﬁgodM: 0, (A.102)

for all ¢ € C*°(Q;R) such that
Ap =0in Q\Qf&,

% =0onTI.
Let
s€(0,1/2). (A.103)
Then (see, for example, [22, Chapitre 1]), one easily verifies that
?T” € H™372(D), (A.104)
M e H™'75(Q). (A.105)

Using [22, Chapitre 2, Théoreme 6.6] as well as (A.100), (A.103), (A.104),
and (A.105), we get the existence of » € H™'7%(Q) such that, with M =
Jo dM,

Ay =M — M, (A.106)
oy dw
9= (A.107)

Let us notice that, in our situation, the meaning of (A.106)-(A.107) is (see
[22, Chapitre 2, (6.25)])

< Qb,Ak‘ >H_1_S(Q),HS+S(Q):< M7k‘ >(H3+ ( ) HS-I- M/

- < Ey k >H_%_S(F),H%+S(F) (A.108)

for any k € H3+*(Q) such that
% =0onT, (A.109)
Ak=0onl. (A.110)

n (A.108), H3*(Q2))" denotes, as usual, the dual space of H>T5(Q). In
partlcular taking £ = ¢ in (A. 108) we get, using (A.102),

< Qb,ASO >H_1_ ( )Hl-l- : _M/ (Alll)

But, for any f € C°°(Q;R) such that
-0
Q

Support f C Qf&,
there exists ¢ € C°°(Q;R) such that
Ap=fin Q,
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/99207
Q

% =0on I
Hence, from (A.111), we get the existence of a real number C' such that
= C on QF. (A.112)
By (A.100), (A.106), and (A.112), we have
M =0, (A.113)
Ay =0in D'(Q\7). (A.114)
From (A.93), (A.112), and (A.114), we get
P =Cin Q\(yU Q). (A.115)
But, from (A.105) and (A.106), we get
ve HY® (Q) (A.116)

which, with (A.103), (A.114), (A.116), and a classical trace theorem — see
e.g. [22, Chapitre 1, Théoreme 8.3] —, implies that

¢ =Cin Q. (A.117)
From (A.106), (A.113), and (A.117), we get
M =0. (A.118)
Using (A.108), (A.117), and (A.118), we get
Jw
<o >ty gitem= O (A.119)

for all k& € H>T(Q) such that (A.109) and (A.110) hold. But, for any

g € C*(I'), there exists k € C°°(Q) such that (A.109) and (A.110) hold. So
(A.119) implies that

which, with (A.101) and (A.118), gives a contradiction.

REMARK A.4. If one does not require (A.5), Lemma A.1 is already proved
in [8]. Note that the method we have used in our proof of Lemma A.1 works
also in higher dimension; this is not the case for the method used in [8].

ApPPENDIX B. PROOF OF LEMMA 2.2

Let us denote by 7 a positive real number such that, for any # in Q with
d(x) < 7, there exists a unique P(z) in 0% such that

d(z) = |¢ - P()|

and such that d is of class C*° on {z € Q;d(x) < n}. Let h be a function in
C* ([0, +00);[0,2/3]) such that

h' > 0in [0, 400),
h(s) =s, Vs €[0,1/2],
h(s) =1, Vs € [2/3, +00), (B.1)

Esaim: Cocv, May 1996, VoL. 1, pp. 35-75.



66 JEAN-MICHEL CORON

and let g : Q — [0, +00) be defined by

g(z) =1 (—d(x)) ; (B.2)
n
Then, g is of class C'*° and, for some positive real number Cf,
Vg < Cydin Q, (B.3)
C’l_ld2 <g<Cid*in Q. (B.4)
Note that )
Ag=—onT
n
and so, by (B.4), there exists a positive real number C3 such that
Ag > —Chgin Q. (B.5)

For a positive real number C, for t* € (0,C Y, for 1 € C*°(Q x [0,t*];R),
for X € COO(Q x [0,t*];R?), and Y € C°°(Q x [0,¢*]; R?) satisfying (2.71) to
(2.75), let ¥ € C°°(Q x (0,t*];[0, +00)) be defined by

P, 1) = (exp Ot X |7 ) (expCt%é|V2Y|Loo)

o~ (! (i) ) e 001

where, for simplicity, we have written | X | for | X|pe(qx[o,+]) and |V2Y |pe
for |V?Y | e (ax[o,r])- One has (recall (2.70))

0 3
;f (C|X|Loo ﬁ t——1|v2Y|L
o g By g -
* Gorat ((Ot)ﬁ)*ﬁ (Ot>ﬁ))¢’ (B.6)
9¢ 1 (g . 9 \=
axﬁ‘ﬁ(axi)f ((Ot)ﬁ)“ B

3= (~207 (i) - ™o r (i)
o Vol (1)’ ((d’ﬁ)) b (BS)

Let us denote by C';, 7 > 3, various positive constants which do not depend

on C,t*,¢, XY, 2, and ¢t. By (2.68), (B.3), (B.4), and (B.7) one has, for
some C'3 in (0, 400),

_I_

R I I (e

< |X|M+'Vg' f’((g )E

4C2¢2 Ct)s
S (CLM) 7 (BY)
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By (B.1), (B.2), and (B.7), one has
o9
Ox;
Let us now assume that d(z) < 277/3; then we have

SV O = YV, 0 9 e

(z,t) =01if d(z) > 2n/3. (B.10)

i i o9

+ Z;(Y ($7t) -Y (P($)7t))8$2 ($7t). (Bll)
Note that, by (2.75), (B.2), and (B.7), the first sum of the right hand side
of (B.11) vanishes. Therefore, since # — P(z) is colinear to n(Pz), (B.11),

together with (2.74), (B.3), (B.4), (B.7), and (B.10), implies that, for some
Cy in (0, 400),

|<Y-V>E|<G4(C§’t2 |v2Y|L) M) ma

From (2.67), (2.68), (2.69), (B.3), (B.4), (B.5), (B.6), (B.8), (B.9), and
(B.12), one easily verifies that, for some Cj5 in (0,400), one has, for all C'in
[Cs, +00) and for all t* € (0,C71Y,

%Qf AP+ (X +Y)- V) > 0in Qx (0, (B.13)
Since B
> 1onl x(0,t7]
P> 0in Qx (0,t],
we have, using (2.71), (2.72), (2.73), (B.13), and the maximum principle,
b < pin Qx (0, 7],

which, with (2.67), (2.68), (2.69), and (B.4), ends the proof of Lemma 2.2.

AprPENDIX C. PROOF OF LEMMA 2.3

Clearly, by linearity, we may assume that

B*=1. (C.1)
Let us also point out that, without loss of generality, we may assume that
f(s) =s, Vs € [0, +00). (C.2)

Indeed, this follows easily from the fact that, by (2.70), (2.86) and (2.87),
0 < (exp —A% f(APs?)) — exp —As® Cexp —A”.
From now on we assume that (C.1) and (C.2) hold; so (2.88) reads
|A%] < B + exp —Ad? in Q. (C.3)

Then let us point out that, again without loss of generality, we may assume
that

B=0. (C.4)
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Indeed, let A : Q — R be defined by

Ah = Min {B, A¢ +exp —Ad*}, (C.5)
h=0onl. (C.6)
Then, from (C.10), we get
|AR| < B, (C.7)
|A(x) — h)| < exp —Ad>. (C.8)
From (C.6) and (C.7) we get, for some Cy > 0 depending only on €2,
|R| 4+ |VA| < CoB in Q. (C.9)

Hence, replacing if necessary ¢ by 1 — h, we may assume (C.4) which with
(C.3) gives

|A%] < exp —Ad* in Q. (C.10)
Let G : (Z,2) — G(Z,z) be the Green function of the domain Q; G is a
function of class C* on {(z,2) € ﬁz; & # T} which satisfies

A,G(7,0) = 6z, VT €Q, (C.11)
G(z,-) = 0on I'\{z}, VZ € Q. (C.12)
By (2.89), (C.11), and (C.12) one has, for all  in Q,
B (E) = /Qa(x,x)mb(x). (C.13)
We differentiate (C.13) with respect to z and get
Vb (z) = /Qvgca(x, 2)Aip(z). (C.14)

Let n < 1 where 77 > 0 satisfies property (P) on page 55. Let us denote
by C;,7 > 1, various positive constants which may depend on € and 7 but
are independent of z,z,4¢,u € (0,1] and of A > 1. For example, for some
constant Cy > 0, one has the following classical estimates

Ci

|z — 2|

V.G (2, 2)| <  V(z,7) € O with 2 # 7, (C.15)

V.G (2, 2)| < Cid(x), ¥(z,7) € Q° with d(2) <

>3

and d(z) > g (C.16)
Let us first estimate |V (Z)| when

d(z) > (C.17)

N |3

Let, for v > 0,

Q, = {2 € Q;d(z) < v}.
By (C.10), (C.14), (C.15), (C.16), and (C.17), one has, for some Cy €
(0, +00),

2
Vo(z)] < Cy (/ dexp — Ad* —I—/ exp—A (ﬂ) ) . (Ca8)
$y/a 2y /4 4
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But, for some C5 in (0, +00),
/ dexp —Ad® < g
/s A

which, with (C.18), implies that, for some Cy in (0, +00),

_ C _
Vb (2)| < f’ VE € Q\Q, 5. (C.19)
We now turn to the case where
_ Ui
d =.
() <1

Let, for v > 0 and 7 € [0, ¢],

Q) = {z e Q; dist (2,1}) < v}.

One has '
Q, = U,
and, by (A.7),if v € [0,7), and if (i, j) € [0, g]? is such that i # j,
|2y — o] > 2(7— v), V(x1, 20) € Q) x Q. (C.20)
Without loss of generality, we may assume that
T e,

Then, proceeding as above and using (C.10), (C.14), (C.15), (C.16), and
(C.20), we get that, for some C5 in (0, +00),

Vo) < Cs( + (7)) (C.21)
with
(&) = /Q VoG, )| exp—Ad?. (C.22)

Let L be the length of I'g and let us fix a point on I'°; let us parametrise a
point in I'g by the arclength s € [0, L) from this fixed point - I'g is equipped
with the orientation given by the vector field 7-. One can define a parametri-
sation of Qg by assiocating to s in [0, L) and p in [0, 77) the unique point z in
Q9 such that d(z) = n and such that P(x) is the point of 'y corresponding
to the parameter s € [0, L). Let us denote by s and p the parameters corre-
sponding to z. Let us assume for the moment being that, for some positive
constant Cjg,

Coplpls =5+ (s =) +1p* = p*))
(s =52+ (p+p)*) (s =52+ (p-0)?)
From (C.22) and (C.23) we get that, for some C7 in (0, 4+00),

VaG(z, )| < (C.23)

n

1) < Cr / o (691 (&, p) + 2(2, p)

+1p* = p*lgs(z, p)) exp—Ap*dp  (C.24)
with

N |s — 3] .
ned = | G e ()
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N (s — 5)2 .
won) = | T e O
N o 1
w00 = || T e €
One has

s

L
g jvp < 2/ — — dS
1(@:0) o 2+ (p+p)A)(+(p—p)?)
. 1
< — ——du
o (ut(p+p?)(ut(p—p)?)
1 ptp
5 Z-In —5 C.28
2pp |p—pl (C.28)
which implies that, for some Cy in (0, +00),
n 1 [ 5
/ppgl(%p)eXp—Ap?dp < —/ In LEP exp —Ap?dp
0 2 Jo lp =7l
1 /+°° u4 pvVA 5
< —F= In ———— exp —u“du
ALy M p/A
Cs
< =2 .29
VA (€.29)
Clearly
+oo 1
z, < 2 —ds = C.30
92(0:7) /o s+ (p+p)? p+p (C:30)
T
< _7
p
which implies that
/77 (%, p) Aptdp < = /+OO 24 (C.31)
T,p)exp— <— exp —u”du. .
| paalip)exp—Apidp < | exp

Similarly, one has

e <2 :
gs3(z,p) < 2/ — ——ds
’ o (+ () +(p—p)?)

<« 2 / e L gs= il (C.32)

S e+ )e S+ (p—p)? (p+p2p—nl
T

< Q=

plp* — p?|

which implies that

n T +oo
plp? — p*lgs(z, p) exp —Ap*dp < —/ exp —u?du. C.33
J 7] Vi (€3

From (C.21), (C.24), (C.25), (C.26), (C.27), (C.29), (C.31), and (C.33),
we get that, for some Cy in (0, +00),

_ Cy
which, with (C.19), ends the proof of (2.90).
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We now prove (2.91). Let us first point out that, from (C.19), we get the
existence of C'jp in (0, 4+00) such that

C
IVélriae,,) < f- (C.34)
Define the integral
L = / / )" ppgr(z, p) exp —Ap. (C.35)

From (C.28), we get, for some Cy1,C12,C13, and C4 in (0, +00),

n/2
I < 011/ /“ln

exp —Ap?dp

nva 400
< Cnﬁ/ £ / ut In vy exp —vidudv
A2 o 0 lu— v
< o // +// W Y e —0?
ATz 0<u<2v 2u<u< VA lu— v
Cn Cis
S aeE (012+7A )
C
< ,u—jé;l' (C.36)
Let
I, = / / )1 pg2(Z, p) exp —Ap?dp. (C.37)
From (C.30), we get, for some C'j5 and Cjg in (0, +00),
I, < 015/ / exp —Ap*dp
QO
+ oo
< 015 / / exp —Avidudv
A1+ U+ v
+oo
< Cli / vexp —vidv | | — i
Alt3 0 o 2
C1e
< —. .
< A (C.38)
Let
Is —/ / ) plp? — p*lgs(z, p) exp —Ap*dp. (C.39)
From (C.32), we get7 for some Cy7 and Cig in (0, +00),
n/2
Is < 017/ / exp —Ap*dp
C1s
Cis. 4
A (C.40)
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From (C.21), (C.24), (C.35), (C.36), (C.37), (C.38), (C.39), and (C.40), we

obtain, for some Cyg in (0, 400),

C(19
# < —. .
| awe< s (C41)

Q
n/2
Of course, using the same method we can show that for some Cy in (0, +00)
C
[ a1vel <2 vien.gl
2, HA

which, with (C.34) and (C.41), ends the proof of (2.91) if (C.23) holds.
Let us prove that (C.23) holds. We argue by contradiction and so assume
that (C.23) does not hold. Then there exists a sequence {(Z, ) € Q) X

QY k € N} such that

T 75 xg, Vk € N,
|V5kG(fk,$k)| > kJp,Vk € N, (C.42)
with
- = a2 2 _ =2
Ji = pr ,'Okfk Sk|+,|8k2 il +,|’0§ Pil) . (C43)
((sk = Sk)> + (o + Pr)?) (s — 58)% + (pr — Pr)?)
One easily checks that
|zp — Zk| — 0 as k — +o0,
pr+ pr — 0 as k — +oo.
Let, for k € N,
1
Ap= ——— C.44
ol P— (C.44)
and let R be the rotation of R? such that
Rk(P(xk) — xk) € (—O0,0) x R.
Let also
f}; = /\kRk(fk — xk), (C.45)
}; = {/\kRk(x - xk); T € Q}, (C.46)

and let G : (a1, a2) — G% (a1, az) be the Green function of the open set Q7.
One has
L

ValG};(j};?O) Ak

kaG(fk,xk) (C.47)

Note that, by (C.44) and (C.45),
|2%| =1, Vk € N.

So, extracting if necessary a subsequence, we may assume without loss of
generality that (z};k € N) is convergent in R*

T — & as k — 4oo, with |z¥| = 1. (C.48)

Extracting again subsequences, we may assume without loss of generality
that either

Akpr — +00 as k — +oo, (C.49)
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or
Akpr — ¢ € [0,400) as k — +oo. (C.50)

Let us first study the case where (C.49) holds. In this case, if we denote by
('p2 the Green function of R% - i.e. G(ag,az) = (1/27)In|a; — az|— we have
using (C.48)

* [ =k . 1
|Va1Gk($k70)| - |VG1GR2($ 70)| =

2r [27|

(C.51)

as k — +oo. But one easily checks that
lim inf ﬁ > 1

k—+4oco Ak 4

which gives a contradiction with (C.42), (C.47), and (C.51).
Let us finally study the case where (C.50) holds. Let

QL =(—c,+0) xR

and, for k € [0, +00], let J7 : (2f x Q5)\{(a1,a1); a1 € R*} — R be defined
by

> 0,

e 1 % : %
Jk(al7a2) = m|vale(al702)| if as €89k7 (C52)
Jilar, a2) = |Va, (ng(az) - Va,Gi(ar, a2))] if az € 0,
where n} denotes the outward unit normal vector field on 9€;. Note that
J} is continuous. One has, using in particular (C.48) and (C.50),
Jr(@3,0) = JL(z7,0) as k — +oo. (C.53)
Note that -see (C.46) -
dist (0,09%) = Agpr, Yk € N. (C.54)

Moreover, as one easily cheks,

lim inf i > 0,
k—+oo AZpy
which gives a contradiction with (C.42), (C.47), (C.52), (C.53), and (C.54)
and ends the proof of (C.23).
Finally we prove (2.92). We could proceed as in the proof of (2.90); but
it is simpler to take advantage of the maximum principle and the conformal
mapping theorem in order to shorten the computations. For j € [0, g], let

E]' € C°°(;R) be defined by

—Atp; = exp —Adf in Q, (C.55)
p;=0onT, (C.56)
where d; = dist (-, ;). By (2.89), (C.10), (C.55), and (C.56),
g
|A¢| < _AZE] m Qv
7=0
g J—
=) ¢, onT,
7=0
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which, with the maximum principle, imply that

g
Wl < ¥, in Q. (C.57)
7=0

Let j € [0, ¢]; performing, if necessary, an inversion we may assume that
Q is included in the bounded connected component of R*\T'; (note that if

ho:

Q' — Qs a conformal map, then A(p o h) = (1/2)|VA|*((Ap) o h).)

Similarly, using the conformal mapping theorem, one sees that, without
loss of generality, we may assume that I'; is the unit circle. Then, let

By = {x € R%|z| < 1} and let b € C*(By;R) be defined by

— At = exp—A(l — |z|?) in By,

¥ =0in OB;.

By the maximum principle one has

¢; < ¢in By. (C.58)

But we have

Bla) = /|:| % (/Ou vexp —A(1 — U)Zdv) du. (C.59)

So, for some Cj; in (0, +00),

Px) < (0) = [ [Invvexp—A(1 — v)2dv
< Co fol(l —v)exp—A(l — v)idv

¢
< @,

which, with (C.57) and (C.58), ends the proof of (2.92).

(1]
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