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NUMERICAL APPROXIMATION OF NEMATIC LIQUID CRYSTAL FLOWS
GOVERNED BY THE ERICKSEN-LESLIE EQUATIONS ∗

Noel J. Walkington
1

Abstract. Numerical approximation of the flow of liquid crystals governed by the Ericksen-Leslie
equations is considered. Care is taken to develop numerical schemes which inherit the Hamiltonian
structure of these equations and associated stability properties. For a large class of material parameters
compactness of the discrete solutions is established which guarantees convergence.
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1. Introduction

Numerical approximation of the Ericksen-Leslie equations is considered. These equations model the motion
of nematic liquid crystalline fluids and take the form

ρv̇ − div(T ) = ρf, div(v) = 0, (1.1)

(ρr̄2)d̈ + g − div(C) = ρm, |d| = 1, (1.2)

along with appropriate initial and boundary conditions. Here v is the fluid velocity, d is a unit vector character-
izing the orientation of the liquid crystal molecules, and ḋ = dt + (v.∇)d is the convected time derivative. The
first equation models the balance or linear momentum and the second the balance of angular momentum. The
quantity r̄ appearing in the inertial term of the angular momentum equation represents the radius of gyration
of the molecules and is small (order the length of the molecule). For this reason this term is usually neglected;
it is only included here to illustrate the origin of the equation for d, and to emphasize that the equation changes
type from hyperbolic to parabolic when this term is omitted.

The Cauchy stress of a nematic liquid crystal takes the form

T = −pI + Te + Tv ≡ −pI − (∇d)T

[
∂W
∂∇d

]
+ Tv,
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where Te is the elastic stress, and the viscous stress is

Tv = Tv(d, d̊, v) = γ0(dT D(v)d)d ⊗ d + γ̂1(d̊ ⊗ d)sym − γ1(d̊ ⊗ d)skew (1.3)
+ μD(v) + γ̂2(D(v)d ⊗ d)sym − γ2(D(v)d ⊗ d)skew.

Here D(v) and W (v) are the skew and symmetric parts of ∇v; d̊ = ḋ−W (v)d; and W = W(d,∇d) is the elastic
energy of the nematic [11]. The stress couples in the angular momentum equation are

g = θd + ge + gv ≡ θd +
(

∂W
∂d

)
+ γ1d̊ + γ2D(v)d, and C =

[
∂W
∂∇d

]
·

We have chosen to group the viscous terms into symmetric and skew terms2. In terms of the usual constants

γ0 = α1, γ1 = α3 − α2, γ̂1 = α3 + α2, μ = α4, γ2 = α6 − α5, γ̂2 = α6 + α5.

Restrictions on these constants to guarantee that the viscous terms are dissipative are given in Section 2.2.
In particular γ1 is required to be non-negative and below it will be assumed that γ1 > 0 so that the angular
momentum equation becomes parabolic upon setting r̄ = 0.

To date there is no satisfactory existence theory for the Ericksen-Leslie equations in their full generality. The
non-convex constraint on the director presents many challenges to the existence theory and to the construction
of numerical schemes. Frequently a penalized approximation of this constraint is used to circumvent these
difficulties. The other major difficulty arises from the quartic terms in the Oseen Frank energy W . The
compactness properties of the corresponding Euler Lagrange equation, which is vector valued, are not well
developed [30]. For this reason we will consider the penalized Ericksen-Leslie equations and quadratic elastic
energies, in which case the elastic terms are linear in d.

In this paper we establish convergence of numerical schemes for the penalized approximation of the Ericksen-
Leslie equations with a quadratic elastic energy. The Hamiltonian structure facilitates the development of
conforming C0 schemes which have solutions bounded independently of the penalty parameter. The ideas
introduced here can also be used to simplify the Hermite and mixed methods commonly used for the simplified
model equations introduced by Lin and Liu [25]. Our analysis allows spatial discretization by finite elements (or
spectral bases) of arbitrary order; however, for technical reasons the second order Crank Nicolson time stepping
scheme (or the first order implicit Euler scheme) is considered; the extension to higher order time stepping
schemes is not immediate.

In the mechanics literature physically correct expressions for the elastic energy and dissipative terms are
developed under the assumption that the constraints div(v) = 0 and |d| = 1 are satisfied exactly. Numerical
approximations only approximate these constraints and it is important to extend the definitions of the energy
and dissipative terms so that the discrete schemes retain the essential properties of the underlying equations.
This topic is taken up in Section 2 where the Hamiltonian structure, energy estimate, and weak statements, of
the Ericksen-Leslie equations are elucidated. Section 3 then considers the numerical approximation of solutions
to the weak problem and establishes convergence.

1.1. Related results

Variational principles to characterize the equilibrium states of (nematic) liquid crystals were developed by
Oseen [31] and Frank [11]. Equations modeling the dynamics of a liquid crystal flow were developed by
Ericksen [8,10] and Leslie [20,21] within the context of continuum mechanics. The texts by Virga [33] and
Stewart [32] provide a modern derivation of these models.

Hardt, Kinderlehrer and Lin [15–17] analyze the variational problem characterizing equilibrium configura-
tions. The constraint |d| = 1 on the director gives rise to many of the phenomena encountered with the harmonic

2Sometimes g is defined to have the opposite sign.
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mapping problem [4,19,22,24]. In [23] Lin introduced the simplified system consisting of a Navier-Stokes type
of equation coupled with a gradient flow equation (see Sect. 2.5 below). This system retains some of the es-
sential properties of the original Ericksen-Leslie equations and an analysis of this problem (with the constraint
penalized) was carried out in [25,26].

The analysis by Lin and Liu in [25] facilitated the development and analysis of numerical schemes for this
class of problems. Direct application of their ideas results in numerical schemes which require either Hermite
elements or a mixed method [28,29]. Subsequently there have been many developments and refinements. Various
mixed methods have been considered in [2,3,13]; spectral schemes have been developed in [6]; methods with
estimates independent of the penalty parameter were developed in [3,27]; and “semi-implicit” schemes which
only require the solution of a linear system at each time step are developed in [13]. All of these schemes for
this simplified model utilize the first order implicit Euler stepping scheme to evolve the solution in time. In [34]
the author developed numerical schemes of arbitrary order in space and time for this class of problems and
established convergence.

1.2. Notation

It will be assumed that the equations are to be solved in a bounded connected Lipschitz domain Ω ⊂ R
n

with n = 2 or n = 3. Occasionally formulae or estimates for the two and three dimensional case differ slightly.
In this situation the more technical three dimensional case will be considered. Inner products of vectors in R

n

will be denoted by (., .) as will be the Frobenius inner product of matrices in R
n×n; the corresponding norms

are written as |.|. If a ∈ R
n then rot(a)ik = εijkaj denotes the skew matrix with axial vector a ∈ R

n; that is,
rot(a)b = a × b.

Divergences of vectors v ∈ R
n and matrices T ∈ R

n×n are denoted div(v) = vi,i and div(T )j = Tij,j

respectively. Here indices after the comma represent partial derivatives and the summation convention is used.
Gradients of vector valued quantities are interpreted as matrices, (∇v)ij = vi,j . The symmetric part of the such
a gradient is written as D(u), and the skew part as W (v).

Standard notation is used for the Lebesgue spaces, Lp(Ω), and Sobolev spaces, W 1,p(Ω), W 1,p
0 (Ω), and

H1(Ω) = W 1,2(Ω). Spaces of Bochner integrable functions from a time interval [0, T ] to a Banach space U will
be denoted as Lp[0, T ; U ], and P�[0, T ; U ] will indicate functions of the form u(t) =

∑�
i=0 pi(t)ui with ui ∈ U

and pi ∈ P�(0, T ), the space of polynomials with degree less than or equal to �. The derivative of u ∈ Lp[0, T ; U ]
is denoted as u′ or ut. The notation U ↪→ H denotes a continuous embedding of Banach spaces, and U ↪→→ H
denotes a compact embedding.

2. Structure of the Ericksen-Leslie equations

In this section the essential mathematical properties of the Ericksen-Leslie equations are reviewed. These
equations have a natural Hamiltonian structure which facilitates the development of numerical schemes which
inherit the natural energy estimate.

2.1. Hamiltonian structure and energy estimate

Equations (1.1)-(1.2) may be derived from Hamilton’s principle. If X ∈ Ωr denotes a Lagrangian reference
domain, and x(X, t) denotes the flow map, then

δ

∫ t2

t1

∫
Ωr

{
−(ρr/2)(|ẋ|2 + r̄2|ḋ|2) + W

}
dX dt =

∫ t2

t1

∫
Ω(t)

{
(f, δx) + (m, δd) − (Tv,∇δx)

+ (Tv, rot(δd)) − (Cv,∇δd)
}

dxdt,

under variations (x, d) �→ (x + δx, d + δd) satisfying div(δx) = 0 and δd · d = 0. The last three terms on the
right model the dissipative mechanisms. Typically Tv is non-symmetric which gives rise to a coupling with
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the angular momentum equation (recall that rot(δd) is skew). The term Cv models dissipative interactions
between the liquid crystal molecules and is set equal to zero in the classical Ericksen-Leslie equations.

This class of problems admit natural weak statements which inherit the natural energy estimates. Specifically,
using the identity

div
(

(∇d)T

[
∂W
∂∇d

])
= ∇W(d,∇d) + (∇d)T

(
div
[

∂W
∂∇d

]
−
(

∂W
∂d

))
,

it follows that

div(Te) = ∇W(d,∇d) + (∇d)T
(
div(C) − ge

)
= ∇W(d,∇d) + (∇d)T

(
(ρr̄2)d̈ + θd + gv − ρm

)
.

Absorbing the gradient of W into the pressure and noting that (∇d)T d = ∇(|d|2/2) = 0 gives the following
form of the linear momentum equation:

ρv̇ + ∇p − div(Tv) + (∇d)T
(
(ρr̄2)d̈ + gv − ρm

)
= ρf.

The natural weak statements of the momentum equations (assuming homogeneous boundary data) then become∫
Ω

ρ(v̇, w) − (p, div(w)) + (Tv,∇w) +
(
(ρr̄2)d̈ + gv − ρm, (∇d)w

)
=
∫

Ω

ρ(f, w),

and ∫
Ω

(ρr̄2)(d̈, e) + (gv, e) +
((

∂W
∂d

)
, e

)
+
([

∂W
∂∇d

]
, (∇e)

)
+ (θd, e) =

∫
Ω

ρ(m, e).

Formally selecting w = v and e = dt and assuming div(v) = 0 and |d| = 1 gives the energy estimate

d
dt

∫
Ω

(
(ρ/2)(|v|2 + r̄2|ḋ|2) + W(d,∇d)

)
+
∫

Ω

(Tv,∇v) + (gv, ḋ) =
∫

Ω

(ρf, v) + (ρm.ḋ). (2.1)

The middle term is the dissipation and the coefficients appearing in equation (1.3) are restricted to guarantee
that the integrand is non-negative. Below we assume that r̄ 	 1 so that the inertial term in the angular
momentum equation can be neglected.

2.2. Dissipation

Using equation (1.3) to expand the dissipative term in the energy estimate (2.1) gives

Tv · (∇v) + (gv, ḋ) = γ0(dT D(v)d)2 + γ1|d̊|2 + μ|D(v)|2 + γ̂2|D(v)d|2 + (γ̂1 + γ2)d̊T D(v)d.

The coefficients are restricted to guarantee that the term (γ̂1 + γ2)d̊T D(v)d is dominated by the others.
• The expression Tv : (∇v) + gv.ḋ will be non-negative independently of the constraints div(v) = 0 and
|d| = 1 if:

γ0, γ1, μ ≥ 0, and γ1γ̂2 ≥ (1/4)(γ̂1 + γ2)2. (2.2)
• When div(v) = 0 and |d| = 1 it follows that tr(D(v)) = 0 and d̊.d = 0. In this situation Tv.(∇v) +

gv.ḋ ≥ 0 whenever, γ1, μ ≥ 0 and

2γ0 + 3μ + 2γ̂2 ≥ 0, and γ1(2μ + γ̂2) ≥ (γ̂1 + γ2)2/4.

Since numerical schemes will not satisfy the constraints it may be necessary to modify to formulae for
the dissipative terms to guarantee dissipation. For example, replacing D(v) by D(v)− (div(v)/n)I or d̊

by (I − d ⊗ d/|d|2)d̊.
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2.3. Boundary conditions

Below homogeneous Dirichlet boundary data will be assumed for the velocity, v|∂Ω = 0, and it will be assumed
that d(t)|∂Ω = d0 where d0 ∈ H1(Ω)n is independent of time. This eliminates the need for translation arguments
which are standard but technical [13]. Since all practical flow codes (and experiments) need to accommodate
more general boundary conditions we briefly review these in this section.

Consider the situation where ∂Ω = Γ̄0 ∩ Γ̄1 with v = v0 on Γ0 and a traction boundary condition on Γ1 for
the linear momentum equation. For stability reasons, we always write

(v.∇)v = (1/2)
(
(v.∇)v + div(v ⊗ v)

)
= (1/2)

(
vjvi,j + (vivj),j

)
, when div(v) = 0.

Since the elastic part of the stress tensor does not get integrated by parts the natural boundary condition of
the weak statement used for the numerical scheme is

(
−pI + Tv − (ρ/2)v ⊗ v

)
n = t.

Similarly, if ∂Ω = Γ̄2 ∩ Γ̄3 we may consider boundary data d = d0 on Γ2 and specification of the elastic couple
[∂W/∂∇d]n = c on Γ3. The natural weak statement of the Ericksen-Leslie equations is then∫

Ω

{
ρ(vt, w) + (ρ/2)

(
((v.∇)v, w) − ((v.∇)w, v)

)
− (p, div(w)) + (Tv,∇w)

+ (gv − ρm, (∇d)w)
}

=
∫

Ω

ρ(f, w) +
∫

Γ1

(t, w),∫
Ω

(gv, e) +
((

∂W
∂d

)
, e

)
+
([

∂W
∂∇d

]
,∇e

)
+ (θd, e) =

∫
Ω

ρ(m, e) +
∫

Γ3

(c, e),

for test functions (w, e) vanishing on Γ0 × Γ2; w|Γ0 = 0, and e|Γ2 = 0.
When v|Γ0 = 0 and d|Γ2 = d0 is independent of time (presumably with |d0| = 1), then (w, e) = (v, dt) is an

admissible test function. This choice gives

d
dt

∫
Ω

(
(ρ/2)|v|2 + W(d,∇d)

)
+
∫

Ω

(
(Tv,∇v) + (gv.ḋ)

)
=
∫

Ω

(
ρ(f, v) + ρ(m, ḋ)

)
+
∫

Γ1

(t, v) +
∫

Γ3

(c, dt).

Since dt is not expected to have a trace on Γ3, it is necessary assume that the boundary couple is differentiable
in time and to write ∫ T

0

∫
Γ3

(c, dt) =
∫

Γ3

(c, d)|T0 −
∫ T

0

∫
Γ3

(ct, d).

2.4. Oseen Frank energy

The classical Oseen-Frank strain energy function is

W(d,∇d) = (k1/2) div(d)2 + (k2/2) (d.curl(d) + q)2 + (1/2)(k2 − k4)
(
|∇d|2 − div(d)2

− |curl(d)|2
)

+ (k3/2) |d× curl(d)|2.

The elastic constants satisfy ki ≥ 0, i = 1, 2, 3, and |k4| ≤ k2, and q is the chiral constant. Table 1 tabulates
the elastic stresses and couples that result from each of the terms in this energy. If k = k1 = k2 = k3 and
k4 = q = 0 the identity |curl(d)|2 = (d.curl(d))2 + |d × curl(d)|2 for unit vectors shows W(d,∇d) = (k/2)|∇d|2.

The term with coefficient k2 − k4 is a null Lagrangian (pure divergence) [8,9],

|∇d|2 − |curl(d)|2 − div(d)2 = tr((∇d)2) − div(d)2 = div
(
(∇d)d − div(d)d

)
.
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Table 1. Components of the elastic stresses and couples.

Energy W C = ∂W/∂∇d ge = ∂W/∂d w(d, e) = 〈δW/δd, e〉
(1/2)|∇d|2 ∇d 0 (∇d,∇e)

(1/2)div(d)2 div(d)I 0 (div(d), div(e))

d.curl(d) rot(d) curl(d) d.curl(e) + e.curl(d)

(1/2)|curl(d)|2 2W (d) 0 2(W (d),∇e) = 2(W (d),W (e))

(1/2)|d.curl(d)|2 (d.curl(d))rot(d) (d.curl(d))curl(d) (d.curl(d))
(
d.curl(d)d + e.curl(d)

)
(1/2)|d × curl(d)|2 4(W (d)d ⊗ d)skew 4W (d)T W (d)d 4

(
W (d)d,W (e)d + W (d)e

)

For static variational problems the integral of this term depends only upon the boundary data, so k4 can be
selected for mathematical convenience [5]. Note, though, that different values of k4 will give rise to different
natural boundary conditions on the portion of the boundary where d is not specified.

Since numerical approximations only approximate the constraint |d| = 1 it is necessary to write the energy
in a form so that its extension to non-unit vectors preserves essential coercivity properties. For example, when
|d| = 1 the term d.curl(d) + q may be written as d.(curl(d) + qd), and the energy may be written as

W(d,∇d) = (k1/2) div(d)2 + (1/2)min(k2, k3)|curl(d) + qd|2 (2.3)
+ (1/2)max(k2 − k3, 0)(d.(curl(d) + qd))2 + (1/2)max(k3 − k2, 0)|d × curl(d)|2

+ (1/2)(k2 − k4)
(
|∇d|2 − div(d)2 − |curl(d)|2

)
.

If 0 < (k2 − k4) ≤ (1/2)min(k1, k2, k3) then there are constants Ce, ce > 0 such that this expression satisfies a
G̊arding inequality,

W (d,∇d) ≥ ce|∇d|2 − Ce|d|2,
for arbitrary functions d ∈ H1(Ω)n.

The quartic terms in the Oseen Frank energy give rise to terms of the form ((∇d)d, (∇d)e) in the weak
statements of the angular momentum equation. The theory for vector valued problems of this type is in its
infancy and technical [7,30]. To date there is no existence theory for the Ericksen-Leslie equations for the most
general form of the Oseen Frank energy. To circumvent this issue it will be assumed that the elastic energy is
quadratic in the director; that is, k2 = k3.

2.5. Lin-Liu equation

The equations

ρv̇ + ∇p − div(μD(v)) + k(∇d)T Δd = ρf,

γḋ − kΔd + θd = ρm,

have a similar mathematical structure to the Ericksen-Leslie equations and were studied by Lin and Liu [22,25].
The similarity with the Ericksen-Leslie equations is seen upon setting

k1 = k2 = k3 = k, γ1 = γ, γ0 = γ̂1 = γ2 = γ̂2 = 0,

to get

ρv̇ + ∇p − div
(
μD(v) − γ(d̊ ⊗ d)skew

)
+ k(∇d)T Δd = ρf,

γd̊ − kΔd + θd = ρm,

where d̊ = ḋ − W (v)d.
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The numerical approximation of solutions to the Lin-Liu equations has been studied extensively [2,6,13,27–29].
These papers consider approximations of the weak statement∫

Ω

(ρv̇, w) − (p, div(w)) + (μD(v), D(w)) + (kΔd, (w.∇)d) =
∫

Ω

(ρf, w),∫
Ω

(γḋ, e) − (kΔd, e) + (θd, e) =
∫

Ω

(ρm, e),

and an implicit Euler approximation of the time derivative. Since a conforming Galerkin finite element approx-
imations of this weak statement would require Hermite elements, mixed formulations are often employed to
circumvent this.

The use of Hermite elements or a mixed method can be avoided using the techniques introduced in Section 2.1
for the Ericksen-Leslie equations. Eliminating Δd from the linear momentum equation gives

ρv̇ + ∇p − div(μD(v)) + (∇d)T (γḋ − ρm) = ρf.

The natural weak statement is then∫
Ω

(ρv̇, w) − (p, div(w)) + (μD(v), D(w)) + (γḋ − ρm, (w · ∇)d) =
∫

Ω

(ρf, w),∫
Ω

(γḋ, e) + (k∇d,∇e) + (θd, e) =
∫

Ω

m.e.

Selecting w = v and e = dt and adding gives the estimate

(1/2)
d
dt

∫
Ω

(
ρ|v|2 + k|∇d|2

)
+
∫

Ω

(
μ|D(v)|2 + γ|ḋ|2

)
=
∫

Ω

ρ(f.v + m.ḋ).

Stable and convergent numerical schemes of arbitrary order in time and space were developed by the author
in [34] for (penalized) Galerkin approximations of problems having this structure.

2.6. Penalized weak formulation

The failure of a satisfactory existence theory for the Ericksen-Leslie equations can be attributed to the
constraint |d| = 1; in particular, the correct space, and estimates, for the associated Lagrange multiplier are
not known. In a numerical context this issue is particularly acute [1,18] since “locking” occurs: the only
polynomial functions satisfying the constraint |dh| = 1 are constants. To circumvent these difficulties the
constraint is approximated by allowing d to take values in R

n and adding a penalty term to the energy,
Wε(d,∇d) = W(d,∇d) + (1/ε)F (d), where F ∈ C1(Rn, R) is non-negative and vanishes if and only if |d| = 1.
The prototypical example with quadratic growth is

F (d) =
{

(1/2)(|d|2 − 1)2 |d| ≤
√

3
2|d|2 − 4 |d| ≥

√
3,

DF (d) =
{

2(|d|2 − 1)d |d| ≤
√

3
4d |d| ≥

√
3.

(2.4)

When the elastic energy is quadratic in d, we show that numerical solutions converge to solutions of the following
weak statement of the penalized Ericksen-Leslie equations. If the data d0 ∈ H1(Ω)n satisfies |d0| ≤ 1 on ∂Ω,
and v0 ∈ L2(Ω)n, d0 ∈ d0 + H1

0 (Ω)n, then

v ∈ {v ∈ L∞[0, T ; L2(Ω)] ∩ L2[0, T ; H1
0 (Ω)] | div(v) = 0},

d − d0 ∈ L∞[0, T ; H1
0 (Ω)] ∩ H1[0, T ; L4/3(Ω)],
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satisfy
d(0) = d0, and dT D(v)d, D(v)d, d̊ ∈ L2[0, T ; L2(Ω)],

where d̊ ≡ dt + (v.∇)d − W (v)d, and

∫ T

0

∫
Ω

{
− ρ(v, wt) + (ρ/2)((v · ∇)v, w) − (ρ/2)((v · ∇)w, v)

+ (Tv,∇w) + (gv − ρm, (∇d)w)
}

=
∫

Ω

(v0, w(0)) +
∫ T

0

∫
Ω

ρ(f, w), (2.5)

for all w ∈ {w ∈ L2[0, T ; H1
0(Ω)] ∩ H1[0, T ; H−1(Ω)] | div(w) = 0 and w(T ) = 0} and

∫ T

0

∫
Ω

(gv, e) +
((

∂W
∂d

)
, e

)
+
([

∂W
∂∇d

]
,∇e

)
+ (1/ε)(f(d), e) =

∫ T

0

∫
Ω

ρ(m, e), (2.6)

for all e ∈ L2[0, T ; H1
0 (Ω)].

In this weak statement gv = γ1d̊ + γ2D(v)d, Tv = Tv(d, d̊, v) is computed using the formula (1.3), and
f(d) = DF (d) is the penalty function in equation (2.4).

3. Numerical approximation

3.1. Introduction

In order to expose the key ideas involved we restrict the analysis to the following situation. Many of these
assumptions can be relaxed using, for example, truncations, regularizations, and various numerical (discrete)
tricks; or at the expense of increased technical argument.

Assumption 3.1. The domain, Ω ⊂ R
n, boundary data, triangulations of the domain, and time partitions,

satisfy the following.

1. The domain Ω ⊂ R
n is bounded, Lipschitz, and sufficiently regular to admit H2 × H1 regularity of the

Stokes operator. (It may be possible to relax this condition to W 1,p × Lp regularity for some p > n.)
2. Homogeneous Dirichlet boundary data is prescribed for the velocity, v|∂Ω = 0.
3. Non-homogeneous Dirichlet boundary data, d0 ∈ H1(Ω)n, for the director satisfies |d0| ≤ 1 and is

independent of time. (Time dependent boundary data can be accommodated using standard, but technical,
arguments [13].)

4. Finite element subspaces for the spatial discretization are constructed over quasi-uniform triangulations
{Th}h>0 of Ω. (Regular triangulations suffice for most of the arguments; compactness of the director
requires quasi-uniform triangulations.)

5. The partitions 0 = t0h < t1h < . . . < tNh

h = T of [0, T ] used for the time stepping are quasi-uniform and
Nh → ∞ as h → 0.

These assumptions are mathematical in nature; however, the following restrictions on the viscous coefficients
and elastic energy will limit the class of liquid crystals under consideration.

Assumption 3.2.

• The Leslie constants satisfy the relations in (2.2) with strict inequality; in particular, there exists a
constant cv > 0

Tvh : (∇vh) + gvh.ḋh ≥ cv

(
|D(vh)|2 + |dT

h D(vh)dh|2 + |d̊h|2 + |D(vh)dh|2
)

.



APPROXIMATING SOLUTIONS OF THE ERICKSEN-LESLIE EQUATIONS 531

• The elastic energy is quadratic in d and satisfies the G̊arding inequality: there exists constants ce, Ce > 0
such that

W(d,∇d) ≥ ce|∇d|2 − Ce|d|2 and
([

∂W
∂∇d

]
,∇d

)
+
((

∂W
∂d

)
, d

)
≥ ce|∇d|2 − Ce|d|2.

In particular, if W(d,∇d) is the Oseen Frank energy the quadratic assumption requires k2 = k3.

The (second order) Crank Nicolson time stepping scheme will be analyzed. An analysis of the (first or-
der) implicit Euler time stepping scheme is identical; however, higher order time stepping schemes encounter
additional technicalities3.

3.2. Discrete subspaces

Let {Th}h>0 be a family of regular triangulations of Ω and let Vh ⊂ H1
0 (Ω)n, Ph ⊂ L2(Ω)/R and Dh ⊂ H1

0 (Ω)n

be finite element subspaces constructed over Th. It will be assumed that the pair (Vh, Ph) is div-stable. Denote
the discretely divergence free subspaces by

Zh =
{

vh ∈ Vh

∣∣∣ ∫
Ω

div(vh)qh = 0, qh ∈ Ph

}
.

To approximate non-homogeneous boundary data for the director, write Dh = Dh∩H1
0 (Ω)n where Dh ⊂ H1(Ω)n

is a finite element subspace constructed on Th without boundary conditions. For d0 ∈ H1(Ω)n fixed, let d0h ∈ Dh

be an interpolant or projection of d0. The numerical scheme will seek an approximation dh of the director
satisfying dh(t) − d0h ∈ Dh.

In order to construct a fully discrete algorithm we introduce partitions 0 = t0h < t1h < . . . < tNh

h = T of [0, T ]
and let

Vh = {vh ∈ C[0, T ; Vh] |vh|(tn−1
h ,tn

h) ∈ P1[tn−1
h , tnh; Vh]},

Vh = {vh ∈ L2[0, T ; Vh] |vh|(tn−1
h ,tn

h) ∈ P0[tn−1
h , tnh; Vh]},

Ph = {ph ∈ L2[0, T ; Ph] |ph|(tn−1
h ,tn

h) ∈ P0[tn−1
h , tnh; Ph]},

Dh = {dh ∈ C[0, T ; Dh] |dh|(tn−1
h

,tn
h
) ∈ P1[tn−1

h , tnh; Dh]},

Dh = {dh ∈ L2[0, T ; Dh] |dh|(tn−1
h ,tn

h) ∈ P0[tn−1
h , tnh; Dh]}.

Given vh ∈ Vh taking values vh(tnh) = vn, let v̄h ∈ Vh denote the piecewise constant (in time) function taking
values v̄h(t) = (1/2)(vn + vn−1) on (tn−1

h , tnh); similarly, the projection of dh ∈ Dh onto Dh is denoted by d̄h.
Elementary properties of these projections, which are local averages, will be used ubiquitously. For example, if
vh ∈ Vh, then ∫ T

0

(D(vh), D(w̄h)) =
∫ T

0

(D(v̄h), D(w̄h)), w̄h ∈ Vh.

3The discrete energy estimate bounds the (kinetic plus elastic) energy at the partition points {tn}. The Crank Nicolson solution
is piecewise linear in time so a uniform bound at the partition points bounds the solution at all times; this argument fails for higher
order schemes.
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3.3. Numerical scheme

Assuming boundary data d0h ∈ Dh, and initial data v0
h ∈ Vh and d0

h ∈ d0h + Dh are specified, we seek
(vh, ph, dh − dh0) ∈ Vh × Ph × Dh such that

∫ T

0

∫
Ω

{
ρ(vht, w̄h) + (ρ/2)

(
((vh.∇)v̄h, w̄h) − ((vh.∇)w̄h, v̄h)

)
− (ph, div(w̄h))

+ (Tvh,∇w̄h) +
(
gvh − ρm, (∇d̄h)w̄h

)}
=
∫ T

0

∫
Ω

ρ(f, w̄h),

∫ T

0

∫
Ω

(div(v̄h), qh) = 0, (3.1)

∫ T

0

∫
Ω

(gvh, ēh) +
((

∂Wh

∂dh

)
, ēh

)
+
([

∂Wh

∂∇dh

]
,∇ēh

)
+ (1/ε)(f(dh), ēh) =

∫ T

0

∫
Ω

ρ(m, ēh),

for all (w̄h, qh, ēh) ∈ Vh × Ph × Dh. The convected derivative of the director and energy are calculated as

d̊h = ḋh − W (v̄h)dh ≡ dht + (v̄h · ∇)d̄h − W (v̄h)dh, and Wh ≡ W(dh,∇dh),

and the viscous terms are computed as

gvh = γ1d̊h + γ2D(v̄h)dh, and Tvh = Tv(dh, d̊h, v̄h),

where Tv(., ., .) is given by the formula (1.3).
For the Crank Nicolson time stepping scheme used here, the discrete energy estimate bounds gradients of

the projections v̄h and d̄h of the velocity and director respectively. This was why gradients of these projections
were used in the nonlinear terms. Notice too that

∫ T

0

∫
Ω

((vh.∇)v̄h, w̄h) − ((vh.∇)w̄h, v̄h) =
∫ T

0

∫
Ω

((v̄h.∇)v̄h, w̄h) − ((v̄h.∇)w̄h, v̄h),

and since the elastic energy is assumed to be quadratic in d, the expression

w(d, e) ≡
∫

Ω

((
∂W
∂d

)
, e

)
+
([

∂W
∂∇d

]
,∇e

)
,

is bilinear. In particular, if dh ∈ Dh then

∫ T

0

w(dh, ēh) =
∫ T

0

w(d̄h, ēh), ēh ∈ Dh.

3.4. Stability

Setting (w̄h, qh, ēh) = (v̄h, ph, dht) in the discrete weak statement (3.1) gives for each 1 ≤ n ≤ N

E(vn, dn; ε) + cv

∫ tn
h

0

{
‖D(v̄h)‖2

L2(Ω) + ‖dT
h D(v̄h)dh‖2

L2(Ω) + ‖d̊h‖2
L2(Ω) + ‖D(v̄h)dh‖2

L2(Ω)

}

≤ E(v0
h, d0

h; ε) +
∫ tn

h

0

∫
Ω

(ρf, vh) + (ρm, ḋh). (3.2)
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In this expression

E(v, d; ε) = (ρ/2)‖v‖2
L2(Ω) +

∫
Ω

(W(d) + 3Ce) + (1/ε)‖F (d)‖L1(Ω)

is the sum of the kinetic and elastic energies, and we have used Assumption 3.2 to estimate the viscous terms.
The constant term 3Ce is introduced for convenience; the energy is non-negative whenever ε < 1/Ce.

In the absence of a maximum principle, the term (m, ḋh) = (m, d̊h +W (v̄)dh) on the right of equation (3.2) is
not immediately bounded by terms on the left. The following lemma shows that this difficulty can be mitigated
by selecting the penalty parameter to be sufficiently small (independently of h).

Lemma 3.1. Let the elastic energy and dissipative terms satisfy Assumption 3.2 and assume that the boundary
values for the director satisfy |d0h| ≤

√
3. Then there exists a constant C ≥ 0 depending upon the viscous and

elastic constants such that C‖m‖4
L2[0,T ;L4(Ω)] ≤ 1/ε guarantees the approximate solutions computed using the

discrete weak statement (3.1) satisfy

vh ∈ L∞[0, T ; L2(Ω)], dh, d̄h ∈ L∞[0, T ; H1(Ω)], (1/ε)F (dn) ∈ L1(Ω),

and
v̄h ∈ L2[0, T ; H1

0(Ω)], d̊h, dT
h D(v̄h)dh, D(v̄h)dh ∈ L2[0, T ; L2(Ω)],

with norms bounded by constants depending only upon the initial energy, E(v0
h, d0

h; ε), and the norms
‖f‖L2[0,T ;H−1(Ω)] and ‖m‖L2[0,T ;L2(Ω)] of the data.

Remark 3.1. For simplicity we required m ∈ L2[0, T ; L4(Ω)]. The same argument using the Sobolev embedding
theorem is applicable if m ∈ L2[0, T ; Lp(Ω)] for any p > n.

Proof. If ε < 1/Ce then the energy is non-negative; specifically, Assumption 3.2 bounds the energy below as

E(v, d; ε) ≥ (ρ/2)‖v‖L2(Ω) + ce‖∇d‖L2(Ω) − Ce‖d‖L2(Ω) + (1/ε)‖F (d)‖L1(Ω) + 3Ce|Ω|,

and using the formula (2.4) for F (d) we find

(1/ε)F (d) − Ce|d|2 =
{

(1/ε)F (d) − Ce|d|2 |d| ≤
√

3
(1/2ε)F (d) + (1/ε − Ce)|d|2 − (2/ε) |d| ≥

√
3

≥ (1/2ε)F (d) − 3Ce.

We need to bound the last term in the energy estimate (3.2) by the terms on the left. Bounding ḋh as

|ḋh| ≤ |d̊h| + |W (v̄h)||dh| ≤ |d̊h| + |W (v̄h)|
(√

3 + (|dh| −
√

3)+
)

,

and using the Cauchy-Schwarz, Korn, and Poincaré inequalities it follows that

E(vn, dn; ε) + c

∫ tn
h

0

{
‖D(v̄h)‖2

L2(Ω) + ‖dT
h D(v̄h)dh‖2

L2(Ω) + ‖d̊h‖2
L2(Ω) + ‖D(v̄h)dh‖2

L2(Ω)

}

≤ E(v0
h, d0

h; ε) + C

∫ tn
h

0

{
‖f‖2

H−1(Ω) + ‖m‖2
L2(Ω) + ‖m‖L4(Ω)‖D(v̄h)‖L2(Ω)‖(|dh| −

√
3)+‖L4(Ω)

}
. (3.3)

Under the assumption that |d0h| ≤
√

3 on the boundary, it follows that (|dh| −
√

3)+ ∈ H1
0 (Ω) with gradient

sgn+(|dh| −
√

3)(∇dh)T (dh/|dh|). The Sobolev embedding theorem (in three dimensions) then shows

‖(dh −
√

3)+‖L4(Ω) ≤ C‖(dh −
√

3)+‖1/4
L2(Ω)‖∇d‖3/4

L2(Ω).
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Using the fact that F (d) ≥ (|d| −
√

3)2+, the Young inequality shows that for all η > 0 there exists Cη > 0 such
that

∫ tn
h

0

C‖m‖L4(Ω)‖D(v̄h)‖L2(Ω)‖(|dh| −
√

3)+‖L4(Ω)

≤ C‖m‖L2[0,tn;L4(Ω)]‖D(v̄h)‖L2[0,tn;L2(Ω)]‖(|dh| −
√

3)+‖L∞[0,tn;L4(Ω)]

≤ η‖D(v̄h)‖2
L2[0,tn;L2(Ω)] + (1/2) max

1≤m≤n

(
ce‖∇dm‖2

L2(Ω) + Cη‖m‖4
L2[0,tn;L4(Ω)]‖F (dm)‖L1(Ω)

)
.

By selecting 1 ≤ n ≤ Nh in equation (3.3) where max1≤n≤Nh

(
ce‖∇dn‖2

H1(Ω) + (1/ε)‖F (dn)‖L1(Ω)

)
is achieved,

the above shows that the last term is dominated by E(vn, dn; ε) when ε is sufficiently small, and the lemma
follows. �

The bound on d̊h facilitates an estimate of dht which will used to established compactness of the sequence
{d̄h}h>0.

Corollary 3.1. Under the hypothesis of the lemma there exists a constant C > 0 independent of ε and h such
that

‖dht‖L2[0,T ;L3/2(Ω)] ≤ C.

Proof. From the definition of d̊h we have dht = d̊h− (v̄h.∇)d̄h +W (v̄h)dh. Using the Holder inequality it follows
that

‖dht‖L3/2(Ω) ≤ ‖d̊h‖L3/2(Ω) + ‖v̄h‖L6(Ω)‖∇d̄h‖L2(Ω) + ‖W (v̄h)‖L2(Ω)‖dh‖L6(Ω).

In three or less dimensions H1(Ω) ↪→ L6(Ω), and since dh ∈ L∞[0, T ; H1(Ω)] and vh ∈ L2[0, T ; H1
0(Ω)] the

estimate follows. �
This stability estimate remains valid for the full (non-convex) Ericksen-Leslie energy (i.e. with k2 �= k3)

provided dh is used in place of d̄h. This is not so for the following corollary which exploits linearity in an
essential fashion.

Corollary 3.2. Under the assumptions of the lemma, there exists Gh ∈ L2[0, T ; L2(Ω)] with ‖Gh‖L2[0,T ;L2(Ω)] ≤
C(ε) (and the data for the problem), such that

∫ T

0

∫
Ω

((
∂Wh

∂dh

)
, ēh

)
+
([

∂Wh

∂∇dh

]
,∇ēh

)
+ (4/ε)(d̄h, ēh) =

∫ T

0

∫
Ω

(Gh, ēh)

for all ēh ∈ Dh.

Proof. Write the third equation in (3.1) as

∫ T

0

∫
Ω

((
∂Wh

∂dh

)
, ēh

)
+
([

∂Wh

∂∇dh

]
,∇ēh

)
+ (4/ε)(d̄h, ēh)

=
∫ T

0

∫
Ω

ρ(m, ēh) − (gvh, ēh) + (1/ε)(4dh − f(dh), ēh),

for all ēh ∈ Dh. The term (4/ε)(dh, ēh) has been introduced to both sides, and since it is paired with ēh ∈ Dh

was written in terms of the local average d̄h on the left.
Then m ∈ L2[0, T ; L2(Ω)], and the lemma shows gvh ∈ L2[0, T ; L2(Ω)]. The remaining term on the right is

bounded since

4d − f(d) =
{

2(3 − |d|2)d |d| ≤
√

3
0 |d| ≥

√
3

so |4d − f(d)| ≤ 4. �
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3.5. Compactness

In this section we establish compactness of the velocity and director in L2[0, T ; L2(Ω)] and L2[0, T ; H1(Ω)]
respectively.

3.5.1. Compactness of the velocity

The following lemma from [34], Lemma 4.7, shows that a bound on the derivative of vh is sufficient to obtain
equicontinuity of the projection v̄h.

Lemma 3.2. Let � ≥ 1 be an integer and 0 = t0 < t1 < . . . < tN = T be a partition of [0, T ] and let
τ = max1≤n≤N (tn−tn−1) and ϑ = min1≤n≤N (tn−tn−1)/τ . Let W be a (semi) inner product space, 1 ≤ q ≤ ∞,
and suppose that

w ∈ {C[0, T ; W ] | w|(tn−1,tn) ∈ P�[tn−1, tn; W ] 1 ≤ n ≤ N},
and that w′ ∈ Lq[0, T ; W ]. Then there exists a constant C = C(�, ϑ) depending only upon � and ϑ such that

(∫ T

δ

‖w̄(t) − w̄(t − δ)‖q
W dt

)1/q

≤ C‖w′‖Lq[0,T ;W ] max(δ, τ)1/q′
δ1/q,

where w̄ is the projection of w onto P�−1[0, T ; W ].

The following lemma will be used to bound the time derivatives of the velocities in a certain dual space.

Lemma 3.3. Let Ω ⊂ R
n be bounded and sufficiently regular to admit H2×H1 regularity of the Stokes operator.

Let (Vh, Ph) be a classical div-stable finite element pair constructed over a quasi-uniform triangulation Th of Ω,
and let Zh ⊂ Vh be the discretely divergence free subspace. If 0 ≤ n(1/2−1/p) ≤ 1 there exists a constant C > 0
such that the orthogonal projection Ph : L2(Ω) → Zh satisfies

‖Phw‖W 1,p(Ω) ≤ C‖w‖H2(Ω), w ∈ W ≡ {w ∈ H2(Ω) ∩ H1
0 (Ω) | div(w) = 0}.

Remark 3.2. In a pde context technical difficulties with the projection Ph can be avoided by selecting the
subspaces for the velocity to be the first N eigenfunctions of the Stokes operator in W = {w ∈ H1

0 (Ω)∩H2(Ω) |
div(w) = 0}. Expanding the functions in W using this eigenbasis immediately shows that the projections are
bounded.

Proof. Let Πh : H1
0 (Ω) → Vh be the Stokes projection; that is, wh = Πhw satisfies

wh ∈ Zh,

∫
Ω

(D(wh), D(zh)) =
∫

Ω

(D(w), D(zh)), zh ∈ Zh.

The Aubin-Nitsche duality argument shows ‖w − Πhw‖L2(Ω) ≤ Ch2‖w‖H2(Ω) for divergence free functions
w ∈ H2(Ω)∩H1

0 (Ω); moreover, it was shown in [14] that there exists a constant C > 0 such that ‖Πhw‖W 1,p(Ω) ≤
C‖w‖W 1,p(Ω). Combining this with classical inverse inequalities shows

‖Phw‖W 1,p(Ω) ≤ ‖(Ph − Πh)w‖W 1,p(Ω) + ‖Πhw‖W 1,p(Ω)

≤ C

h1+n(1/2−1/p)
‖(Ph − Πh)w‖L2(Ω) + C‖w‖W 1,p(Ω)

≤ C

h1+n(1/2−1/p)
‖w − Πhw‖L2(Ω) + C‖w‖H2(Ω)

≤ Ch2

h1+n(1/2−1/p)
‖w‖H2(Ω) + C‖w‖H2(Ω). �
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Compactness of the velocities will first be established in W ′, where W = {w ∈ H1
0 (Ω)∩H2(Ω) | div(w) = 0}.

Since W is not dense in L2(Ω), the natural mapping ι : H1
0 (Ω) → W ′ given by ι(v)(w) = (v, w)L2(Ω) is not

injective; the kernel is characterized by [12], Lemma III.1.1,

K(ι) = {v ∈ H1
0 (Ω) | (v, w)L2(Ω) = 0, w ∈ W}

= H1
0 (Ω) ∩ {∇φ | φ ∈ W 1,1

loc (Ω)}
= {∇φ | φ ∈ H2(Ω), ∂φ/∂n|∂Ω = 0, and φ|Γi ∈ R},

where {Γi} are the components of ∂Ω. The Lions-Aubin theorem will show {ι(vh)}h>0 is compact in Lp[0, T ; W ′].
Compactness in Lp[0, T ; L2(Ω)] will follow from the following lemma.

Lemma 3.4. Let Ω ⊂ R
n be a bounded Lipschitz domain and {(Vh, Ph)}h>0 be a classical family of div-stable

finite element spaces constructed over a family of regular triangulations of Ω. Let {Zh}h>0 denote the family
of discretely divergence free spaces and W = {w ∈ H1

0 (Ω) ∩ H2(Ω) | div(w) = 0} and ι : H1
0 (Ω) → W ′ be the

natural mapping: ι(v)(w) = (v, w)L2(Ω). Then for each ε > 0 there exists C(ε) > 0 such that

‖vh‖L2(Ω) ≤ ε‖vh‖H1(Ω) + C(ε)‖ι(vh)‖W ′

for every set {vh}h↘0 ⊂ H1
0 (Ω) with vh ∈ Zh.

Proof. Arguing by contradiction, assume there exists ε > 0 and a sequence vn ∈ Zhn with hn ↘ 0 such that
‖vn‖L2(Ω) = 1 and

1 = ‖vn‖L2(Ω) > ε‖vn‖H1(Ω) + n‖ι(vn)‖W ′ .

Compactness of the embedding H1(Ω) ↪→ L2(Ω) and continuity of ι allows passage to a subsequence for which

vn ⇀ v in H1
0 (Ω)

vn → v in L2(Ω)

ι(vn) → 0 = ι(v) in W ′.

The last property shows v ∈ Kerr(ι), so v = ∇φ for some φ ∈ H2(Ω) with ∂φ/∂n = 0 on ∂Ω. Also, given
p ∈ L2(Ω), let pn ∈ Phn , be a sequence for which pn → p in L2(Ω). Since div(vh) ⇀ div(v) in L2(Ω) it follows
that ∫

Ω

div(v)p = lim
n

∫
Ω

div(vn)pn = 0,

so Δφ = div(v) = 0. It follows that φ is constant on each component of Ω, so v = ∇φ = 0. This establishes the
contradiction:

1 = ‖vh‖L2(Ω) → ‖v‖L2(Ω) = 0. �

Lemma 3.5. Let the domain, boundary data, and space and time partitions satisfy Assumptions 3.1. Assume
{(Vh, Ph)}h>0 is a family of classical div-stable finite element pairs and let the hypotheses of Lemma 3.1 hold.
Then the velocities {v̄h}h>0 are compact in Lp[0, T ; L2(Ω)] for 1 ≤ p < ∞.

Proof. Restricting the test functions w̄h in equation (3.1)1 to take values in the discretely divergence free space,
Zh, shows

∫
Ω

ρ(vht, w̄h) =
∫

Ω

{
ρ(f, w̄h) − (ρ/2)

(
((vh.∇)v̄h, w̄h) − ((vh.∇)w̄h, v̄h)

)
− (Tvh,∇w̄h) −

(
gvh − ρm, (∇d̄h)w̄h

)}
.
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A calculation using the Sobolev embedding theorem (in three or less dimensions) shows

∫ T

0

∫
Ω

{
ρ(f, w̄h) − (ρ/2)

(
((vh.∇)v̄h, w̄h) − ((vh.∇)w̄h, v̄h)

) }
≤ C

(
‖f‖L2[0,T ;H−1(Ω)] + ‖v̄h‖1/2

L∞[0,T ;L2(Ω)]‖∇v̄h‖3/2
L2[0,T ;L2(Ω)]

)
‖∇w̄h‖L4[0,T ;L2(Ω)].

The most singular term in the viscous stress, Tvh, is the one with coefficient γ0, and may be bounded as

∫ T

0

∫
Ω

(dT
h D(v̄h)dh)(dT

h D(w̄h)dh) ≤
∫ T

0

‖dT
h D(v̄h)dh‖L2(Ω)‖dh‖2

L6‖∇w̄h‖L6(Ω)

≤ ‖dT
h D(v̄h)dh‖L2[0,T ;L2(Ω)]‖dh‖2

L∞[0,T ;H1(Ω)]‖∇w̄h‖L2[0,T ;L6(Ω)].

Similarly, the viscous coupling term is bounded as

∫ T

0

∫
Ω

(gvh, (∇d̄h)w̄h) ≤
∫ T

0

‖gvh‖L2(Ω)‖∇d̄h‖L2(Ω)‖w̄h‖L∞(Ω)

≤ C‖gvh‖L2[0,T ;L2(Ω)]‖d̄h‖L∞[0,T ;H1(Ω)]‖∇w̄h‖L2[0,T ;L4(Ω)].

Combining the above estimates with the bounds guaranteed by Lemma 3.1 shows that there exists a constant
C > 0, independent of h and ε, for which

∫ T

0

∫
Ω

(vht, w̄h) ≤ C‖w̄h‖L4[0,T ;W 1,6(Ω)], w̄h ∈ Vh ∩ L2[0, T ; Zh].

Let W = {w ∈ H1
0 (Ω) ∩ H2(Ω) | div(w) = 0}, and Ph : L2(Ω) → Zh be the orthogonal projection. If

w ∈ L4[0, T ; W ], let w̄(t) denote the piecewise constant function (in time) taking the average value of w on each
interval (tn−1

h , tnh) of the partition. Then Phw̄ ∈ Vh takes values in Zh, and using Lemma 3.3 (with p = 6) we
obtain ∫ T

0

∫
Ω

(vht, w) =
∫ T

0

∫
Ω

(vht, Phw̄)

≤ C‖Phw̄‖L4[0,T ;W 1,6(Ω)]

≤ C‖w̄‖L4[0,T ;H2(Ω)]

≤ C‖w‖L4[0,T ;H2(Ω)], w ∈ L4[0, T ; W ].

It follows that {ι(vht)}h>0 is bounded in L4/3[0, T ; W ′] where the ι : H1
0 (Ω) → W ′ is the map ι(v)(w) =

(v, w)L2(Ω). Lemma 3.2 then shows that {ι(v̄h)}h>0 is uniformly equicontinuous in L4/3[0, T ; W ′], and since
{v̄h}h>0 is bounded in L2[0, T ; H1(Ω)], the Lions-Aubin theorem establishes compactness of {ι(v̄h)}h>0 in
L4/3[0, T ; W ′].

Compactness of {v̄h}h>0 in Lp[0, T ; L2(Ω)] now follows from the following standard argument. Lemma 3.4
shows that for each ε > 0 there exists C(ε) > 0 for which

‖v̄h‖L2(Ω) ≤ ε‖v̄h‖H1(Ω) + C(ε)‖ι(v̄h)‖W ′ .

Since {v̄h}h>0 is bounded in L2[0, T ; H1(Ω)] and {ι(v̄h)}h>0 is compact in L4/3[0, T ; W ′], compactness in
L4/3[0, T ; L2(Ω)] follows. Moreover, {v̄h}h>0 is bounded in L∞[0, T ; L2(Ω)] so compactness in Lp[0, T ; L2(Ω)]
follows for 1 ≤ p < ∞. �
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3.5.2. Compactness of the director

Lemma 3.1 and Corollary 3.1 show that the directors {dh}h>0 are bounded in L∞[0, T ; H1(Ω)] with deriva-
tives bounded in L2[0, T ; L3/2(Ω)]. The Lions-Aubin lemma then establishes compactness of the directors in
Lp[0, T ; L2(Ω)], 1 ≤ p < ∞. In order to show that the limit is a solution of the Ericksen-Leslie equations,
compactness of {d̄h}h>0 in L2[0, T ; H1(Ω)] is required. To do this we exploit linearity of the elastic terms in an
essential fashion.

Lemma 3.6. Let the hypotheses of Lemma 3.1 hold and assume that the boundary values of the director converge
in H1(Ω); d0h → d0. Assume that for all e ∈ H1

0 (Ω) there exists eh ∈ Dh such that eh → e, and that the
maximum time step size converges to zero with h. Then the directors {d̄h}h>0 computed using the discrete weak
statement (3.1) are compact in Lp[0, T ; H1(Ω)] for 1 ≤ p < ∞.

Proof. It suffices to show that it is possible to extract a strongly convergence subsequence. First, pass to a
subsequence for which d̄h ⇀ d̄ in L2[0, T ; H1(Ω)] and dh → d in L2[0, T ; L2(Ω)]. Since d̄h is a local average
of dh it follows that d̄ = d and d̄h → d in L2[0, T ; L2(Ω)]. Assumption 3.2 guarantees

w(d, e) ≡
∫

Ω

([
∂W
∂∇d

]
,∇e

)
+
((

∂W
∂d

)
, e

)
+ (4/ε)(d, e),

is equivalent to the usual inner product on H1(Ω)n provided 4/ε > Ce. Corollary 3.2 then shows that

∫ T

0

w(d̄h, ēh) =
∫ T

0

(Gh, ēh)L2(Ω), ēh ∈ Dh,

where {Gh}h>0 is bounded in L2[0, T ; L2(Ω)]. Passing to a subsequence, we may assume that Gh ⇀ G in
L2[0, T ; L2(Ω)]. The approximation properties of the subspaces Dh ⊂ H1

0 (Ω)n allow passage to the limit in the
above equation to show ∫ T

0

w(d, e) =
∫ T

0

(G, e)L2(Ω), e ∈ L2[0, T ; H1
0(Ω)].

Upon recalling that dh(t) − d0h ∈ Dh it follows that

∫ T

0

w(d̄h, d̄h) =
∫ T

0

w(d̄h, d̄h − d0h) + w(d̄h, d0h)

=
∫ T

0

(Gh, d̄h − d0h)L2(Ω) + w(d̄h, d0h)

→
∫ T

0

(G, d − d0)L2(Ω) + w(d, d0)

=
∫ T

0

w(d, d − d0) + w(d, d0)

=
∫ T

0

w(d, d).

Since
∫ T

0
w(d, e) is equivalent to the inner product in L2[0, T ; H1(Ω)], strong convergence follows, and since

{d̄h}h>0 is bounded in L∞[0, T ; H1(Ω)] compactness in Lp[0, T ; H1(Ω)] follows for 1 ≤ p < ∞. �

3.6. Convergence

The stability and compactness properties of the numerical scheme are sufficient to show that limits of the
numerical approximations satisfy the weak statement (2.5)–(2.6) of the Ericksen-Leslie equations.
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Theorem 3.1. Let Assumptions 3.1 hold, and let the elastic energy and dissipative terms satisfy Assumption 3.2.
Let {(Vh, Ph)}h>0 be one of the classical families of div-stable finite element spaces considered in [14], and let
{Dh}h>0 ⊂ H1(Ω)n be a family of classical finite element spaces, and set Dh = Dh ∩ H1

0 (Ω)n.
Let the boundary data for the director satisfy d0 ∈ H1(Ω) and let the initial data satisfy (v0, d0) ∈ L2(Ω) ×

(d0 + H1
0 (Ω)). Let the data for the momentum equations satisfy f ∈ L2[0, T ; H−1(Ω)] and m ∈ L2[0, T ; L4(Ω)],

and assume that the penalty parameter satisfies C‖m‖4
L2[0,T ;L4(Ω)] ≤ 1/ε where C is the constant depending only

upon the viscous and elastic constants guaranteed by Lemma 3.1. Assume that the boundary data d0h ∈ Dh

for the numerical converges to d0 in H1(Ω) ∩ L∞(Ω), and that the initial data (v0
h, d0

h) converges to (v0, d0) in
L2(Ω) × H1(Ω).

Then solutions (vh, dh) ∈ Vh × (d0h + Dh) of the numerical scheme (3.1) are bounded in L∞[0, T ; L2(Ω)] ×
L∞[0, T ; H1(Ω)], and weak limits (v, d) ∈ L2[0, T ; L2(Ω)] × L2[0, T ; H1(Ω)] are solutions of the penalized
Ericksen-Leslie equations (2.5)–(2.6). In addition, projections (v̄h, d̄h) ∈ Vh × (d0h + Dh) of weakly conver-
gent subsequences converge strongly in Lp[0, T ; L2(Ω)] × Lp[0, T ; H1(Ω)] for 1 ≤ p < ∞.

The proof of this theorem, which we omit, follows upon passing to the limit term-by-term in the discrete
weak statement. The technique is standard; the energy estimate establishes the integrability of each term (as in
the proof of Lem. 3.5), and strong convergence guaranteed by the compactness of the sequences allows passage
to the limit in the nonlinear terms.
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