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AN ANALYSIS OF THE EFFECT OF GHOST FORCE OSCILLATION
ON QUASICONTINUUM ERROR ∗

Matthew Dobson1 and Mitchell Luskin1

Abstract. The atomistic to continuum interface for quasicontinuum energies exhibits nonzero forces
under uniform strain that have been called ghost forces. In this paper, we prove for a linearization of
a one-dimensional quasicontinuum energy around a uniform strain that the effect of the ghost forces
on the displacement nearly cancels and has a small effect on the error away from the interface. We
give optimal order error estimates that show that the quasicontinuum displacement converges to the
atomistic displacement at the rate O(h) in the discrete �∞ and w1,1 norms where h is the interatomic
spacing. We also give a proof that the error in the displacement gradient decays away from the interface
to O(h) at distance O(h| log h|) in the atomistic region and distance O(h) in the continuum region.
Our work gives an explicit and simplified form for the decay of the effect of the atomistic to continuum
coupling error in terms of a general underlying interatomic potential and gives the estimates described
above in the discrete �∞ and w1,p norms.
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1. Introduction

The quasicontinuum method (QC) reduces the computational complexity of atomistic simulations by re-
placing smoothly varying regions of the material with a continuum approximation derived from the atomistic
model [5–14,17,18,21,23,25]. This is extremely effective in simulations involving defects, which have singularities
in the deformation gradient. In such simulations, a few localized regions require the accuracy and high com-
putational expense of atomistic scale resolution, but the rest of the material has a slowly varying deformation
gradient which can be more efficiently computed using the continuum approximation without loss of the desired
accuracy. Adaptive algorithms have been developed for QC to determine which regions require the accuracy of
atomistic modeling and how to coarsen the finite element mesh in the continuum region [1–3,16–18,20]. The
atoms retained in the atomistic region and the atoms at nodes of the piecewise linear finite element mesh in the
continuum region are collectively denoted as representative atoms.
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Recent years have seen the development of many QC approximations that differ in how they compute inter-
actions among the representative atoms. In the following, we concern ourselves with the original energy-based
quasicontinuum (QCE) approximation [13,25], but the phenomena that we analyze occur in all other quasicon-
tinuum approximations, as well as in other multiphysics coupling methods [9]. In QCE, a total energy is created
by summing energy contributions from each representative atom in the atomistic region and from each element
in the continuum region, where the volume of the elements in the atomistic to continuum interface is modified
to exactly conserve mass. This construction was chosen so that for any uniform strain the QCE energy, the
continuum energy, and the atomistic energy are identical. (As discussed later, this conservation property for the
QCE approximation is not sufficient to prevent the existence of nonzero forces at the atomistic to continuum
interface for uniform strain.) The representative atoms then interact via forces defined by the total energy.
This makes for a simple and versatile method that can treat complicated geometries and can be used with
adaptive algorithms that modify the mesh and atomistic regions during a quasi-static process. Other atomistic
to continuum approaches have been proposed, for example, that utilize overlapping or blended domains [4,19].

One drawback of the energy-based quasicontinuum approximation that has received much attention is the fact
that at the atomistic to continuum interface the balance of force equations do not give a consistent scheme [22].
As explained in Section 2, the equilibrium equations in the interior of both the atomistic region and the
continuum region give consistent finite difference schemes for the continuum limit, whereas the QC equilibrium
equations near the interface are not consistent with the continuum limit. This is most easily seen by considering
a uniform strain, which will be assigned identically zero elastic forces by any consistent scheme. (Ensuring
that a given scheme assigns zero forces for uniform strain has been known as the “patch test” in the theory of
finite elements [24].) The nonzero residual forces present in QCE for uniform strain have been called “ghost
forces” [7,22].

In this paper, we give optimal order error estimates for the effect of the inconsistency on the displacement
and displacement gradient for a linearization of a one-dimensional atomistic energy and its quasicontinuum
approximation. We consider the linearization of general interatomic potentials which are concave near second-
neighbor interatomic distances. This property guarantees that the interfacial error due to the Cauchy-Born
approximation with a second-neighbor cut-off is positive [7], p. 117, and that the quasicontinuum error is not
oscillatory in the atomistic region (see Sect. 3). In related work, Ming and Yang have given a counterexample
to convergence in the w1,∞ norm for a harmonic interatomic potential [15].

We begin by linearizing a one-dimensional atomistic energy, its local quasicontinuum approximation (which
we will call the continuum energy), and its quasicontinuum approximation about a uniform strain for a second-
neighbor atomistic energy. We will show in Section 2 that the three systems of equilibrium equations are
then

La,hua = f , (atomistic)

Lc,huc = f , (continuum)

Lqc,huqc − g = f , (quasicontinuum)

where f is an external loading, L and u are the linearized operator and corresponding displacement for each
scheme, g is non-zero only in the atomistic to continuum interface, and h is the interatomic spacing. The
term g in the quasicontinuum equilibrium equations is due to the unbalanced second-neighbor interactions in
the interface (2.13) and for uniform stretches is precisely the ghost force described in [7,13,22].

Formally, the error decomposes as

ua − uqc = ((La,h)−1 − (Lqc,h)−1)f − (Lqc,h)−1g.

(The operators are all translation invariant, so they only have solutions up to the choice of an additive constant.)
In this paper, we focus on the second term, (Lqc)−1g, which is the error due to the inconsistency at the interface.
To do so, we consider the case of no external field, f = 0, which will make ua = 0. For most applications
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of the quasicontinuum method, the only external field is due to loads that are applied on the boundary of the
material, far from the atomistic to continuum interface.

We showed in [7] that the ghost forces are oscillatory and sum to zero. In this paper, we prove that the
error in the displacement gradient is O(1) at the interface and decays away from the interface to O(h) at
distance O(h| logh|) in the atomistic region and distance O(h) in the continuum region. As noted above, a
counterexample to convergence in the w1,∞ norm and a decay estimate for the error away from the interface has
been given in [15] for a harmonice interatomic potential and Dirichlet boundary conditions. Here, we present
a simplified approach starting from a linearization of a quasicontinuum approximation with a concave second-
neighbor interaction. We explicitly give the form of the solution and analyze the solution in discrete l∞ and
w1,p norms. We show that the quasicontinuum displacement converges to the atomistic displacement at the
rate O(h) in the discrete l∞ and w1,1 norms where h is the interatomic spacing.

In Section 2, we describe the energy-based quasicontinuum approximation (QCE) and set up the analysis. In
Section 3, we prove Theorem 3.1 for the quasicontinuum energy that gives an optimal order, O(h) error estimate
in the l∞ norm and a O(h1/p) error estimate in the w1,p norm for 1 ≤ p < ∞. Note that for simplicity the
models and analysis are presented for the case where no degrees of freedom have been removed in the continuum
region, but we explain in Remark 3.1 that identical results hold when the continuum region is coarsened. We
present numerical computations in Figure 1 that clearly show that the error is localized in the atomistic to
continuum interface.

2. One-dimensional, linear quasicontinuum approximation

We consider an infinite one-dimensional chain of atoms with periodicity 2F in the deformed configuration.
Let yj denote the atomic positions for −∞ < j < ∞, where there are 2N atoms in each period. Let h = 1/N
and let

uj := yj − Fhj

denote the displacement from the average interatomic spacing, Fh. In the following, we analyze the behavior of
the quasicontinuum method as the atomistic chain approaches the continuum limit with F fixed and N → ∞.

The atomistic energy for a period of the chain is

Etot,h(y) := h
N∑

j=−N+1

[
φ

(
yj+1 − yj

h

)
+ φ

(
yj+2 − yj

h

)
− fjyj

]
, (2.1)

where φ(r) is a two-body interatomic potential (for example, the Lennard-Jones potential φ(r) = 1/r12 − 2/r6)
and f = (f−N+1, . . . , fN) are external forces applied as dead loads on the atoms. The periodic conditions

yj+2N = yj + 2F or uj+2N = uj

allow Etot,h to be written in terms of y := (y−N+1, . . . , yN ). We assume that
∑N

−N+1 fj = 0, otherwise there
is no energy minimizing solution since the elastic energy is translation invariant. In the following, we discuss
the existence and uniqueness of solutions to each of the models we encounter. We note that the energy per
bond in (2.1) has been scaled like hφ(r/h). This scaling implies that if we let yj = y(j/N) and fj = f(j/N) for
j = −N + 1, . . . , N where y ∈ C1([−1, 1]) and f ∈ C([−1, 1]), then as N → ∞ and F is held fixed, the energy
of a period (2.1) converges to ∫ 1

−1

φ(y′(x)) + φ(2y′(x)) − f(x)y(x) dx.
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We expand first neighbor terms around F, giving

φ

(
yj+1 − yj

h

)
= φ

(
F +

uj+1 − uj

h

)
= φ(F ) + φ′(F )

uj+1 − uj

h
+ 1

2φ′′(F )
(

uj+1 − uj

h

)2

+ O

(∣∣∣∣uj+1 − uj

h

∣∣∣∣3
)

,

and the second neighbor terms around 2F, giving

φ

(
yj+2 − yj

h

)
= φ

(
2F +

uj+2 − uj

h

)
= φ(2F ) + φ′(2F )

uj+2 − uj

h
+ 1

2φ′′(2F )
(

uj+2 − uj

h

)2

+ O

(∣∣∣∣uj+2 − uj

h

∣∣∣∣3
)
·

2.1. Atomistic model

The linearized atomistic energy is then given by

Ea,h(u) := h
N∑

j=−N+1

[
φ′

F

uj+1 − uj

h
+ 1

2φ′′
F

(
uj+1 − uj

h

)2

+ φ′
2F

uj+2 − uj

h
+ 1

2φ′′
2F

(
uj+2 − uj

h

)2

− fjuj

]
, (2.2)

where φ′
F := φ′(F ), φ′′

F := φ′′(F ), φ′
2F := φ′(2F ), φ′′

2F := φ′′(2F ), and u := (u−N+1, . . . , uN). Note that
here and in the following, we neglect the additive constant φ(F ) + φ(2F )− h

∑N
j=−N+1 fjFhj in the linearized

energy. We assume that φ ∈ C2([r0,∞)) for some r0 such that 0 < r0 < F, and

φ′′
F > 0 and φ′′

2F < 0. (2.3)

This holds true for the Lennard-Jones potential for Fh below the load limit, unless the chain is extremely
compressed (less than 60% of the equilibrium length). The property φ′′

2F < 0 ensures that the quasicontinuum
error is not oscillatory in the atomistic region (see Sect. 3).

We furthermore assume that
φ′′

F + 5φ′′
2F > 0, (2.4)

which will be sufficient to give solutions to the QC equilibrium equations under the assumption of no resultant
external forces (see Lem. 2.1). In contrast, the weaker assumption φ′′

F + 4φ′′
2F > 0 is sufficient for the fully

atomistic or fully continuum approximation. The equilibrium equations, 1
h

∂Ea,h

∂uj
(u) = 0, for the atomistic

model (2.2) are

(La,hu)j =
−φ′′

2F uj+2 − φ′′
F uj+1 + 2(φ′′

F + φ′′
2F )uj − φ′′

F uj−1 − φ′′
2F uj−2

h2
= fj ,

uj+2N = uj, (2.5)

for −∞ < j < ∞. Note that scaling by 1
h makes this a consistent approximation of the boundary value problem

−(φ′′
F + 4φ′′

2F )u′′(x) = f for −∞ < x < ∞,

u(x + 2) = u(x) for −∞ < x < ∞. (2.6)
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The linearized atomistic energy (2.2) has a unique minimum (up to a constant) if φ′′
F +4φ′′

2F > 0, provided that∑N
j=−N+1 fj = 0. Standard ODE results show that (2.6) has a unique solution (up to a constant) provided that∫ 1

−1 f(x) dx = 0.

Remark 2.1. For the atomistic energy (2.2), the linear terms sum to zero by the periodicity of the displacement,
since

h

N∑
j=−N+1

[
φ′

F

uj+1 − uj

h
+ φ′

2F

uj+2 − uj

h

]
=φ′

F [uN+1 − u−N+1] + φ′
2F [uN+2 + uN+1 − u−N+2 − u−N+1] = 0.

However, we keep these terms in the model since they do not sum to zero when the atomistic model is coupled
to the continuum approximation in the quasicontinuum energy. The resulting terms give a more accurate
representation of what happens in the non-linear quasicontinuum model.

2.2. Continuum approximation

The continuum approximation splits the chain into linear finite elements with nodes given by the representa-
tive atoms, which we recall are a subset of the atoms in the chain. The energy of the chain is the sum of element
energies which depend only on the element’s deformation gradient, the linear deformation that interpolates its
nodal positions. The energy of an element is then computed by applying the element’s deformation gradient to
the reference lattice, computing the energy per atom using the atomistic model, and multiplying by the number
of atoms in the element (where the boundary atoms are shared equally between neighboring elements). If the
continuum approximation is not coarsened (every atom is a representative atom), then the continuum energy
is given by

Ec,h(u) := h
N∑

j=−N+1

[
(φ′

F + 2φ′
2F )

(
uj+1 − uj

h

)
+ 1

2 (φ′′
F + 4φ′′

2F )
(

uj+1 − uj

h

)2

− fjuj

]
. (2.7)

See [7] for a derivation of the continuum energy and a discussion of the error terms at the element boundaries.
For j ∈ {−N + 1, . . . , N}, the equilibrium equations for the continuum approximation are

(Lc,hu)j = (φ′′
F + 4φ′′

2F )
[
−uj+1 + 2uj − uj−1

h2

]
= fj , (2.8)

which is also a consistent approximation for the boundary value problem (2.6). It is easy to see that the contin-
uum energy (2.7) has a unique minimum (up to a constant) if φ′′

F + 4φ′′
2F > 0, provided that

∑N
j=−N+1 fj = 0.

The quasicontinuum method inherently supports coarsening, but we neglect it here since in one dimension this
only changes the scaling of equilibrium equations.

2.3. Splitting the energy

We can split the atomistic energy and the continuum energy into per-atom contributions so that

Ea,h(u) = h

N∑
j=−N+1

[
Ea,h

j (u) − fjuj

]
and Ec,h(u) = h

N∑
j=−N+1

[
Ec,h

j (u) − fjuj

]
.

There are many possible ways to define the per-atom contributions, and we do this in such a way that these
contributions are linearizations of the ones in the fully nonlinear case presented in [7,25].
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In this case, we split the energy of each bond to obtain

Ea,h
j (u) := 1

2

[
φ′

F

uj+1 − uj

h
+ 1

2φ′′
F

(
uj+1 − uj

h

)2

+ φ′
2F

uj+2 − uj

h
+ 1

2φ′′
2F

(
uj+2 − uj

h

)2
]

+ 1
2

[
φ′

F

uj − uj−1

h
+ 1

2φ′′
F

(
uj − uj−1

h

)2

+ φ′
2F

uj − uj−2

h
+ 1

2φ′′
2F

(
uj − uj−2

h

)2
]
, (2.9)

and

Ec,h
j (u) := 1

2

[
(φ′

F + 2φ′
2F )

(
uj+1 − uj

h

)
+ 1

2 (φ′′
F + 4φ′′

2F )
(

uj+1 − uj

h

)2
]

+ 1
2

[
(φ′

F + 2φ′
2F )

(
uj − uj−1

h

)
+ 1

2 (φ′′
F + 4φ′′

2F )
(

uj − uj−1

h

)2
]
· (2.10)

2.4. Energy-based quasicontinuum approximation

The energy-based quasicontinuum approximation partitions the representative atoms into atomistic and
continuum representative atoms and assigns to each atom the split energy corresponding to its type (2.9–2.10).
We define the nodes −N+1, . . . ,−K−1 and K+1, . . . , N to be continuum and −K, . . . , K to be atomistic, where
we assume that 2 ≤ K ≤ N − 2 to ensure well-defined atomistic and continuum regions. The quasicontinuum
energy is then

Eqc,h(u) :=
−K−1∑

j=−N+1

hEc,h
j (u) +

K∑
j=−K

hEa,h
j (u) +

N∑
j=K+1

hEc,h
j (u) −

N∑
j=−N+1

hfjuj . (2.11)

Since the energy is quadratic, the equilibrium equations, 1
h

∂Eqc,h

∂uj
(uqc) = 0, take the form

Lqc,huqc − g = f . (2.12)

For 0 ≤ j ≤ N, the QCE operator is given by

(Lqc,hu)j = φ′′
F

−uj+1 + 2uj − uj−1

h2

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
, 0 ≤ j ≤ K − 2,

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
+

φ′′
2F

h

uj+2 − uj

2h
, j = K − 1,

4φ′′
2F

−uj+2 + 2uj − uj−2

4h2
− 2φ′′

2F

h

uj+1 − uj

h
+

φ′′
2F

h

uj+2 − uj

2h
, j = K,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
− 2φ′′

2F

h

uj − uj−1

h
+

φ′′
2F

h

uj − uj−2

2h
, j = K + 1,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
+

φ′′
2F

h

uj − uj−2

2h
, j = K + 2,

4φ′′
2F

−uj+1 + 2uj − uj−1

h2
, K + 3 ≤ j ≤ N.
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Similarly, g is given by

gj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, 0 ≤ j ≤ K − 2,

− 1
2φ′

2F /h, j = K − 1,
1
2φ′

2F /h, j = K,

1
2φ′

2F /h, j = K + 1,

− 1
2φ′

2F /h, j = K + 2,

0, K + 3 ≤ j ≤ N.

(2.13)

For space reasons, we only list the entries for 0 ≤ j ≤ N. The equations for all other j ∈ Z follow from
symmetry and periodicity. Due to the symmetry in the definition of the atomistic and continuum regions, we
have that Lqc,h

i,j = Lqc,h
−i,−j and gj = −g−j for −N + 1 ≤ i, j ≤ 0. To see this, we define the involution operator

(Su)j = −u−j and observe that the elastic part of the quasicontinuum energy,

Eqc,h
elastic(u) :=

−K−1∑
j=−N+1

hEc,h
j (u) +

K∑
j=−K

hEa,h
j (u) +

N∑
j=K+1

hEc,h
j (u) ,

satisfies Eqc,h
elastic(Su) = Eqc,h

elastic(u). It then follows from the chain rule that

ST Lqc,hSu− STg = Lqc,hu − g for all periodic u.

Since ST = S, we can conclude that

SLqc,hS = Lqc,h and Sg = g. (2.14)

Note that the expression for g does not depend on φ′
F since the first-neighbor terms identically sum to zero in

the energy (2.11). We can now observe that the QCE approximation (2.12) is not consistent with the continuum
limit of the atomistic model (2.6).

The linear operator Lqc has all uniform translations, u = c1 = (c, c, . . . , c), in its nullspace. To see that this
is the full nullspace, we consider the factored operator Lqc = DT EqcD, where (Du)j = uj+1−uj

h and

(Eqcr)j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

φ′′
2F rj−1 + (φ′′

F + 2φ′′
2F )rj + φ′′

2F rj+1, 0 ≤ j ≤ K − 2,

φ′′
2F rj−1 + (φ′′

F + 3
2φ′′

2F )rj + 1
2φ′′

2F rj+1, j = K − 1,
1
2φ′′

2F rj−1 + (φ′′
F + 3φ′′

2F )rj + 1
2φ′′

2F rj+1, j = K,
1
2φ′′

2F rj−1 + (φ′′
F + 9

2φ′′
2F )rj , j = K + 1,

(φ′′
F + 4φ′′

2F )rj , K + 2 ≤ j ≤ N.

We see that Eqc is diagonally dominant provided φ′′
F +5φ′′

2F > 0, hence assumption (2.4) implies Eqc is invertible.
So we have that the nullspace of Lqc is precisely the nullspace of D. Thus, Lqcu = g has a solution whenever∑N

j=−N+1 fj = 0, since
∑N

j=−N+1 gj = 0. This solution is unique up to a constant.
We now gather together the existence and uniqueness results stated for the models.

Lemma 2.1. If
∑N

j=−N+1 fj = 0 and φ′′
F +4φ′′

2F > 0, then the linearized atomistic energy (2.2) and continuum
approximation (2.7) both have a global minimizer that is unique up to an additive constant.

Under the slightly stronger assumption φ′′
F + 5φ′′

2F > 0, the quasicontinuum energy (2.11) has a unique
minimizer up to a constant.

Here, and in the following, we take f = 0, in order to focus on the effect of the ghost force g. Under this
assumption, we can conclude that the unique mean zero solution to the QCE equilibrium equations (2.12) is odd.
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This follows from S−1 = S and (2.14) which together imply that Su is a solution if and only if u is. Because
S preserves the mean zero property, we conclude that uqc is odd. The unique odd solution to the atomistic
equations, La,hua = 0, is ua = 0. Thus, the QCE equilibrium equations,

Lqc,huqc − g = 0, (2.15)

are also the error equations, and the quasicontinuum solution is the error in approximating ua.

2.5. Discrete Sobolev norms

The effect of the interface terms on the total error is norm-dependent, so we now employ discrete analogs of
Sobolev norms [18]. We define the discrete weak derivative by

u′
j =

uj+1 − uj

h
·

For 1 ≤ p < ∞ the discrete Sobolev norms are given by

||u||�p
h

=

⎛⎝ N∑
j=−N+1

h|uj|p
⎞⎠1/p

,

||u||w1,p
h

= ||u||�p
h

+ ||u′||�p
h

,

and for p = ∞ by

||u||�∞h = max
−N+1≤j≤N

|uj|,

||u||w1,∞
h

= ||u||�∞h + ||u′||�∞h .

The above discrete Sobolev norms are equivalent to the standard Sobolev norms restricted to the continuous,
piecewise linear interpolants u(x) satisfying u(j/N) = uj for j = −N + 1, . . . , N.

3. Convergence of the quasicontinuum solution

We now analyze the quasicontinuum error, uqc. We note that it is theoretically possible to solve (2.15)
explicitly for uqc; however, the form of the solution is complicated by the second-neighbor coupling in the
atomistic region, so we instead obtain estimates for the decay of the error, uqc, by analyzing a O(h2)-accurate
approximation of the error. Figure 1 shows the results of solving (2.15) numerically for odd solutions, uj = −u−j,
with three choices of lattice spacing and two sets of parameters. Note that for both sets of parameters, the
magnitude decays linearly with h, whereas the displacement gradient is O(1) in the atomistic to continuum
region. The following argument proves the qualitative error behavior analytically.

3.1. Form of the solution

In the interior of the continuum region the solution is linear, but in the atomistic region uqc is the sum of a
linear solution and exponential solutions. The homogeneous atomistic difference scheme

− φ′′
2F uj+2 − φ′′

F uj+1 + (2φ′′
F + 2φ′′

2F )uj − φ′′
F uj−1 − φ′′

2F uj−2 = 0 (3.1)

has characteristic equation

−φ′′
2F Λ2 − φ′′

F Λ + (2φ′′
F + 2φ′′

2F ) − φ′′
F Λ−1 − φ′′

2F Λ−2 = 0,
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Decay of Quasicontinuum Ghost Force Effect
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Figure 1. Error for the energy-based quasicontinuum approximation, uqc. We observe that
the magnitude of the error is O(h). However, the oscillation near the interface means that the
error in the displacement gradient is O(1) in the interfacial region. The average deformation
gradient, F, for the right column is close to failing the stability condition φ′′

F + 5φ′′
2F > 0. In all

plots K = N/2 and φ′
2F = 1.
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with roots

1, 1, λ,
1
λ

,

where

λ =
(φ′′

F + 2φ′′
2F ) +

√
(φ′′

F )2 + 4φ′′
F φ′′

2F

−2φ′′
2F

·

Based on the assumptions on φ in (2.3) and (2.4), we have that λ > 1. We note that if φ′′
2F were positive contrary

to assumption (2.3), then λ would be negative which would give a damped oscillatory error in the atomistic
region. General solutions of the homogeneous atomistic equations (3.1) have the form uj = C1 +C2hj +C3λ

j +
C4λ

−j , but seeking an odd solution reduces this to the form uj = C2hj + C3(λj − λ−j).
The odd solution of the quasicontinuum error equations (2.15) is thus of the form

(uqc)j =

⎧⎪⎪⎨⎪⎪⎩
m1hj + β

(
λj−λ−j

λK

)
, 0 ≤ j ≤ K,

m2hj − m2 + ũK+1, j = K + 1,

m2hj − m2, K + 2 ≤ j ≤ N,

where expressing the unknown uK+1 using a perturbation of the linear solution, ũK+1, simplifies the solution
of the equilibrium equations. The four coefficients m1, m2, ũK+1, and β can be found by satisfying the four
equations in the interface, j = K − 1, . . . , K + 2. Summing the equilibrium equations across the interface gives

0 =
K+2∑

j=K−1

gj =
K+2∑

j=K−1

(Lqc,huqc)j

= φ′′
F

uK−1 − uK−2

h2
+ 4φ′′

2F

uK + uK−1 − uK−2 − uK−3

4h2

− (φ′′
F + 4φ′′

2F )
(

uK+3 − uK+2

h2

)
= (φ′′

F + 4φ′′
2F )

(m1

h
− m2

h

)
·

The cancellation of the exponential terms in the final equality holds because

φ′′
2F (λK − λ−K) + (φ′′

F + φ′′
2F )(λK−1 − λ−K+1 − λK−2 + λ−K+2) + φ′′

2F (−λK−3 + λ−K+3) = 0,

which can be seen by summing (3.1) with the homogeneous solution uj = −λj for j = −K +2, . . . , K − 2. Thus
m1 = m2, that is, the slope of the linear part does not change across the interface. Hence, the odd solution is
given by

(uqc)j =

⎧⎪⎪⎨⎪⎪⎩
mhj + β

(
λj−λ−j

λK

)
, 0 ≤ j ≤ K,

mhj − m + ũK+1, j = K + 1,

mhj − m, K + 2 ≤ j ≤ N,

(3.2)

where the coefficients m, ũK+1, and β can now be found by satisfying any three of the equations in the interface,
j = K − 1, . . . , K + 2.
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3.2. Magnitude of the solution

We focus on the equations at j = K−1, K+1, and K+2 and split the interface equations as (AK+hB)x = hb,
where

AK =

⎡⎢⎣
1
2φ′′

2F − 1
2φ′′

2F φ′′
2F γK+1 − 1

2φ′′
2F γK−1

−φ′′
F − 5

2φ′′
2F 2φ′′

F + 13
2 φ′′

2F −φ′′
F γK − 2φ′′

2F γK − 1
2φ′′

2F γK−1

− 1
2φ′′

2F −φ′′
F − 4φ′′

2F − 1
2φ′′

2F γK

⎤⎥⎦ ,

B =

⎡⎢⎣ φ′′
2F 0 0

−φ′′
2F 0 0

φ′′
2F 0 0

⎤⎥⎦ , x =

⎡⎣ m
ũK+1

β

⎤⎦ , b =
1
2
φ′

2F

⎡⎣ −1
1

−1

⎤⎦ ,

and γj = λj−λ−j

λK . We note that AK , B, and b do not depend on h directly, though AK may have indirect
dependence if K scales with h as in Figure 1. Therefore, we can neglect B and conclude that x is O(h) provided
that A−1

K exists and is bounded uniformly in K.

Lemma 3.1. For all K satisfying 2 ≤ K ≤ N − 2, the matrix AK is nonsingular and ||A−1
K || ≤ C where C > 0

is independent of K.

Proof. Applying row reductions gives the upper triangular form

Ã =

⎡⎢⎣
1
2φ′′

2F − 1
2φ′′

2F φ′′
2F γK+1 − 1

2φ′′
2F γK−1

0 −φ′′
F − 9

2φ′′
2F φ′′

2F γK+1 − 1
2φ′′

2F γK − 1
2φ′′

2F γK−1

0 0 ηK

⎤⎥⎦
where

ηK =
(
(φ′′

F )2 + 15
2 φ′′

F φ′′
2F + 53

4 (φ′′
2F )2

)
(2γK+1 − γK − γK−1) + 1

2φ′′
2F

(
φ′′

F + 9
2φ′′

2F

)
(γK − γK−1) .

If the diagonal entries of Ã are non-zero, then AK is nonsingular. The coercivity assumption φ′′
F +5φ′′

2F > 0 (2.4)
implies that −φ′′

F − 9/2φ′′
2F < 0 since φ′′

2F < 0, so the first and second diagonal entries are non-zero. Since the
second term of ηK is negative, we can use the fact that γK − γK−1 < 2γK+1 − γK − γK−1 to see that

ηK >
(
(φ′′

F )2 + 8φ′′
F φ′′

2F + 62
4 (φ′′

2F )2
)
(2γK+1 − γK − γK−1)

=
(
φ′′

F +
(
4 + 1√

2

)
φ′′

2F

)(
φ′′

F +
(
4 − 1√

2

)
φ′′

2F

)
(2γK+1 − γK − γK−1)

> 0.

Therefore, A−1
K exists for all K. Taking limits, we find

lim
K→∞

ηK ≥
(
φ′′

F +
(
4 + 1√

2

)
φ′′

2F

)(
φ′′

F +
(
4 − 1√

2

)
φ′′

2F

) (
2λ − 1 − λ−1

)
> 0,

where we note that the elementary matrices corresponding to the row reduction operations did not depend on K
so that limK→∞ AK is nonsingular. The inverse of a matrix is continuous as a function of the entries whenever
the matrix is nonsingular. Thus, the fact that limK→∞ AK is nonsingular implies that limK→∞ ||A−1

K || is finite.
Since ||A−1

K || is finite for all K and limK→∞ ||A−1
K || is finite, we conclude that ||A−1

K || is uniformly bounded. �
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Thus, we have that m, ũK+1, and β are all O(h). We can express the derivative, u′
qc, as

(u′
qc)j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

m + β
h

(
λj+1−λ−j−1

λK − λj−λ−j

λK

)
, 0 ≤ j ≤ K − 1,

m − m
h + ũK+1

h − β
h

(
λK−λ−K

λK

)
, j = K,

m − ũK+1
h , j = K + 1,

m, K + 2 ≤ j ≤ N − 1,

where u′
−j−1 = u′

j for j = 0, . . . , N − 1.

Theorem 3.1. Let uqc be the solution to the QC error equation (2.15). Then for 1 ≤ p ≤ ∞, 2 ≤ K ≤ N − 2,
and h sufficiently small, the error can be bounded by

||uqc||�∞h ≤ Ch,

||uqc||w1,p
h

≤ Ch1/p,

where C > 0 is independent of h, K, and p.

Proof. The result for the �∞ norm follows from the fact that all terms in (3.2) are O(h). To show the bound
on w1,p, we first apply the triangle inequality to separate the m, ũk+1

h , m
h , and β

h terms which we bound using
the fact that ũK+1, m, and β are O(h). We have

||uqc||w1,p
h

= ||uqc||�p
h

+
∣∣∣∣u′

qc

∣∣∣∣
�p

h

≤ ||uqc||�p
h

+ |m| +
(
2
∣∣∣m
h

∣∣∣p h
)1/p

+
(

4
∣∣∣∣ ũK+1

h

∣∣∣∣p h

)1/p

+ 2

⎛⎝h
K∑

j=−K

∣∣∣∣βh (λj − λ−j)
λK

∣∣∣∣p
⎞⎠1/p

≤ Ch1/p +
2|β|
h

⎛⎝2h

K∑
j=0

∣∣∣∣ λj

λK

∣∣∣∣p
⎞⎠1/p

≤ Ch1/p +
2|β|
h

(
2h

λp

λp − 1

)1/p

≤ Ch1/p. �

Finally, we show that the pointwise error in the derivative, u′
qc, decays exponentially in j to O(h) away from

the interface in the atomistic region and decays immediately to O(h) away from the interface in the continuum
region.

Lemma 3.2. There is a C > 0 such that |(u′
qc)j | ≤ Ch for all 0 ≤ j ≤ K + lnh

ln λ and K + 2 ≤ j ≤ N. Thus, the
interface has size O(h| log h|).
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Proof. For h sufficiently small, we have that max(m, β) ≤ Ch. Since u′
j = m for K + 2 ≤ j ≤ N, in this region

u′
j ≤ Ch. For the terms 0 ≤ j ≤ K − 1 it is sufficient to show that the exponential term is less than or equal

to Ch. For 0 ≤ j ≤ K + ln h
ln λ , we have that(

λj+1 − λ−j−1

λK
− λj − λ−j

λK

)
≤ λj+1−K

≤ λK+ ln h
ln λ +1−K

≤ Ch. �

Remark 3.1. In order reduce the degrees of freedom, the continuum region is coarsened in computations using
the quasicontinuum method. For simplicity, coarsening was omitted from the model presented in this paper, but,
in fact, the results are unchanged if it is used. Conventionally, coarsening only occurs away from the atomistic
to continuum interface, so that no degrees of freedom are removed if they interact directly with the atomistic
region. Since the solution uj is linear for K +2 ≤ j ≤ N, any level of coarsening produces an identical solution.
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