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CONVERGENCE AND QUASI-OPTIMAL COMPLEXITY
OF A SIMPLE ADAPTIVE FINITE ELEMENT METHOD
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Abstract. We prove convergence and quasi-optimal complexity of an adaptive finite element algo-
rithm on triangular meshes with standard mesh refinement. Our algorithm is based on an adaptive
marking strategy. In each iteration, a simple edge estimator is compared to an oscillation term and
the marking of cells for refinement is done according to the dominant contribution only. In addition,
we introduce an adaptive stopping criterion for iterative solution which compares an estimator for the
iteration error with the estimator for the discretization error.
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1. Introduction

The analysis of adaptive finite element methods has made important progress in recent years. Based on
classical residual-based a posteriori error estimators [1,16,20] it has been shown by Dörfler et al. [14,15,17] that
an adaptive mesh refinement algorithm converges towards the solution of the Poisson equation with homogeneous
Dirichlet boundary conditions and given square-integrable forces f in a two-dimensional bounded domain Ω with
piecewise linear boundary ∂Ω:

− Δu = f in Ω, u = 0 on ∂Ω. (1.1)

In [17] the importance of controlling oscillations in data not captured on a given finite element mesh is pointed
out and a special local refinement algorithm (‘newest-vertex-bisection’) is used in order to control a term
measuring the data oscillations.

An important further result is the estimation of the dimension of the adaptively constructed discrete spaces,
first achieved for wavelet discretizations by Cohen et al. [12]. This result is extended to a modified version
of the algorithm of [17], including an additional coarsening step, by Binev et al. in [6]. A further significant
improvement has been achieved by Stevenson [19] who shows that the additional coarsening step is not necessary
in order to prove optimal complexity.
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France. roland.becker@univ-pau.fr; beckerroland@me.com
2 Institute of Computational Mathematics and INRIA Bordeaux Sud-Ouest Concha, Chinese Academy of Sciences (CAS),
Beijing, 100190, P. R. China. maosp@lsec.cc.ac.cn

Article published by EDP Sciences c© EDP Sciences, SMAI 2009

http://dx.doi.org/10.1051/m2an/2009036
http://www.esaim-m2an.org
http://www.edpsciences.org


1204 R. BECKER AND S. MAO

The importance of the last-mentioned results lays in the fact that they show optimal complexity of certain
adaptive algorithms: if the solution of (1.1) can be approximated by a given discretization method on a given
family of meshes at a certain rate (quotient of accuracy to number of unknowns), the iteratively constructed
sequence of meshes will realize this rate up to a constant factor.

The results obtained in the cited works rely on a special treatment of the before-mentioned data oscillation
term and the use of the newest-vertex-bisection algorithm. To overcome the need of this special refinement
algorithm, which is cumbersome for practical purposes, is a difficult task, since the classical local lower bound,
which is at the heart of convergence proofs, has to be avoided. A first result in this direction has been recently
proven in [18], which does however not provide any information on speed of convergence nor complexity of
the algorithm. More recently, in [10] the authors provide a convergence and complexity result for an adaptive
algorithm avoiding the inner node property. The idea is to replace the local lower bound by a decrease estimate
of the error estimator.

Our algorithm is based on an adaptive marking strategy comparing an oscillation term with a simple esti-
mator, following [5] where this idea has been introduced in the context of the new vertex bisection and [2] for
mixed finite elements. In the present work, we avoid the inner node property, which makes it possible to use
other local refinement algorithms, supposed that they satisfy a complexity estimate stated below. With respect
to the cited articles, we simplify the a posteriori error estimator by suppressing the volume residual. This is
natural, since it is known for a long time that the volume term leads to overestimation in the case of lowest-order
conforming finite elements [8,9]. The resulting algorithm is attractive in practice, since the obtained refinement
will in general be dominated by the edge residuals.

In addition, we introduce a new adaptive stopping criterion for the iterative solution of the discrete system
in each step of the mesh refinement algorithm. The idea of this stopping criterion is to compare the iteration
error εit with the estimator for the discretization error. This strategy potentially saves important computing
time, since criteria with a fixed small constant, say εit ≤ 10−8, often used in practice, require close to com-
plete solution in each step. We analyze the resulting algorithm with incomplete iterative solution and prove
convergence and optimal complexity.

Throughout this paper we work with families of shape regular triangular meshes in the sense of [11]. In
order to deviate as less as possible from standard notation, we denote by h an element of a family of admissible
meshes H, and by uh the corresponding finite element solution. The set of cells of mesh h is denoted by Kh,
and the set of interior edges by Eh. In addition, the set of nodes is denoted as Nh. As compared to standard
notation in finite element literature, h denotes a mesh in a family of meshes H and not a global maximal cell
width.

The paper is organized as follows: In Section 2 we define the adaptive algorithm. In Section 3 we prove some
lemmata concerning lower/upper local/global bounds which are used later. Although the techniques used here
are well established in the literature, we give complete proofs since we need to elaborate the precise dependence
on iterative solution for the purpose of the subsequent analysis. In Section 4 we prove geometrical convergence
of the error of the adaptive algorithm, under natural assumptions. In Section 5 we prove an asymptotic estimate
for the complexity of the sequence of generated meshes. Possible concrete forms of the stopping criterion are
discussed in Section 6. In Section 7 we present some numerical experiments and some conclusions are drawn in
Section 8.

Throughout the paper we use the following notation. We use the standard Sobolev space H1
0 (Ω) and write

for u ∈ H1
0 (Ω) and ω ⊂ Ω |u|1,ω :=

(∫
ω
|∇u|2 dx

)1/2 and |u|1 = |u|1,Ω. The L2(ω)-scalar product is denoted by
〈·, ·〉ω with corresponding norm ‖ · ‖ω, omitting the subscript in case ω = Ω.

Furthermore, P k denotes the polynomials of maximal degree k ≥ 0.

2. Definition of the adaptive algorithm

We define the family of admissible meshes H in the following recursive way. Starting from an initial mesh h0,
we suppose that we have a local mesh refinement algorithm Rloc(h,F) which refines for a given mesh h ∈ H
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all marked edges F ⊂ Eh. The resulting mesh is supposed to be conforming and the local mesh refinement
algorithm is supposed to satisfy the following assumption. Let us denote by Nh = #Kh the number of cells of
the mesh h. Then we require that:

Assumption 2.1. Let hk, k = 0, . . . , n be a sequence of locally refined triangulations created by the local mesh
refinement algorithm, starting from the initial mesh h0. Let Fk ⊂ Ehk

, k = 0, . . . , n − 1 be the collection of
all marked edges in step k. Then hn is uniformly shape regular and its shape regularity only depends on that
of h0 and for all E ∈ Fk all neighboring triangles of E are at least bisected once. Furthermore, there exists a
mesh-independent constant C0 such that

Nhn ≤ Nh0 + C0

n−1∑
k=0

#Fk. (2.1)

Assumption 2.1 and especially the complexity estimate (2.1) are known to be true for the newest vertex
bisection algorithm, see Theorem 2.4 of [6] (where the set of marked cells instead of the set of marked edges is
used).

Let h ∈ H. We use the Courant finite element space

Vh :=
{
vh ∈ H1

0 (Ω) : vh|K ∈ P 1 for all K ∈ Kh

} ·
The Ritz projection uh ∈ Vh is defined by

〈∇uh,∇vh〉 = 〈f, vh〉 ∀vh ∈ Vh. (2.2)

In order to approximately solve the discrete system in (2.2), we use a multigrid algorithm, which is based on
the sequence of nested spaces V1 ⊂ . . . ⊂ Vl ⊂ . . . ⊂ VL with VL = Vh resulting from the hierarchical mesh
refinement. The multigrid algorithm employs mesh transfer operators and a smoothing operator only acting on
the locally refined meshes, see [7,21] for detailed definitions and proofs of the mesh-independent convergence of
the resulting algorithms.

We denote by um
h the discrete function obtained from m iterations of the multigrid algorithm starting with

the solution from the previous step of the mesh-refinement algorithm. In order to estimate the iteration error,
we use an a posteriori error estimator for the definition of the stopping criterion of the multigrid iteration. Let
ζh(um

h ) be an estimator satisfying the upper bound

|uh − um
h |21 ≤ Cmgζ

2
h(um

h ). (2.3)

Several estimators satisfying (2.3) are possible, see Section 6 for a detailed discussion. Our results on convergence
and complexity of the adaptive algorithm do not dependent on the concrete form of the estimator but only (2.3).

Let h ∈ H and let ωz be the set of cells joining a node z ∈ Nh and denote by πω the mean-value operator
(πω(f) :=

∫
ω f dx/|ω|). We define for given z ∈ Nh and P ⊂ Nh an oscillation term

oscz := |ωz|1/2 ‖f − πωz f‖ωz , osch(P) :=

(∑
z∈P

osc2
z

)1/2

. (2.4)

Next we define for E ∈ Eh and any given subset F ⊆ Eh the standard edge residuals for a given function vh ∈ Vh:

JE(vh) := |E|1/2

∥∥∥∥
[
∂vh

∂n

]∥∥∥∥
E

, Jh(vh,F) :=

(∑
E∈F

J2
E(vh)

)1/2

, (2.5)

where [·]E denotes as usual the jump of a cell-wise polynomial function. We set for brevity osch := osch(Nh)
and Jh(vh) := Jh(vh, Eh).
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The purpose of this article is to analyze the following adaptive finite element algorithm:

Algorithm 1 AFEM
(0) Choose parameters 0 < θ, σ < 1, γ > 0, α > 0 and an initial mesh h0, and set k = 0.
(1) Do m iterations of the iterative solution algorithm applied to the discrete system (2.2) with h replaced

by hk to obtain the finite element solution um
k ; m is determined by the condition to be the smallest integer

verifying:
ζ2
hk

(um
k ) ≤ α J2

hk
(umk

k ). (2.6)
(2) Compute the a posteriori error estimator Jhk

and oscillation term oschk
.

(3) – If osc2
hk

≤ γJ2
hk

(um
hk

) then mark a set F ⊂ Ehk
with minimal cardinality such that

J2
hk

(F) ≥ θ J2
hk

(2.7)

– else find a set P ⊂ Nhk
with minimal cardinality such that

osc2
hk

(P) ≥ σ osc2
hk

(2.8)

and define F to be the set of edges containing at least one node in P .
(4) Adapt the mesh: hk+1 := Rloc(hk,F).
(5) Set k := k + 1 and go to step (1).

Remark 2.2. The refinement is only governed by the oscillation term, if it is big compared to the estima-
tor, following the idea of [5]. Therefore, in most practical cases, the edge residuals alone dominate the error
estimation, such as suggested in the work of Carstensen and Verfürth [9].

Remark 2.3. The choice of parameters can be guided by our theoretical results. The stopping criterion α has
to be small enough relative to θ in order to yield convergence; the other parameters θ, σ, and γ are arbitrary.
The fact that γ is arbitrary for our convergence result indicates that the edge residuals play the dominant role
in the overall refinement.

In order to achieve optimal complexity, in addition to the condition on α, the marking parameter θ has to
be small enough and γ has to satisfy a condition, whereas σ is free.

Such a condition on θ is known from other complexity estimates [19]. In [6], θ = 1 is possible, but an
additional coarsening step is used.

3. Some technical lemmata

For the purpose of the later convergence and complexity proofs, we collect here some lemmata concerning
upper and lower bounds of the estimators. Although the techniques used here are well established in the
literature, see [8–10,17,19], we give complete proofs since the subsequent analysis requires to elaborate the
precise dependence on iterative solution.

Lemma 3.1 (upper bounds). Let h ∈ H. There exists a constant C1 > 0 depending only on the minimum
angle of h0 such that for uh ∈ Vh the solution of (2.2) and arbitrary wh ∈ Vh

|u − wh|21 ≤ C1(J2
h(wh) + osc2

h) + 2 |uh − wh|21. (3.1)

Suppose in addition that H ∈ H and F ⊂ EH are such that h = Rloc(H,F). Letting P ⊂ NH the set of nodes
included in F and uH ∈ VH the discrete solution, we have

|uh − wH |21 ≤ C1

(
J2

H(wH ,F) + osc2
H(P) + |uH − wH |21

) ∀wH ∈ VH , (3.2)

and
#F ≤ C3 (Nh − NH). (3.3)
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Proof. The global upper bound (3.1) with wh = uh has been proven by Carstensen in [8] introducing a weighted
Clément-type quasi-interpolation operator, denoted by Ch. The generalization to wh �= uh follows from the
triangle inequality.

For the proof of the localized upper bound (3.2) we make use of the operator Ch which allows for the local
interpolation estimates, known from the Clément-operator. First, there exists a mesh-independent constant Cint

such that
max(|v − Chv|K , |K|1/4|v − Chv|∂K) ≤ Cint |K|1/2|v|1,ωK ,

where ωK is the union of the neighboring elements. In addition, Ch is constructed in such a way that, with
another mesh independent constant Corth,

〈f, v − Chv〉 ≤ C
∑

z∈NH

|ωz||f − πωz f |ωz |v|1,ωz ≤ Corth oscH |v|1.

Let now vH ∈ VH denote the quasi-interpolant of vh = uh−wH ∈ Vh. Then the support of vh−vH is located
to the locally refined region augmented by one layer of elements. Therefore we obtain the bound (3.3) with F
to be defined as the set of edges belonging to the support of vh − vH :

|uh − wH |21 = 〈∇(uh − wH),∇(vh − vH)〉 + 〈∇(uH − wH),∇vH〉
≤ 〈f, vh − vH〉 − 〈∇wH ,∇(vh − vH)〉 + |uH − wH |1|vH |1
≤ (Corth oscH(P) + CintJH(wH ,F))|vh|1 + 2Cstab|uH − wH |1|vh|1,

where Cstab is the H1
0 -stability constant of the weighted Clément operator. We conclude by setting C1 =

max(Corth, Cint, 2Cstab). �

The next lemma concerns lower bounds of the error. Whereas the global bound has a standard form, the
local bound is different from the one commonly used for convergence proofs, since the inner node property is
not assumed here.

Lemma 3.2 (lower bounds). There exists a constant C2 > 0 depending only on the minimum angle of h0 such
that for all vH ∈ VH

J2
H(vH) ≤ C2

(|u − vH |21 + osc2
H

)
. (3.4)

There exists a constant C4 > 0 depending only on the minimum angle of h0 such that for F ⊂ EH , h =
Rloc(H,F) and arbitrary δ > 0

J2
h(vh) ≤ (1 + δ)J2

H(vH) − 1 + δ

2
J2

H(vH ,F) + C4(1 + 1/δ)|vh − vH |21 ∀vh ∈ Vh, vH ∈ VH . (3.5)

Proof. The global local bound (3.4) is obtained using the standard techniques of [20] as follows. First we recall
that for a given triangle K ∈ KH and given edge E ∈ EH there exist a cubic bubble function bK ∈ H1

0 (K) and
a quadratic bubble function bE ∈ H1

0 (ωE), where ωE denotes the union of the neighboring cells of E. Taking
the test function wE := [∂vH

∂n ]bE we have with positive constants C, c > 0 and fK = πKf that

c

∥∥∥∥
[
∂vH

∂n

]∥∥∥∥
2

E

≤
∫

E

[
∂vH

∂n

]
wE ds =

∫
ωE

∇vH∇wE dx =
∫

ωE

∇(vH − u)∇wE dx +
∫

ωE

fwE dx

=
∫

ωE

∇(vH − u)∇wE dx +
∑

K⊂ωE

∫
ωE

fKwE dx +
∫

ωE

(f − fK)wE dx

≤ C

(
|E|−1/2|u − vH |1,ωE + |E|1/2

∑
K⊂ωE

(‖fK‖K + ‖f − fK‖K)

)∥∥∥∥
[
∂vH

∂n

]∥∥∥∥
E

,
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which yields

|E|
∥∥∥∥
[
∂vH

∂n

]∥∥∥∥
2

E

≤ C

(
|u − vH |21,ωE

+
∑

K⊂ωE

|K|‖f − fK‖2
K +

∑
K⊂ωE

|K|‖fK‖2
K

)
. (3.6)

In order to estimate the last term in (3.6), we choose the test function wK := fKbK , yielding∫
K

∇(u − vH) · ∇wK dx =
∫

K

fwK dx =
∫

K

fKwK dx +
∫

K

(f − fK)wK dx,

from which we deduce that

c‖fK‖2
K ≤ C

(
|K|−1/2|u − vH |1,K + ‖f − fK‖K

)
‖fK‖K ,

and therefore
|K|‖fK‖2

K ≤ C
(|u − vH |21,K + |K|‖f − fK‖2

K

)
.

Combining the last inequality with (3.6) and making use of the estimate
∑

K∈KH

|K|‖f − fK‖2
K ≤ C osc2

H (3.7)

gives (3.1). The bound (3.7) follows from the fact that for a node z ∈ NH , it holds
∑

K⊂ωz
‖f − fK‖2

K ≤∑
K⊂ωz

‖f − πzf‖2
K and that the number of cells sharing a node is bounded for the family of meshes.

Next we prove (3.5), following [10]. We divide the edges created by the local refinement into three sets. The
first set consists of newly created edges in the interior of a coarse cell. For such an edge E we have that

|E|
∫

E

[
∂vh

∂n

]2
ds = |E|

∫
E

[
∂(vh − vH)

∂n

]2
ds ≤ C|vh − vH |21,ωE

.

The second set consists of edges obtained from dividing a coarse edge E into two new edges, E = E1 ∪E2. For
a coarse edge from this set, we have by Young’s inequality

|E1|
∫

E1

[
∂vh

∂n

]2
ds + |E2|

∫
E2

[
∂vh

∂n

]2
ds

≤ (1 + δ)
|E|
2

∫
E

[
∂vH

∂n

]2
ds + (1 + 1/δ)

|E|
2

∫
E

[
∂(vh − vH)

∂n

]2
ds

≤
(

1 + δ − 1 + δ

2

)
|E|
∫

E

[
∂vH

∂n

]2
ds + (1 + 1/δ)

|E|
2

∫
E

[
∂(vh − vH)

∂n

]2
ds,

yielding (3.5) in this case.
The last set is the set of unrefined edges. Here we have

|E|
∫

E

[
∂vh

∂n

]2
ds ≤ (1 + δ)|E|

∫
E

[
∂vH

∂n

]2
ds + (1 + 1/δ)|E|

∫
E

[
∂(vh − vH)

∂n

]2
ds

≤ (1 + δ)|E|
∫

E

[
∂vH

∂n

]2
ds + C(1 + 1/δ)|vh − vH |21,ωE

.

This completes the proof. �
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4. Convergence proof

We prove error reduction with respect to the following error measure:

e(h, m) := |u − um
h |21 + β1 osc2

h +β2 J2
h(um

h ) (4.1)

for some constants β1 > 0 and β2 > 0.

Theorem 4.1. Assume that ζ satisfies (2.3). Let {hk}k≥0 be a sequence of meshes generated by algorithm AFEM
and let {umk

hk
}k≥0 be the corresponding sequence of finite element solutions. Suppose that

0 ≤ α <
θ2

64C4Cmg
, (4.2)

then there exist constants β1 > 0, β2 > 0, and ρ < 1 such that for all k = 1, 2, . . .

e(hk+1, mk+1) ≤ ρ e(hk, mk). (4.3)

Remark 4.2. For the convergence result of Theorem 4.1, the parameters γ, θ < 1, and σ < 1 can be chosen
arbitrarily.

Proof. We set α′ := α Cmg.
First we set uh := uhk+1 , uH := uhk

, um
h = u

mk+1
hk+1

, ul
H = umk

hk
, Jh = Jh(um

h ), JH = JH(ul
H), JH(F) :=

JH(ul
H ,F) and similarly for the other involved quantities. We consider the two cases of the algorithm separately.

Let us start with the first case. We make use of the Galerkin property of the finite element discretization.
Since for arbitrary ξ > 0 we have

〈∇(u − um
h ),∇(um

h − ul
H)〉 = 〈∇(uh − um

h ),∇(um
h − ul

H)〉
≤ (1/2ξ)|uh − um

h |21 + ξ/2|um
h − ul

H |21,

we find by means of the stopping criterion that

|u − um
h |21 = |u − ul

H |21 − |um
h − ul

H |21 − 2〈∇(u − um
h ),∇(um

h − ul
H)〉

≤ |u − ul
H |21 − (1 − ξ)|um

h − ul
H |21 +

α′

ξ
J2

h .

Combining the last inequality with (3.5) and introducing β′
2 := β2 + α′/ξ we obtain

|u − um
h |21 + β2J

2
h ≤ |u − ul

H |21 − (1 − ξ)|um
h − ul

H |21 + β′
2J

2
h

≤ |u − ul
H |21 + (β′

2C4(1 + 1/δ) − 1 + ξ) |um
h − ul

H |21
+ β′

2

(
(1 + δ)J2

H − 1 + δ

2
J2

H(F)
)

,

which leads to

e(h, m) ≤ |u − ul
H |21 + (β′

2C4(1 + 1/δ) − 1 + ξ) |um
h − ul

H |21 + β1 osc2
h

+ β′
2

(
(1 + δ)J2

H − 1 + δ

2
J2

H(F)
)

. (4.4)

Imposing the condition (
β2 +

α′

ξ

)
C4(1 + 1/δ) − 1 + ξ ≤ 0, (4.5)



1210 R. BECKER AND S. MAO

and using the refinement criterion, we have

e(h, m) ≤ |u − ul
H |21 + β1 osc2

h + β′
2

(
(1 + δ)J2

H − θ(1 + δ)
2

J2
H

)
.

We next introduce θ′ = (1 + δ)θ/2 − δ and parameters a, b > 0 to be chosen later.

e(h, m) ≤ |u − ul
H |21 + β1 osc2

h + β′
2(1 − θ′)J2

H

≤ |u − ul
H |21 − aθ′β′

2J
2
H + β1 osc2

h −(1 − a − b)θ′β′
2J

2
H + β′

2(1 − bθ′)J2
H .

Using the upper bound we have |u − ul
H |21 ≤ (C1 + 2α′)(J2

H + osc2
H). Taking into account osc2

H ≤ γJ2
H we find

e(h, m) ≤
(

1 − aβ′
2θ

′

C1 + 2α′

)
|u − ul

H |21 + (β1 + aθ′β′
2) osc2

H

− (1 − a − b)θ′β′
2J

2
H + β′

2(1 − bθ′)J2
H

≤
(

1 − aβ′
2θ

′

C1 + 2α′

)
|u − ul

H |21 + β1

(
1 + θ′

β′
2

β1

(
a − 1 − a − b

γ

))
osc2

H

+ β′
2(1 − bθ′)J2

H

≤ ρ1 |u − ul
H |21 + ρ2 β1 osc2

H +ρ3 β2J
2
H

≤ ρ1 e(H, l),

with ρ1 = max(ρ1, ρ2, ρ3) and

ρ1 = 1 − aβ′
2θ

′(C1 + 2α′)−1, ρ2 = 1 + θ′
β′

2

β1

(
a − 1 − a − b

γ

)
, ρ3 = (β′

2/β2)(1 − θ′b).

We now show that under the condition (4.2) we have 0 < ρi < 1 for i = 1, 2, 3.
First we notice that (4.2) implies, since 1 − x <

√
1 − x ≤ 1 − x/2 − x2/8 for 0 < x < 1 (which we apply

with x = θ/2),

α′ <
θ2

64C4
≤ 1 − θ/4 −√1 − θ/2

2C4
<

1 − θ/4 − (1 − θ/2)
2C4

=
θ

8C4
· (4.6)

Next we consequently choose the parameters δ, b, and β2. First consider the quadratic equation

δ2 + Aδ + B = 0, A =
4α′C4 − θ/2

1 − θ/2
, B =

4α′C4

1 − θ/2
· (4.7)

By (4.6) we have A < 0 and A2/4 − B > 0. Therefore (4.7) has a positive root and this implies existence of
δ∗ > 0 such that

(1 − θ/2)δ∗2 + (4α′C4 − θ/2)δ∗ < −4α′C4. (4.8)

We choose δ < min(δ∗, θ/2
1−θ/2). (4.8) implies

α′C4(1 + 1/δ)
θ′

=
α′C4(1 + 1/δ)

θ/2 − δ(1 − θ/2)
<

1
4
· (4.9)

Due to (4.9) the quadratic equation

x − x2 =
α′C4(1 + 1/δ)

θ′
(4.10)
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has two roots satisfying 0 < ξ1 < ξ2 < 1. Choose ξ1 < ξ < ξ2, such that

ξ − ξ2 >
α′C4(1 + 1/δ)

θ′
· (4.11)

Direct manipulation leads to
1 − θ′

θ′
α′

ξ
<

1 − ξ

C4(1 + 1/δ)
− α′

ξ
· (4.12)

We can therefore choose β2 > 0 such that

1 − θ′

θ′
α′

ξ
< β2 <

1 − ξ

C4(1 + 1/δ)
− α′

ξ
· (4.13)

The left inequality in (4.13) leads to

θ′ >
α′/ξ

β2 + α′/ξ
= 1 − β2

β2 + α′/ξ
= 1 − β2

β′
2

· (4.14)

This allows us to choose b such that

1 > b >

(
1 − β2

β′
2

)
/θ′, (4.15)

which implies

ρ3 =
β′

2

β2
(1 − bθ′) < 1. (4.16)

The right inequality in (4.13) leads to
β′

2C4(1 + 1/δ) + ξ ≤ 1,

which is (4.5).
It remains to choose a < 1−b

1+γ to obtain ρ2 < 1. Since for the indicated choices, it holds ρ1 < 1, we have
completed the proof in the first case. Notice that β1 > 0 is arbitrary up to now.

Now we consider the second case of the algorithm. We have the following property concerning the oscillation
term involving a constant 0 < μ < 1:

osc2
H − osc2

h ≥ μ osc2
H(P), (4.17)

which follows from the facts that the number of triangles containing a given node z ∈ Nh is bounded and that
the marked cells are at least bisected once, see [18] for more details.

The inequality (4.17) implies osc2
h ≤ (1−μσ) osc2

H . With the same choice of β2, ξ, and δ as before, it follows
from (4.8) under the condition (4.5) that:

e(h, m) ≤ |u − ul
H |21 + (β′

2C4(1 + 1/δ) − 1 + ξ) |um
h − ul

H |21 + β1 osc2
h

+ β′
2

(
(1 + δ)J2

H − 1 + δ

2
J2

H(F)
)

≤ |u − ul
H |21 + β1 osc2

h + β′
2(1 + δ)J2

H

≤ |u − ul
H |21 − aβ1μσ osc2

H + β1(osc2
H −(1 − a − b)μσ osc2

H)

+ β′
2(1 + δ)J2

H − bβ1μσ osc2
H

≤
(

1 − a
β1μσγ

C1(1 + γ) + 2α′

)
|u − ul

H |21 + β1(1 − (1 − a − b)μσ) osc2
H

+ β2

((
1 +

α′

β2ξ

)
(1 + δ) − b

β1

β2
γμσ

)
J2

H

≤ ρ(2) e(H, l).
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We choose a, b such that 1 − a − b > 0 and β1 such that

β1 >
β′

2(1 + δ)
bγμσ

· (4.18)

It follows that 0 < ρ(2) < 1. We conclude the proof by setting ρ = max(ρ1, ρ(2)). �

5. Complexity estimate

In order to express the optimal complexity, we introduce some notation from nonlinear approximation theory,
developed in [6,13]. Let HN be the set of all triangulations h which satisfy Nh ≤ N .

Next we define the approximation class

Ws :=
{
(u, f) ∈ (H1

0 (Ω), L2(Ω)) : ‖(u, f)‖Ws < +∞
}

(5.1)

with
‖(u, f)‖Ws := sup

N≥N0

Ns inf
h∈HN

(
|u − uh|21 + osc2

h

)
.

We say that an adaptive finite element method realizes optimal convergence rates if, whenever (u, f) ∈ Ws, it
produces a triangulation hk with dimension Nk and corresponding approximation uk such that

|u − uk|21 ≤ CN−s
k . (5.2)

Theorem 5.1. Suppose (f, u) ∈ Ws. Let {hk}k≥0 be a sequence of meshes generated by algorithm AFEM
and let {Vk}k≥0 and {uk}k≥0 be the corresponding sequences of finite element spaces and solutions. Let εk :=
|u − umk

k |21 + osc2
k and Nk = dim(Vk). Assuming the parameters γ and θ to satisfy

0 < γ < 1/(C2(1 + C1)), 0 < θ <
1 − γC2(1 + C1)
C2(C1 + Cmgα)

, (5.3)

we have the following estimate on the complexity of the algorithm: there exists a constant C such that

Nk ≤ C ε
−1/s
k . (5.4)

Remark 5.2. In case of exact solution, α = 0, and zero data oscillation osch = 0 (and consequently γ = 0), we
get the condition θ < 1/(C1C2). This condition states that the percentage of marked cells should not be larger
than the inverse of the efficiency index of the estimator C1C2. Such a condition seems natural, since θ = 1
corresponds to uniform refinement.

Proof. We use the same notation as in the convergence proof. As before, we consider the two cases separately.
First let osc2

H ≤ γJ2
H . From our regularity assumption we have existence of a mesh h∗ ∈ H such that for

λ > 0 to be chosen below
|u − uh∗ |21 + osc2

h∗ ≤ λ (|u − ul
H |21 + osc2

H) (5.5)
and

Nh∗ ≤ C (|u − ul
H |21 + osc2

H)−1/s. (5.6)
Following the proof of Stevenson [19] (proof of Lem. 5.2), we can suppose that h∗ is a refinement of H , if we
replace (5.6) by:

Nh∗ − NH ≤ (|u − ul
H |21 + osc2

H)−1/s. (5.7)
Let F∗ ⊂ EH be the set of refined edges and let P∗ be the set of corresponding nodes. We now prove that

J2
H(F∗) ≥ θJ2

H . (5.8)
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From (3.2) and the stopping criterion we have, since |u − uh∗ |21 = |u − ul
H |21 − |ul

H − uh∗ |21,

(C1 + α′)J2
H(F∗) ≥ |uh∗ − ul

H |21 − C1 osc2
H(P∗) = |u − ul

H |21 − |u − uh∗ |21 − C1 osc2
H(P∗)

≥ |u − ul
H |21 − λ

(|u − ul
H |21 + osc2

H

)
+ osc2

h∗ − C1 osc2
H(P∗)

≥ (1 − λ)
(|u − ul

H |21 + osc2
H

)− osc2
H − C1 osc2

H(P∗)

≥ 1 − λ

C2
J2

H − (1 + C1) osc2
H

≥
(

1 − λ

C2
− γ(1 + C1)

)
J2

H .

Choosing λ = 1 − C2 (C1 + α′) θ − γC2 (1 + C1), which is positive by assumption, we obtain the desired
bound (5.8).

Since F is chosen to be the set with minimal cardinality satisfying the bound (5.8), we find that

#Fk ≤ #F∗ ≤ Nh∗ − Nk ≤ ε
−1/s
k . (5.9)

Now we consider the second case. Similarly as before, there exists a mesh h∗ such that with λ to be chosen
below

|u − uh∗ |21 + osc2
h∗ ≤ λ

(|u − ul
H |21 + osc2

H

)
(5.10)

and

Nh∗ − Nh ≤ C
(|u − ul

H |21 + osc2
H

)−1/s
. (5.11)

It follows from (5.10) and (3.1) that

osc2
H − osc2

H(P∗) ≤ osc2
h∗ ≤ λ

(|u − ul
H |21 + osc2

H

)
≤ λ((C1 + α′)(J2

H + osc2
H) + osc2

H)

≤ λ

(
1 + (C1 + α′)

(
1 +

1
γ

))
osc2

H .

From this we obtain

osc2
H(P∗) ≥

(
1 − λ

(
1 + (C1 + α′)

(
1 +

1
γ

)))
osc2

H .

We choose λ = 1−σ
1+(C1+α′)(1+ 1

γ )
to obtain

osc2
H(P∗) ≥ σ osc2

H . (5.12)

With the same argument as before we get (5.9).
Let now el := |u−uml

hl
|21 +β1 osc2

hl
+β2 J2

hl
(uml

hl
). From Theorem 4.1 we know that with a constant 0 < ρ < 1

there holds

ek ≤ ρk−l el, k ≥ l ≥ 0.

Due to the definitions and the first lower bound (3.4) of Lemma 3.2 ek and εk are equivalent. Then we also
have with a constant C depending on β1, β2 that

εk ≤ Cρk−l εl, k ≥ l ≥ 0. (5.13)
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The estimate (5.13) together with Assumption 2.1 imply

Nk+1 − N0 ≤ C

k∑
l=0

#Fk ≤ C

k∑
l=0

ε
−1/s
l

≤ C ε
−1/s
k

k∑
l=0

(εk/εl)
1/s ≤ C ε

−1/s
k

(
k∑

l=0

ρ(k−l)/s

)
≤ C

1 − ρ1/s
ε
−1/s
k .

This concludes the proof. �
By Theorem 5.1, the number of unknowns is asymptotically optimal. The convergence analysis of multigrid

on the type of meshes considered here, see [7,21], can be used to check that the stopping criterion of the multigrid
iteration can be fulfilled with linear work count (supposing we use the nested algorithm). We note that it also
has already been discussed in the literature, see [14], how the logarithmic factor required in the complete sorting
of the estimator can be avoided.

Corollary 5.3. The algorithm AFEM can be implemented with optimal work count in the sense that for a
given accuracy ε > 0, the algorithm provides a discrete solution uh satisfying |u − uh|1 ≤ ε with a number of
operations proportional to ε−1/2s.

6. Stopping criterion

One way to obtain an a posteriori error estimator satisfying (2.3) is to follow the idea of [4].
The hierarchical refinement leads to a sequence of nested spaces V1 ⊂ . . . ⊂ Vl ⊂ . . . ⊂ VL with VL = Vh. Let

the discrete operators Al : Vl → Vl be defined by 〈Alul, vl〉 = 〈∇ul,∇vl〉 for all vl ∈ Vl and Ql : L2(Ω) → Vl be
the L2(Ω)-projection.

Let um
h be the approximate solution of the multigrid iteration after m iterations. We define with hl ≈ 2−l

ζh(um
h ) :=

L∑
l=1

hl‖(Ql − Ql−1)Rm‖ + ‖Q0R
m‖, Rm := Qhf − Ahum

h . (6.1)

Using the relation QlAh = AlPl where Pl is the Ritz-projection on Vl, it can be shown that the residual terms
appearing in the definition of (6.1) can be related to the residuals of the multigrid iteration, see [4]. As compared
to the estimator proposed there, (6.1) seems to be more appropriate on locally refined meshes. In order to prove
that (2.3) is satisfied, let w := uh − um

h . We then have

|uh − um
h |21 = 〈∇(uh − um

h ),∇w〉 = 〈Qhf − Ahum
h , w〉

=
L∑

l=1

〈Rm, (Ql − Ql−1)w〉 + 〈Rm, Q0w〉

=
L∑

l=1

〈(Ql − Ql−1)Rm, w〉 + 〈Q0R
m, w〉

≤ C

(
L∑

l=1

hl‖(Ql − Ql−1)Rm‖ + ‖Q0R
m‖
)
|w|1

by the use of the Clément interpolation and the Poincaré inequality.
Another way to derive such an a posteriori error estimator, which might also be valid for other iterative

methods, is given next. Suppose that an a priori estimate of the form

|u − um+1
h |1 ≤ ρmg|u − um

h |1, (6.2)
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Figure 1. Refinement creating a hanging node and a hanging nodes and corresponding con-
forming refinement for triangles.

Figure 2. Typical mesh and plot of exact solution for Example 1.

with ρmg < 1 holds. Then we define a simple estimator by

ζh(um
h ) :=

ρmg

1 − ρmg
|um+1

h − um
h |1. (6.3)

Notice that (6.3) is easy to implement, since it is at hand in standard implementations of the multigrid algorithm
and other iterative solvers.

7. Numerical experiments

We present two numerical experiments. The first one has a smooth solution and is used to examine the
behavior of the algorithm with respect to the different involved parameters. It is also used to compare with
other algorithms known from the literature. The second example employs a solution which is not in H2(Ω). It
illustrate the complexity estimate by showing that the optimal error decrease can be recovered by our adaptive
algorithm.

For both examples we use Ω = ]−1, 1[ × ]−1, 1[. The local mesh refinement uses quadrilateral meshes with
hanging nodes which are cut into triangles as indicates in Figure 1. A proof of Assumption 1 for this algorithm
as well as further details can be found in [3].

In the first case, we use u(x) = exp(−10|x|2) and f(x) = −Δu(x). We employ inhomogeneous Dirichlet data,
the generalization of the estimator is immediate. This example has been treated before in [17]. A typical mesh
is shown in Figure 2.
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Figure 3. Example 1: Error versus N for different values of θ (left, γ = 0.1) and γ (right, θ = 0.8).

We examine the behaviour of the algorithm with respect to the implied parameters. The important pa-
rameters are θ and γ. For simplicity, we set throughout σ = θ and α = 0. The ratio between the true error
e = ‖∇(u − uh)‖ and the estimator varied between 0.5 and 0.288 in all cases, and between 0.292 and 0.288 for
all computations with N ≥ 500.

The quality of the generated meshes for different values of θ are shown in the left picture of Figure 3. Since
u ∈ H2(Ω), all plots have the optimal slope s = 1/2. We have only represented θ = 0.9 and the extreme values
θ = 0.99 and θ = 0.1. It can be noticed that the behaviour is hardly influenced by the value of θ, as long as
θ < 1.0. In this case (adaptive refinement), there is a gain in the number of unknowns of a factor 2.5–3 as
compared to uniform refinement (θ = 1.0), which is explained by a better constant in e(N) ∼ N−s.

In Table 1 we make a comparison of our algorithm with the MNS algorithm [17]. We have chosen γ = 0.1 and
θ = 0.7. We denote by Mη and Mosc the number of marked cells due to the estimator and the oscillation term,
respectively. As can bee seen from Table 1, in contrast to the MNS algorithm, the algorithm presented in this
article leads to refinement according to the oscillation term only during the first steps. In the following iterations,
the refinement is only done according to the jump estimator, which reflects the fact that the oscillations are of
higher-order accuracy. Notice that for practical purposes, one would use a larger value of θ and and even larger
value for σ. The choice of θ = 0.9 and σ = 0.95 lead to a reduction of the number of adaptive iterations from 13
to for the same final accuracy in our tests.

Our second numerical example is intended to examine the complexity estimate. We compute the Poisson
equation in the L-shaped domain Ω = ]−1, 1[ × ]−1, 1[ \[0, 1]× [0, 1] and with right-hand side f = div g. The
vector g = (g1, g2) is given by g1 = −1 if x > −0.5 and g1 = 1 otherwise, and g2 = −1 if y > −0.5 and g2 = 1
otherwise. A plot of the solution is shown in Figure 4.

Although the presented theory cannot be applied directly, since f �∈ L2(Ω), we consider this as an interesting
example to see, if the optimal slope s = −1/2 can be reached by the adaptive algorithm. The problem presents
a singularity along the lines of discontinuity of g, as well as the corner singularity. Both are resolved to a certain
extend by the adaptive mesh refinement, as can bee seen from Figure 4.

Finally, we show the decrease of the estimator for different values of θ in the right plot of Figure 5. It turns
out that slope s = −1/2 can be recovered for θ = 0.9. For θ = 0.1 the complexity is not improved, but the
number of iterations required to achieve ηh < 0.1 is increased from 12 to 74. The choice of θ = 0.99 leads to
less favorable behavior, but the optimal slope seems to be recovered when the mesh is fine enough.

The number of nodes is approximately doubled during the adaptive refinement for θ ≈ 0.9, which could be
expected from isotropic refinement in two dimensions of a one-dimensional singularity. A much better behavior
could be expected for this example from anisotropic refinement, but this is out of the present scope.
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Table 1. Comparison between MNS algorithm (columns 2–4, from [17]) and the present one
(columns 5–7, γ = 0.1).

Iter N Mη Mosc N Mη Mosc

0 4 8 0 4 0 4
1 64 16 16 16 0 12
2 704 56 8 54 0 12
3 2256 80 0 94 0 8
4 4208 96 8 120 0 24
5 6624 112 24 202 0 80
6 8752 344 0 492 0 208
7 17 512 432 0 1224 644 0
8 28 368 608 0 3588 1796 0
9 42 896 768 16 9396 3304 0

10 60 216 2192 0 19 466 11 476 0
11 113 040 2296 24 54 388 28 356 0
12 160 592 3816 24 141 144 48 360 0

Figure 4. Typical mesh and plot of exact solution for Example 2.

8. Conclusion

We have proposed a new adaptive algorithm for conforming finite elements based on an adaptive marking
strategy and an adaptive stopping criterion for iterative solution.

In this article, we have carried out the proofs of geometric convergence of the error and asymptotic complexity
of the resulting meshes in the case of lowest-order finite elements in two space dimensions. The generalization
to three dimensions seems to be possible.

Numerical examples have been presented in order to compare the adaptive marking strategy with the col-
lective marking known from the literature and in order to illustrate the complexity of the sequence of meshes
generated by the adaptive algorithm for different values of the involved parameters. The second example illus-
trates the gain in adaptivity, but it also suggests the possible improvement by anisotropic refinement. However,
the proof of convergence and complexity results for anisotropic adaptive finite element algorithms requires
further consideration.
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Figure 5. Decrease of the estimator for Example 2.
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