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Abstract. In this paper, we are interested in the modelling and the finite element approximation
of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the
Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized
problem is put under a mixed variational formulation, whose approximation is achieved by means of
conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure
and the temperature. The discrete problem thus obtained is well-posed and a posteriori error estimates
are also established. Numerical tests are presented validating the developed code.
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Introduction

Due to emerging technologies such as optical fiber sensors, temperature measurements are destined to play a
major role in petroleum production logging interpretation. Using temperature recordings from a wellbore and
a flowrate history on the surface, it can be envisaged to develop new ways to predict flow repartition among
each producing layer of a reservoir or to estimate virgin reservoir temperatures.

In order to solve the inverse problem, one first needs to develop a forward model describing the flow of a
monophasic compressible fluid (oil or gas) in a reservoir and a well, from both a dynamic and a thermal point
of view. This implies to couple a reservoir model (porous medium) and a well model (based on the compressible
Navier-Stokes equations).

In this paper, we only consider the reservoir model, written in axisymmetric form and depending on the
cylindrical coordinates (r, z). It consists of the Darcy-Forchheimer equation coupled with a non-standard energy
balance (see [10]), notably including the temperature effects due to the decompression of the fluid (Joule-
Thomson effect) and the frictional heating that occurs in the formation. This energy equation thus quantifies
the cooling or the heating of the produced fluid before entering the wellbore. Therefore, it stands apart from
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daniela.capatina-papaghiuc@univ-pau.fr; bertrand.denel@univ-pau.fr
2 Total, CST Jean Feger, Avenue Larribau, 64018 Pau Cedex, France. peppino.terpolilli@total.com

c© EDP Sciences, SMAI 2005



350 M. AMARA ET AL.

the classical models which mainly consider the wellbore thermal exchanges due to conduction and convection
and assume that the produced fluid enters the wellbore at the geothermal temperature.

In order to solve this nonlinear system, we first implement a time discretization which uses a classical Euler’s
scheme and then we linearize the problem at each time step. Its unknowns are now the pressure p, the specific
flux G = ρv, the temperature T and the heat flux q = λ∇T , the density ρ being updated by verifying the
cubic Peng-Robinson state equation at the end of each time loop. The semi-discretized system is shown to be
well-posed by means of the Fredholm’s alternative, for smooth coefficients and for sufficiently small ∆t.

Concerning the space discretization, we introduce a mixed variational formulation where the convective terms
are treated by means of an upwind scheme. To provide an accurate determination of the fluxes, we employ the
lowest-order Raviart-Thomas finite elements for the velocity and the heat flux, and piecewise constant finite
elements for the pressure and the temperature. We prove that the mixed problem is well-posed thanks to an
extension of the Babuška-Brezzi theory (cf. [12]).

Numerical tests are presented, validating the model from both a numerical (convergence in time and space)
and a physical (comparison with analytical solutions for the pressure) point of view.

We are next interested in defining and justifying a posteriori estimators, which involve mesh-dependent norms
as in [13]. We establish upper and lower error bounds, allowing us to locate the areas where an improvement of
the solution is necessary.

An outline of the paper is as follows. In Section 1, we introduce the governing conservation laws and we
write the problem in cylindrical coordinates (see also [8]). Once the time discretization and the linearization
introduced, Section 2 is devoted to the mathematical study of the semi-discretized problem. The existence and
uniqueness of a solution is proved in two steps. Firstly, we neglect the convective terms and we show by means
of a non-standard mixed formulation that the obtained problem is well-posed. Moreover, the smoothness of its
solution is discussed. Secondly, we show the existence and uniqueness of a solution for the complete problem,
by making use of the Fredholm’s alternative. The finite element approximation is detailed in the next section.
An upwind scheme is introduced and the discrete problem is shown to be well-posed. In Section 4, we present
several numerical tests confirming the theoretical results. A comparison with an existing software Pie is given
and some realistic cases are also considered on different meshes. Finally, in the last section we define a posteriori
error indicators and we carry out some numerical tests which highlight the local character of the estimators.

As a conclusion, we have developed a code for petroleum reservoirs, based on conservative finite elements
of Raviart-Thomas and taking into account a non-standard energy equation. In perspective, the mathematical
analysis of the error in time is to be done and the code is to be coupled with a wellbore simulator.

1. Physical modelling

Our aim is to model the flow of a monophasic compressible fluid (oil or gas) in a petroleum reservoir from
both a dynamic and a thermal point of view.

To give an idea of the studied domain, we have represented in Figure 1 a petroleum well, delimited by a
casing and surrounded by a cement layer and by the reservoir. The communication between the well and the
reservoir is achieved through perforations. The reservoir Ω is treated as a porous medium divided into several
geological layers (Ωi)1≤i≤N which are characterized by their own dip and physical properties. Thus, each layer
is made of a porous rock (of porosity φ), characterized by vertical and horizontal permeabilities, and saturated
with both a mobile monophasic fluid (of saturation so) and a residual formation water (of saturation sw).

In what follows, we agree to write the vectors in bold letters and the tensors in underlined bold letters. We
shall denote by c any positive constant independent of time and of the space discretization.

1.1. Conservation laws

We denote by ρ the density of the fluid, by µ its viscosity, by g = −gez the gravitational acceleration, by φ

the porosity of the medium and by K =
[

k1 0
0 k2

]
its permeability, with φ and K depending on the geological

layers. We also denote by v the Darcy velocity and we introduce the specific flux G = ρv.
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Figure 1. Geometry of a wellbore surrounded by a reservoir.

The fluid flow is modelled by the Darcy-Forchheimer equation coupled with a non-standard energy balance
which takes into account, besides the convection and the diffusion, the Joule-Thomson compressibility effect
and the frictional heating.

So, the problem is described by the following conservation laws:

φ
∂ρ

∂t
+ divG = 0, (1)

ρ−1
(
µK−1G + F |G|G

)
+ ∇p = ρg, (2)

(ρc)∗
∂T

∂t
+ ρ−1 (ρc)f G · ∇T − divq − φβT

∂p

∂t
− ρ−1(βT − 1)G · ∇p = 0, (3)

ρ = ρ(p, T ). (4)

Due to the high filtration velocity which can arise around gas wells, we have introduced a quadratic term in
the standard Darcy’s equation to take into account the kinematic energy losses; F represents the Forchheimer’s
coefficient.

In the energy equation, (ρc)∗ characterizes the heat capacity of a virtual medium, equivalent to the fluid and
the porous matrix, while (ρc)f only symbolizes the fluid properties. The coefficient λ denotes the equivalent
thermal conductivity, T is the temperature and q = λ∇T represents the heat flux.

As usually when modelling petroleum fluids, we use in (4) the Peng-Robinson cubic state equation, see [11].
To this system we add initial conditions for ρ and T :

ρ (x, 0) = ρ0 (x) and T (x, 0) = T0 (x) a.e. in Ω,

and boundary conditions which will be prescribed later.

1.2. Problem in cylindrical coordinates

Due to the geometry of the domain, it is quite natural to write our problem in 2D axisymmetric form, only
depending on the cylindrical coordinates (r, z). Following the ideas presented in [8], this means that we consider
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Figure 2. Boundaries of the 2D domain.

a cylindrical reservoir characterized in cartesian, respectively cylindrical coordinates by:

Ω3D = {(x, y, z) ; r2
w ≤ x2 + y2 ≤ R2, z ∈ [zmin, zmax]}

= {(r, θ, z) ; rw ≤ r ≤ R, z ∈ [zmin, zmax]}.

The flow is supposed to be radial and the pressure and the temperature independent of θ.
Thus, our 2D domain merely consists of:

Ω = {(r, z) ; rw ≤ r ≤ R, z ∈ [zmin, zmax]},

and the (r, z) formulation of our problem is shown to be:




rφ
∂ρ

∂t
+ div(rG) = 0,

ρ−1
(
µK−1 + F |G|I

)
G + ∇p = ρg,

1
λ
q −∇T = 0,

r (ρc)∗
∂T

∂t
+ rρ−1 (ρc)f G · ∇T − div(rq) − rφβT

∂p

∂t
− rρ−1(βT − 1)G · ∇p = 0,

ρ = ρ(p, T ),

(5)

where G now refers to (Gr, Gz)t, q = (qr, qz)t and ∇v = (∂v
∂r , ∂v

∂z )t, divv = ∇ · v.
One notes that (5) is a coupled nonlinear system whose unknowns are G, q, p, T and ρ.
Moreover, all the coefficients related to the porous medium (notably K and λ) are discontinuous across the

interfaces of the geological layers.

1.3. Boundary conditions

In order to define the boundary conditions, Γ = ∂Ω is divided into five parts, see Figure 2.
The boundary conditions apply to G and its dual variable p, as well as to q and T .
Concerning the specific flux, a condition of impermeability G · n = 0 is imposed on Γ1, Γ3 and Γ4. On the

external boundary Γ2, either a normal specific flux or a pressure p = pΓ can be set. This most notably allows us
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to treat the standard cases of a closed reservoir (no-flow condition G ·n = 0) and of a reservoir feed at constant
pressure. It goes the same way for the perforations located on Γ5.

Concerning the temperature, the geothermal gradient is imposed on the top Γ1 and the bottom Γ3 of the
reservoir, whereas a null normal flux condition or a temperature TΓ can be set on the lateral boundaries Γ2, Γ4

and Γ5.
From now on, we denote by Γp, ΓT , ΓG and Γq respectively the union of the boundaries where a pressure pΓ,

a temperature TΓ, a normal specific flux Q and a normal heat flux Ψ are imposed. So, we have Γ = ΓG ∪ Γp =
Γq ∪ ΓT . In order to simplify the presentation, we assume in what follows that Γp �= Ø and ΓT �= Ø.

2. Analysis of the semi-discretized problem

2.1. Time discretization

The time discretization is based on the classical Euler’s implicit scheme. At any time increment, we determine
the unknowns G, q, p and T , and then we update ρ by satisfying the Peng-Robinson cubic equation. This last
step is achieved by means of a thermodynamic module.

With this aim in view, let us first replace in the mass conservation equation the derivatives of ρ thanks to
its dependency in p and T :

∂ρ

∂t
= χρ

∂p

∂t
− βρ

∂T

∂t
,

where we have introduced the compressibility coefficient χ, respectively the expansion coefficient β by putting:

χ =
1
ρ

(
∂ρ

∂p

)
T

, β =
1
V

(
∂V

∂T

)
p

= −1
ρ

(
∂ρ

∂T

)
p

·

This leads to the following time-discretized linear problem:



1
ρn−1

(
µn−1K−1 + F |Gn−1|I

)
Gn + ∇pn = ρn−1g,

1
λn−1

qn −∇T n = 0,

r
φρn−1χn−1

∆t
pn − r

φρn−1βn−1

∆t
T n + div(rGn) = r

φρn−1χn−1

∆t
pn−1 − r

φρn−1βn−1

∆t
T n−1,

r
(ρc)n−1

∗
∆t

T n + r
(ρc)n−1

f

ρn−1
Gn−1 · ∇T n − r

φβn−1T n−1

∆t
pn,

−r
(βn−1T n−1 − 1)

ρn−1
Gn−1 · ∇pn − div(rqn) = r

(ρc)n−1
∗

∆t
T n−1 − r

φβn−1T n−1

∆t
pn−1.

(6)

For the sake of clarity, let us introduce some notations for the thermodynamic coefficients:

a = φρn−1χn−1, b = φρn−1βn−1, d = (ρc)n−1
∗ ,

f = φβn−1T n−1, k =
(ρc)n−1

f

ρn−1
, l =

1 − βn−1T n−1

ρn−1
,

and let us also introduce the symmetric tensor:

M =
1

ρn−1

(
µn−1K−1 +

F

r
|Gn−1|I

)
.

One can notice that a, b, d, f , k, λ and M are positive, respectively positive definite, whereas l is of variable
sign.
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We agree to make the change of variables G̃ = rG, q̃ = rq and to denote from now on G̃, q̃ by G, q.
Moreover, for the simplicity of the presentation, we drop the index n − 1 on the coefficients of the problem.

We are now interested in the mathematical analysis of the previous linearized problem, which writes as
follows: 



1
r
MG + ∇p = ρn−1g,

1
rλ

q −∇T = 0,

r
a

∆t
p − r

b

∆t
T + divG = r

a

∆t
pn−1 − r

b

∆t
T n−1,

r
d

∆t
T + kGn−1 · ∇T − r

f

∆t
p + lGn−1 · ∇p − divq = r

d

∆t
T n−1 − r

f

∆t
pn−1.

(7)

The unknowns G, q, p and T satisfy the boundary conditions:

G · n = Q on ΓG, q · n = Ψ on Γq, p = pΓ on Γp and T = TΓ on ΓT ,

as well as classical transmission conditions at the interfaces between the geological layers Ωi, i = 1, . . . , N . Let
us recall that M and λ are discontinuous across the interfaces of Ωi, i = 1, . . . , N .

From now on, we make the following assumptions on the thermodynamic coefficients, which are justified in
practice by all the available experimental data:

(A1) a, d, 1
λ are bounded from below by a strictly positive constant and M is uniformly positive definite;

(A2) a, b, d, f , k, l, 1
λ and M are bounded a.e. in Ω;

(A3) ∃c ∈ R
∗
+ such that 4ad − (b + f)2 ≥ c a.e. in Ω.

2.2. Well-posedness of the problem without convection

Let us begin the mathematical analysis by neglecting, for the moment, the convective terms kGn−1 ·∇T and
lGn−1 · ∇p in the energy equation and by writing next the problem (7) under variational form.

We denote by V = (G,q) the vector unknowns, respectively by s = (p, T ) the scalar ones and we introduce
the spaces:

L
2(Ω) = L2(Ω) × L2(Ω),

H(div, Ω) = H(div, Ω) × H(div, Ω),

H
0(div, Ω) =

{
V′ = (G′,q′) ∈ H(div, Ω) ; G′ · n = 0 on ΓG, q′ · n = 0 on Γq

}
,

H
∗(div, Ω) =

{
V′ = (G′,q′) ∈ H(div, Ω) ; G′ · n = Q on ΓG, q′ · n = Ψ on Γq

}
,

endowed with their natural norms ‖ · ‖0,Ω and ||| · |||.
By multiplying the equations of (7) by test-functions (V′, s′) and after integrating by parts, one gets the

following mixed problem:




Find V ∈ H
∗(div, Ω), s ∈ L

2(Ω) such that

A(V,V′) + B(s,V′) = F1(V′) ∀V′ ∈ H
0(div, Ω),

−B(s′,V) + C(s, s′) = F2(s′) ∀s′ ∈ L
2(Ω),

(8)
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where the bilinear forms are defined by

A(V,V′) =
∫

Ω

1
r
MG · G′dx +

∫
Ω

1
rλ

q · q′dx,

B(s,V′) = −
∫

Ω

pdivG′dx +
∫

Ω

Tdivq′dx,

C(s, s′) =
∫

Ω

r
a

∆t
pp′dx −

∫
Ω

r
b

∆t
T p′dx +

∫
Ω

r
d

∆t
TT ′dx −

∫
Ω

r
f

∆t
pT ′dx,

and the linear forms by

F1(V′) =
∫

Ω

ρn−1g ·G′dx − 〈G′ · n, pΓ〉Γ + 〈q′ · n, TΓ〉Γ,

F2(s′) =
∫

Ω

r

∆t
(apn−1 − bT n−1)p′dx +

∫
Ω

r

∆t
(dT n−1 − fpn−1)T ′dx.

Here above, we employed the notation 〈·, ·〉Γ for the duality product between H−1/2(Γ) and H1/2(Γ).
Then one can establish:

Theorem 2.1. Assume that ρn−1, pn−1, T n−1 ∈ L2(Ω) and that the coefficients a, b, d, f , λ and M satisfy the
hypotheses (A1) to (A3). Then the mixed problem (8) has a unique solution.

Proof. Thanks to (A1) and (A2), the forms A(·, ·), B(·, ·), C(·, ·) and F1(·), F2(·) are obviously continuous and
moreover,

A(V′,V′) ≥ c‖V′‖2
0,Ω, ∀V′ ∈ H

0(div, Ω),

since 1
r ≥ 1

rw
. So A(·, ·) is H(div, Ω)-elliptic on

KerB =
{
V′ = (G′,q′) ∈ H

0(div, Ω) ; divG′ = divq′ = 0 in Ω
}

.

One can easily show that B(·, ·) satisfies the inf-sup condition.
Indeed, with any s = (p, T ) ∈ L

2(Ω) one associates G′ = ∇ς, q′ = ∇φ where ς, φ are the unique solutions of
the following boundary value problems:




−∆ς = p in Ω
ς = 0 on Γp

∂ς

∂n
= 0 on ΓG

;




−∆φ = T in Ω
φ = 0 on ΓT

∂φ

∂n
= 0 on Γq

. (9)

Thus, the couple V′ = (G′,q′) belongs to H
0(div, Ω) and one has

∀s ∈ L
2(Ω), sup

V∈H0(div,Ω)

B(s,V)
|||V||| ≥ B(s,V′)

|||V′|||
≥ c‖s‖0,Ω ,

where c depends only on the domain Ω.
In addition to the inf-sup condition for B(·, ·) and the ellipticity of A(·, ·) on KerB, one has that C(·, ·) is

positive definite.
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Indeed, thanks to (A3), one has that

C(s, s) =
∫

Ω

r

∆t

[
ap2 + dT 2 − (b + f)Tp

]
dx

=
∫

Ω

r

∆t

[(√
ap − b + f

2
√

a
T

)2

+
4ad − (b + f)2

4a
T 2

]
dx

≥ c

∆t
(‖p‖2

0,Ω + ‖T ‖2
0,Ω).

Therefore, the relation A(V,V) + C(s, s) = 0 implies that V = 0, s = 0, which ensures the uniqueness of the
solution of problem (8).

In order to prove the existence of a solution, we use a Galerkin method. First of all, let us notice that the
classical Babuška-Brezzi theorem gives the well-posedness of problem (8) with C(·, ·) = 0, which allows us to
consider next F1(·) = 0. So, we solve the problem on a sequence of finite dimensional spaces Hm ×Lm, spanned
by the first m vectors of a Hilbert basis in H(div, Ω) × L

2(Ω).
The unique solution (Vm, sm) ∈ Hm × Lm satisfies A(Vm,Vm) + C(sm, sm) = F2(sm).
The positivity of A(·, ·) and the coercivity of C(·, ·) together with the inf-sup condition on B(·, ·), give that

both (sm) and (Vm) are bounded with respect to m. Passing to the limit when m → ∞, one classically obtains
the existence of a solution. We have thus established that the variational problem (8) is well-posed. �

Remark 2.2. The bilinear form C(·, ·) being non-symmetric, one cannot use the results of Brezzi and Fortin
[5] in order to prove the well-posedness of problem (8).

In order to write our problem by means of a linear continuous operator, let us first denote the data of the
initial problem (7) by:

f = (fΩ, fΓ) ∈ X1 × X2,

where
fΩ = (f1, f2, f3, f4) ∈ X1 = L

2(Ω) × L
2(Ω) × L2(Ω) × L2(Ω),

fΓ = (pΓ, TΓ, Q, Ψ) ∈ X2 = H1/2(Γp) × H1/2(ΓT ) × H−1/2(ΓG) × H−1/2(Γq),
with, in our case,

f1 = ρn−1g, f2 = 0, f3 =
r

∆t
(apn−1 − bT n−1) and f4 =

r

∆t
(dT n−1 − fpn−1).

With these notations, the right-hand side term of problem (8) can be written under the following form:

F1(V′) =
∫

Ω

f1 · G′dx +
∫

Ω

f2 · q′dx − 〈G′ · n, pΓ〉Γ + 〈q′ · n, TΓ〉Γ,

F2(s′) =
∫

Ω

f3p
′dx +

∫
Ω

f4T
′dx.

Then, thanks to Theorem 2.1, we can define a linear continuous operator

L : X1 × X2 −→ H(div, Ω) × L
2(Ω),

which associates, with any data f, the unique solution of (8):

σ = (V, s) ∈ H(div, Ω) × L
2(Ω).

Finally, the variational problem is equivalent to Lf = σ.
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2.3. Smoothness of the solution

We show here that for sufficiently smooth boundary conditions and thermodynamic coefficients, the solution
of (8) is smoother on each geological layer Ωi, i = 1, . . . , N . More precisely, we shall prove in the next theorem
that the previous operator L is well-defined from X1 × X3 to H(div, Ω) × Y, with

X3 =
N∏

i=1

[
H1/2+δ(Γi

p) × H1/2+δ(Γi
T ) × H−1/2+δ(Γi

G) × H−1/2+δ(Γi
q)
]
,

Y =
N∏

i=1

H
1+δ(Ωi),

and 0 < δ ≤ 1.

We have put:
H1/2+δ(Γi

p) = H1/2+δ(Γp ∩ ∂Ωi), H1/2+δ(Γi
T ) = H1/2+δ(ΓT ∩ ∂Ωi),

H−1/2+δ(Γi
G) = H−1/2+δ(ΓG ∩ ∂Ωi), H−1/2+δ(Γi

q) = H−1/2+δ(Γq ∩ ∂Ωi).

We suppose next that, at any tn, there exists a lifting (V∗, s∗) ∈ H(div, Ω)×Y satisfying the imposed boundary
conditions.

We can then establish:

Theorem 2.3. Suppose that ρn−1 ∈ H1(Ω), ∇λ ∈ L∞(Ωi) and M−1 = (mkl)1≤k,l≤2 ∈ C0,1(Ωi), where mkl are
Lipschitz functions for each i = 1, . . . , N .

Then, for any (pΓ, TΓ, Q, Ψ) ∈ X3, one gets that s ∈ Y, where σ = (V, s) is the unique solution of (8).

Proof. First of all, an integration by parts on each subdomain Ωi gives that:

B(s,V′) =
N∑

i=1

(∫
Ωi

∇p · G′dx −
∫

Ωi

∇T · q′dx
)
−

N∑
i=1

∫
∂Ωi

pG′ · ndσ +
N∑

i=1

∫
∂Ωi

Tq′ · ndσ.

By taking V′ ∈ D(Ωi) as test-function in the first variational equation of (8), one gets that:

∇T =
1
λr

q, ∇p = ρn−1g − 1
r
MG in Ωi, i = 1, . . . , N.

Next, since G′ · n and q′ · n are continuous across the interfaces of the subdomains, it comes that p and T are
also continuous across the interfaces. Finally, this implies that p, T ∈ H1(Ω).

One can now write in each layer Ωi that:




div
(

1
r
q
)

= ∇λ · ∇T + λ∆T ,

div
(

1
r
G
)

= −div(ρn−1M−1g) − div(M−1∇p).

Since r is bounded and since divq, divG ∈ L2(Ω), it comes that:

∆T ∈ L2(Ωi), div(M−1∇p) ∈ L2(Ωi).
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Let us also notice that

T = TΓ ∈ H1/2+δ(Γi
T ), λ∇T · n =

1
r
q · n ∈ H−1/2+δ(Γi

q),

and similarly

p = pΓ ∈ H1/2+δ(Γi
p), M−1∇p · n = −ρn−1M−1g · n − 1

r
G · n ∈ H−1/2+δ(Γi

G).

Moreover, the following transmission conditions hold at the interfaces between the subdomains:

[T ] = 0, [p] = 0, [λ∇T · n] = 0 and [M−1∇p · n] = 0.

The existence of the above mentioned lifting ensures that the Dirichlet and Neumann boundary data satisfy
usual compatibility conditions.

Then, thanks to the regularity of an elliptic problem with discontinuous coefficients on a polygon (see for
instance Grisvard [9]), it finally comes that

(p, T ) ∈
N∏

i=1

H
1+δ(Ωi),

which ends the proof. �

Remark 2.4. One cannot have (p, T ) ∈ H
2(Ω), due to the discontinuity of λ and M at the interfaces.

Remark 2.5. Whenever the boundary conditions are sufficiently smooth and each layer Ωi is a convex domain,
one gets s = 1.

Remark 2.6. Let us recall that ∇ρ = χρ∇p − βρ∇T and, since p and T are shown to be in H1(Ω) with no
additional condition, the hypothesis ρn−1 ∈ H1(Ω) is quite natural.

An important point in theorem 2.3 is that one conserves the regularity of the solution from one time step to
another, for sufficiently smooth initial boundary conditions.

Indeed, if the boundary conditions at tn−1 belong to X3, then according to the proof of Theorem 2.3 it comes
that pn ∈ H1/2+δ(Γi

p) and T n ∈ H1/2+δ(Γi
T ), i = 1, . . . , N . Moreover,

Gn = −rρn−1M−1g− rM−1∇pn ∈
N∏

i=1

H
δ(Ωi) and qn = rλ∇T n ∈

N∏
i=1

H
δ(Ωi),

which implies that:
Gn · n ∈ H−1/2+δ(Γi

G), qn · n ∈ H−1/2+δ(Γi
q).

So the boundary conditions at tn are also in X3.

2.4. Fredholm’s alternative for the problem with convection

Let us now take into account the convective terms and define therefore the linear continuous operator

K : Y −→ L2(Ω), K(s) = kGn−1 · ∇T + lGn−1 · ∇p.

The main point is that the operator K is compact thanks to the compact embedding Hδ(Ωi) ↪→ L2(Ωi), for
i = 1, . . . , N and 0 < δ ≤ 1.
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We also need to introduce K : H(div, Ω) × Y −→ X1 × X3,

K(σ) = (fΩ, fΓ),

with fΩ = (0,0, 0, K(s)) and fΓ = 0.
Then our initial problem (7) can be put under the following form:

σ = L(f + K(σ)) ⇐⇒ (I − LK)σ = Lf, (10)

where LK is now a compact operator from H(div, Ω) × Y to itself.
In order to prove the well-posedness of problem (10), we apply the Fredholm’s theory. More precisely, we

establish next that Ker(I − LK) = {0}, therefore problem (10) has a unique solution for any right-hand side
term.

Lemma 2.7. Under assumptions (A1), (A2), (A3) and for ∆t sufficiently small, one has Ker(I − LK) = {0}.

Proof. The solution of the equation (I − LK)σ = 0 satisfies the following relations, obtained by taking τ = σ
as test-function in the variational formulation:




A(V,V) + B(s,V) = 0,

−B(s,V) + C(s, s) +
∫

Ω

K(s)Tdx = 0.

By adding these equalities, it comes that

A(V,V) + C(s, s) +
∫

Ω

K(s)Tdx = 0.

By replacing ∇T =
1
rλ

q, ∇p = −1
r
MG and by means of the Gauss reduction, the previous relation can be

finally written as below:

∫
Ω

1
r
M
(
G − l

2
TGn−1

)
·
(
G− l

2
TGn−1

)
dx +

∫
Ω

1
rλ

∣∣∣∣q +
k

2
TGn−1

∣∣∣∣
2

dx +
∫

Ω

r

∆t

(√
ap − b + f

2
√

a
T

)2

dx

+
∫

Ω

r

4∆t

(
4ad − (b + f)2

a
− ∆t

r2
M̃Gn−1 · Gn−1

)
T 2dx = 0,

with M̃ = l2M +
k2

λ
I positive definite and with 4ad − (b + f)2 ≥ c > 0 due to (A3).

Then, for

∆t < r2 4ad − (b + f)2

aM̃Gn−1 ·Gn−1
,

one gets that all the squares vanish, which implies that σ = 0. �

As a conclusion, we have established in this section the well-posedness of the time-discretized problem (7) at
any tn, under nonrestrictive regularity assumptions on the data but for a sufficiently small time step.
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3. Finite element approximation

3.1. The discrete problem with upwinding

We are now interested in the space discretization of problem (7), which will be achieved by means of low-order
conforming finite elements.

Let us consider a family (Th)h of triangulations of Ω consisting of triangles matching at the interfaces between
the layers Ωi, and with (Th)h regular in the sense of Ciarlet [7].

We employ classical notations: hK represents the diameter of the triangle K, he the length of the edge e,
h = maxK∈Th

hK is the discretization parameter and we denote by Eh the set of all the edges of Th and by E0
h

the set of the internal edges.
We consider the following finite dimensional spaces:

Lh = {p′ ∈ L2(Ω) ; p′|K ∈ P0, ∀K ∈ Th},

Vh = {G′ ∈ H(div, Ω) ; G′
|K ∈ RT0, ∀K ∈ Th},

where P0 is the space of constant functions and RT0 is the lowest-order Raviart-Thomas space,

RT0 =
{(

ar + b
az + c

)
, a, b, c ∈ R

}
.

Then we put
Lh = Lh × Lh,

V
0
h = (Vh × Vh) ∩ H

0(div, Ω),
and we also introduce the affine set:

V
∗
h = {(G′,q′) ∈ Vh × Vh | G′ · n = Ih(Q) on ΓG, q′ · n = Ih(Ψ) on Γq}

where Ih(Q) and Ih(Ψ) are piecewise constant approximations of Q on ΓG, respectively of Ψ on Γq.
Let us recall that the solution of the continuous problem satisfies the variational equations:

{
A(V,V′) + B(s,V′) = F1(V′) ∀V′ ∈ H

0(div, Ω),

−B(s′,V) + (C + D)(s, s′) = F2(s′) ∀s′ ∈ L
2(Ω),

(11)

where the convective term

D(s, s′) =
∫

Ω

K(s)T ′dx =
∫

Ω

kGn−1 · ∇TT ′dx +
∫

Ω

lGn−1 · ∇pT ′dx (12)

is well-defined, thanks to the regularity of the exact solution (∇p, ∇T ∈ L
2(Ω)).

We employ an upwind scheme in order to treat the convective term and we approximate, on every triangle
K ∈ Th and for every T ∈ Lh:

∫
K

kGn−1
h · ∇Tdx �

∑
e∈∂K−

k

(∫
e

Gn−1
h · ndσ

)
(T ∗ − TK), (13)

with
∂K− =

{
e ∈ ∂K ; Gn−1

h · n < 0
}

the set of incoming edges, TK = T|K and T ∗ = T|K∗ where the triangle K∗ is such that {e} = ∂K ∩ ∂K∗.
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We recall that since Gn−1
h ∈ Vh one has that Gn−1

h · n is constant on every edge.
A similar formula is used for the term

∫
K

lGn−1
h · ∇p dx.

Whenever the edge e ∈ ∂K− belongs to ∂Ω, we agree to take T ∗, p∗ equal to the imposed boundary conditions
if e ⊂ ΓT or e ⊂ Γp and equal to TK , pK otherwise.

We consider the following approximation of D(·, ·) on Lh × Lh:

Dh(s, s′) = Ih(T, T ′) + Jh(p, T ′),

where the bilinear forms Ih(·, ·) and Jh(·, ·) are defined by:

Ih(T, T ′) =
∑

K∈Th

∑
e∈∂K−

k

(∫
e

Gn−1
h · ndσ

)
δ(T )T ′

K ,

Jh(p, T ′) =
∑

K∈Th

∑
e∈∂K−

l

(∫
e

Gn−1
h · ndσ

)
δ(p)T ′

K ,

with

δ(T ) =




−TK if e ⊂ ΓT ,

0 if e ⊂ ∂Ω\ΓT ,

[T ] = T ∗ − TK if e ∈ E0
h

and with δ(p) defined in a similar way, with respect to Γp. To this bilinear form Dh(·, ·), we add a linear part
corresponding to the non homogeneous boundary conditions:

F3h(s′) = −
∑

e∈∂K−∩ΓT

k

(∫
e

Gn−1
h · ndσ

)
TΓT ′

K −
∑

e∈∂K−∩Γp

l

(∫
e

Gn−1
h · ndσ

)
pΓT ′

K .

We are now able to write the discrete problem:



Find Vh ∈ V
∗
h, sh ∈ Lh such that

A(Vh,V′) + B(sh,V′) = F1h(V′) ∀V′ ∈ V
0
h ,

−B(s′,Vh) + (C + Dh)(sh, s′) = F2h(s′) + F3h(s′) ∀s′ ∈ Lh ,

(14)

where F1h(·) and F2h(·) are obtained from F1(·) and F2(·) by replacing ρn−1, pn−1, T n−1 by ρn−1
h , pn−1

h , T n−1
h

respectively.

Remark 3.1. Let us notice that all the coefficients of the discrete problem are obtained, at each time step
tn−1, from pn−1 and T n−1 by means of a thermodynamic module. So, in practice, they are piecewise constant
functions and this numerical integration introduces a supplementary error of O(h). However, for the sake of
simplicity, we neglect here this aspect.

Concerning the continuity of Ih(·, ·) and Jh(·, ·), one can prove the following result:

Lemma 3.2. Suppose that Th satisfies an inverse assumption h ≤ chK . Then there exist positive constants c1

and c2, independent of h, such that for any p, T, T ′ ∈ Lh one has:

|Ih(T, T ′)| ≤ c1

h2
‖Gn−1

h ‖0,Ω ‖T ‖0,Ω ‖T ′‖0,Ω ,

|Jh(p, T ′)| ≤ c2

h2
‖Gn−1

h ‖0,Ω ‖p‖0,Ω ‖T ′‖0,Ω .
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Proof. One can write, for any T , T ′ ∈ Lh, that:

|Ih(T, T ′)| =

∣∣∣∣∣
∑

K∈Th

k

hK

( ∑
e∈∂K−

∫
e

(
Gn−1

h · ndσ
)
δ(T )

)
‖T ′‖0,K

∣∣∣∣∣
≤
∑

K∈Th

|k|
hK

( ∑
e∈∂K−

‖Gn−1
h · n‖0,e‖δ(T )‖0,e

)
‖T ′‖0,K

≤ c

h

(∑
e∈Eh

he‖Gn−1
h · n‖2

0,e

)1/2(∑
e∈Eh

1
he

‖δ(T )‖2
0,e

)1/2

‖T ′‖0,Ω ,

by the Cauchy-Schwarz inequality. Using the equivalence of norms in finite dimensional spaces and the passage
to the reference finite element, one classically gets for Gn−1

h ∈ Vh and T ∈ Lh (see for instance Roberts and
Thomas [12], Brenner and Scott [4]) that:

(∑
e∈Eh

he‖Gn−1 · n‖2
0,e

)1/2

≤ c‖Gn−1
h ‖0,Ω ,

(∑
e∈Eh

1
he

‖δ(T )‖2
0,e

)1/2

≤ c

h
‖T ‖0,Ω .

So, the first statement holds. The proof of the second inequality is similar. �

3.2. Existence and uniqueness of a solution

Let us now study the well-posedness of the discrete problem (14) and apply for that the following variant of
the Babuška-Brezzi theorem which can be found in [12].

Besides the inf-sup condition on B(·, ·) and the ellipticity of A(·, ·) on KerhB, if the next conditions are
satisfied:

(1) A(V,V) ≥ 0, ∀V ∈ V
0
h ,

(2) (C + Dh)(s, s) ≥ 0, ∀s ∈ Lh ,
(3) either A(·, ·) or (C + Dh)(·, ·) is symmetric,

then the mixed problem (14) has a unique solution.
Moreover, denoting by

Ah =
[

A B
−BT (C + Dh)

]
,

it comes that the norm of the inverse matrix A−1
h is independent of the norm of (C + Dh).

In our case, since
KerhB =

{
(G′,q′) ∈ Vh ; divG′ = divq′ = 0 in Ω

}
⊂ KerB,

it comes that A(·, ·) is H(div, Ω)-elliptic on the discrete kernel of B(·, ·), with an ellipticity constant independent
of h. Obviously, A(·, ·) is symmetric and positive on the whole space H(div, Ω).

The next lemma ensures that the discrete inf-sup condition on B(·, ·) is also satisfied, uniformly with respect
to the discretization parameter.

Lemma 3.3. There exists a positive constant β > 0, independent of h, such that:

∀s ∈ Lh, sup
V∈V0

h

B(s,V)
|||V||| ≥ β‖s‖0,Ω .
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Proof. The proof is classical and makes use of the Fortin’s trick. That is, with any s ∈ Lh we associate the
couple V′ = (G′,q′) ∈ H

0(div, Ω) solution of the auxiliary problems (9). Since Ω is a convex polygon, the
regularity of the previous elliptic problems gives that V′ ∈ H

1(Ω), so one may consider its Raviart-Thomas
interpolant:

Eh(V′) = (Eh(G′), Eh(q′)) ∈ V
0
h ,

which satisfies:
|||Eh(V′)||| ≤ c‖V′‖1,Ω ≤ c‖s‖0,Ω ,

B(s, Eh(V′)) = B(s,V′) = ‖s‖2
0,Ω .

So the lemma is established. �
It is now sufficient to prove that (C + Dh)(·, ·) is positive on Lh × Lh which is given in the next lemma.

Lemma 3.4. For ∆t sufficiently small and for h ≤ chK , one has that:

(C + Dh)(s, s) ≥ 0, ∀s ∈ Lh.

Proof. Thanks to (A3), one has that C(·, ·) is positive definite:

C(s, s) ≥ c

∆t
‖s‖2

0,Ω, ∀s ∈ L
2(Ω).

Since Lh ⊂ L
2(Ω), the previous relation holds on Lh, with c independent of h and depending only on the

coefficients a, b, d and f .
Then, by means of Lemma 3.2, it comes that:

(C + Dh)(s, s) ≥ c

∆t
(‖p‖2

0,Ω + ‖T ‖2
0,Ω) − c1

h2
‖Gn−1

h ‖0,Ω‖T ‖2
0,Ω − c2

h2
‖Gn−1

h ‖0,Ω‖p‖0,Ω‖T ‖0,Ω.

So, for

∆t ≤ αh2

‖Gn−1
h ‖0,Ω

, (15)

with α = 2c

c1+
√

c2
1+c2

2

, one deduces the announced statement. �

Remark 3.5. Let us notice that Ih(·, ·) is positive (see [2] for the proof), so the above constant α can be taken
as 2c

c2
. Moreover, if one considers pn−1 instead of pn in the energy equation, then Dh(·, ·) becomes positive and

there is no condition imposed on ∆t.

So, gathering together the previous results, one deduces

Theorem 3.6. Problem (14) has a unique solution.

Remark 3.7. If we impose a strict inequality in (15), then (C + Dh)(·, ·) is even positive definite and the
discrete operator Ah is obviously injective. So the discrete problem (14) has a unique solution, whether B(·, ·)
satisfies the inf-sup condition or not.

Concerning the convergence of the approximation method, let us first notice that one cannot directly apply
the results given by the theory of Babuška and Brezzi for mixed formulations, since the continuous problem (5)
does not satisfy the Babuška-Brezzi conditions. However, thanks to the well-posedness of the discrete problem,
one has:

En = ‖σ − σh‖ ≤ c1 inf
τh∈V0

h
×L

[
‖σ − τh‖ + sup

τ ′
h∈V0

h×L

D(σ, τ ′
h) −Dh(τh, τ ′

h) + F3h(τ ′
h)

‖τ ′
h‖

]
+ c2E

n−1,

where c1, c2 are independent of time and of the discretization and where the right-hand side term refers to the
upwinding scheme. More details can be found in [2].
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Figure 3. Pressure maps on congruent meshes at t = 7 days.
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Figure 4. L2-Error for the pressure at t = 7 days.

4. Numerical simulations

In this section we present several numerical tests of our scheme. In order to validate the considered model
from both a numerical and a physical point of view, we first study the behaviour of the solution with respect to
mesh refinement (Sect. 4.1). We also compare the computed pressure with analytical pressure solutions given
by well-test softwares such as Pie (Sect. 4.2). Finally, we present some results obtained for more realistic data
(Sect. 4.3).

4.1. Mesh convergence

We consider a reservoir divided into two geological layers, which physical and thermodynamic properties are
homogeneous (notably k1 = 1000 mD and k2 = 350 mD) but where only the lower one is perforated. We
intend to simulate the production of a light oil by imposing a difference of pressure ∆p = 10 bar between the
perforation and the external boundary of the reservoir.

The solutions are computed on congruent meshes Th/i obtained from an initial mesh Th, each triangle be-
ing successively divided into four congruent ones. Note that in order to avoid considerable calculations, the
dimensions of the reservoir are deliberately reduced.

We use the solution associated with the finest mesh as a reference solution and we compute the error between
this solution and the ones obtained for the intermediate meshes. We have represented the pressure on congruent
meshes in Figure 3 and the corresponding error in Figure 4. As shown in Figure 4, we numerically obtain the
following error bound for the pressure:

‖p − ph‖0,Ω ≤ C|h|α,

with α � 1.46. Similar results hold for the temperature.
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Figure 5. Velocity and temperature on Th/2 at t = 7 days.

Figure 5 represents the velocity field and the temperature map after producing during one week.

4.2. Comparison with well-test softwares

Well-testing consists in varying the well flow rate, which disturbs the existing pressure in the reservoir,
and then in measuring and interpreting the variations in pressure versus time to get information about the
reservoir. To make well-test interpretation easier, different softwares such as Pie

1 are employed. For a given
flow rate history, they are notably able to analytically evaluate the distribution of pressure in the reservoir (cf.
[3]) by using Fourier and Laplace transforms. Accordingly, these analytical simulators only work in simplified
frameworks and do not take into account the energetic aspect.

Here, our aim is to compare our computed pressure with the one given by Pie.
Thus, we treat the case of a mono-layer reservoir with constant physical and thermodynamic coefficients

and with horizontal and vertical permeabilities given by k1 = 100 mD and k2 = 1 mD. Moreover, the flow is
supposed to verify the Darcy’s assumption and to be independent of the gravity effects, i.e. F = 0 and g = 0
in (2).

First, we consider a reservoir characterized by a constant pressure (here pΓ = 360 bar) on its external
boundary. A production at constant flow rate (Q = 150 m3/day) is simulated during the first 24 hours and is
followed by a shut-in period (Q = 0 m3/day) during the next 24 hours. As expected, we observe in Figure 6a
that during the draw-down period, the flow regime goes through a transitory state to reach a permanent one.
This permanent state is characterized by a constant wellbore pressure given by:

pwell = pΓ − α
QBµ

Kh

(
ln

R

rw
+ S

)
, (16)

where α is a conversion factor, B is the volume factor, S is the skin (null in this experience) and rw, R respectively
refer to the wellbore and to the reservoir radius. Still in permanent regime, we can modify (16) to estimate, at
a given z, the pressure at any r. Figure 6b shows that our solution (pink crosses) and the analytical one (in
green) are very closed.

Next, we repeat the same experience for a closed reservoir. In other words, a no-flow condition G · n = 0 is
now set on the external boundary of the reservoir. As shown in Figure 7 and explained in Bourdarot [3], while
the well is producing (the first 24 hours) the flow regime becomes pseudosteady-state as soon as the reservoir
boundaries are reached. Moreover, while the well is shut-in (the last 24 hours), the pressure stabilizes at a value
called average pressure in the whole area defined by the no-flow boundaries.

1www.welltestsolutions.com
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Figure 6. Reservoir with a constant pressure boundary. Comparison of pressures.
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Figure 7. Closed reservoir evolution in time of the pressure near the well.

4.3. Realistic reservoir

Let us now present a more realistic example. Our aim is to model an existing reservoir which is divided into
seven geological layers characterized by high heterogeneities concerning the physical properties (cf. Fig. 8).
Thus, the producing layers (here, the even-numbered ones) have high permeabilities (from 1 to 7 Darcy) and
can be separated by quasi-walls (for instance, the third layer from the top) with low porosity and permeability.
We simulate the production of a light oil by imposing a gradient of pressure between the perforations and the
external boundary of the reservoir.

As one can observe in Figure 9, the temperature and the pressure obtained for different meshes after a
one-month production are physically acceptable.

Mesh Nodes Edges Triangles
Mesh T1 173 458 286
Mesh T2 575 1609 1035
Mesh T3 2020 5832 3813

Figure 10 represents the transitory period at the end of which the pressure is stabilized, while Figure 11 shows
the behaviour of the reservoir temperature during a one-month production.
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k1 = 7000 mD k2 = 350 mD φ = 0.20 sw = 0.15

k1 = 7000 mD k2 = 350 mD φ = 0.28 sw = 0.15

k1 = 10 mD k2 = 1 mD φ = 0.08 sw = 0.9

k1 = 1000 mD k2 = 15 mD φ = 0.24 sw = 0.42

k1 = 1000 mD k2 = 15 mD φ = 0.26 sw = 0.30

k1 = 1000 mD k2 = 15 mD φ = 0.22 sw = 0.38

k1 = 1000 mD k2 = 15 mD φ = 0.24 sw = 0.40

Figure 8. Vertical section of the reservoir.
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(a) Pressure - Mesh T1
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(b) Pressure - Mesh T2
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(c) Pressure - Mesh T3
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(d) Temperature - Mesh T1
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(e) Temperature - Mesh T2

5 10 15 20 25 30 35 40 45 50

−2850

−2845

−2840

−2835

−2830

−2825

−2820

−2815

Température à l’instant t=28 jours

333.5

334

334.5

335

335.5

336

336.5

(f) Temperature - Mesh T3

Figure 9. Pressure and temperature maps at t = 28 days, for realistic data.

4.4. Influence of the permeability

As one can notice from the previous examples, when treating a reservoir associated with a vertical wellbore,
one generally has that k1 � k2 where k1 is the radial permeability and k2 the vertical one. However, in
order to numerically validate the code, we next present an example where k2 � k1. More precisely, we take
k1 = 1 mD whereas k2 = 1000 mD. Since the flow is mainly radial, the influence of the radial permeability k1

is preponderant compared with the one of the vertical permeability k2, which leads to similar results from a
qualitative point of view for both situations k2 � k1 and k2 � k1 (cf. Fig. 12).
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Figure 10. The pressure reaching steady state.
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(a) t=0 day
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(b) t=7 days
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(c) t=28 days

Figure 11. Behaviour of the reservoir temperature during a one-month production.
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(a) Pressure
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Figure 12. A one-layer reservoir with k2 � k1.

Finally, we detail an example where the permeability is extremely different in the layers. This aspect was
already encountered to a lesser extent when studying the realistic case.

We take for that a two-layer reservoir with (k1, k2) = (5000 mD, 350 mD) for the first layer and (1 mD, 1 mD)
for the second one, and we impose a difference of pressure between the perforation and the external boundary
of the reservoir. The layers are both perforated but due to a better permeability, the flow mainly takes place
through the first layer, which leads to a higher rise in the temperature as shown in Figure 13.
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(a) Pressure
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Figure 13. Two-layer reservoir with heterogeneous permeability.

5. A POSTERIORI error estimators

We define in this section reliable and efficient a posteriori estimators, which can be used for local mesh
refinements and implicitly for improvement of the solution.

It is useful to write the discrete problem (14) under the equivalent form:

{
Find σh ∈ V

∗
h × Lh

Ah(σh, σ′
h) = Fh(σ′

h), ∀σ′
h ∈ V

0
h × Lh,

(17)

where σh = (Vh, sh), Ah =
[

A B
−BT (C + Dh)

]
and Fh =

(
F1h

F2h + F3h

)
.

5.1. Mesh-dependent norms and error indicators

In order to define a posteriori error indicators on the Raviart-Thomas finite element space Vh, we apply
some results of Verfürth and Braess [13]. We begin by introducing the following mesh-dependent norms:

|||V|||h =

(
‖G‖2

0,Ω + ‖q‖2
0,Ω +

∑
e∈Eh

he‖G · n‖2
0,e +

∑
e∈Eh

he‖q · n‖2
0,e

)1/2

, ∀V = (G,q) ∈ V
0
h,

|s|1,h =

( ∑
K∈Th

|p|21,K +
∑

K∈Th

|T |21,K +
∑
e∈Eh

h−1
e ‖[p]‖2

0,e +
∑
e∈Eh

h−1
e ‖[T ]‖2

0,e

)1/2

, ∀s = (p, T ) ∈ Lh,

(18)

where [p] represents the jump of p across an internal edge e, respectively the trace of p if e ⊂ ∂Ω.
Then the following equivalences of norms hold:

‖V‖0,Ω ≤ |||V|||h ≤ c‖V‖0,Ω, ∀V ∈ V
0
h, (19)

‖s‖0,Ω ≤ ch|s|1,h ≤ c′‖s‖0,Ω, ∀s ∈ Lh, (20)

with c, c′ independent of h. We refer for instance to Roberts and Thomas [12] for the proof of (19) and (20).
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Moreover, one has:

|B(s,V)| ≤ c|||V|||h|s|1,h, ∀V ∈ V
0
h, ∀s ∈ Lh, (21)

sup
V∈V0

h

B(s,V)
|||V|||h

≥ c|s|1,h, ∀s ∈ Lh, (22)

where the first statement is obvious and the second one is established, for instance, in Verfürth and Braess [13].
Finally, the above inequalities ensure that the bilinear forms A(·, ·) and B(·, ·) satisfy the Babuška-Brezzi

conditions with respect to the discrete norms ||| · |||h and | · |1,h.
Concerning the continuity of (C + Dh)(·, ·) with respect to the norm | · |1,h, one can easily show that:

C(s, s′) + Dh(s, s′) ≤
(

c1h
2

∆t
+ c2‖Gn−1

h ‖0,Ω

)
|s|1,h|s′|1,h, ∀s, s′ ∈ Lh,

therefore its continuity constant depends on h2

∆t . However, the norm of the inverse operator A−1
h being inde-

pendent of the norm of C + Dh, the following stability property is true:

|||V|||h + |s|1,h ≤ c sup
(V′,s′)∈V0

h×Lh

Ah((V, s), (V′, s′))
|||V′|||h + |s′|1,h

, ∀(V, s) ∈ V
0
h × Lh (23)

with a constant c which only depends on the thermodynamic coefficients.
Let us proceed with the a posteriori error analysis. For that, we introduce the following residuals on any

triangle K ∈ Th and any edge e ∈ Eh:

ηK,1 =

(∥∥∥∥1rMGh + ∇ph − ρn−1
h g

∥∥∥∥
2

0,K

+
∥∥∥∥ 1

rλ
qh −∇Th

∥∥∥∥
2

0,K

)1/2

,

ηK,2 =

(∥∥∥∥r a

∆t
ph − r

b

∆t
Th + divGh − r

a

∆t
pn−1

h + r
b

∆t
T n−1

h

∥∥∥∥
2

0,K

+

∥∥∥∥∥r
d

∆t
Th − r

f

∆t
ph +

k

|K|
∑

e∈∂K−

∫
e

(
Gn−1

h · n
)
ηe,2dσ

+
l

|K|
∑

e∈∂K−

∫
e

(
Gn−1

h · n
)
ηe,1dσ − divqh − r

d

∆t
T n−1

h + r
f

∆t
pn−1

h

∥∥∥∥
2

0,K

)1/2

,

ηe =
(
‖ηe,1‖2

0,e + ‖ηe,2‖2
0,e

)1/2
,

where

ηe,1 =




ph − pΓ if e ⊂ Γp

0 if e ⊂ ∂Ω\Γp

[ph] if e ∈ E0
h

, ηe,2 =




Th − TΓ if e ⊂ ΓT

0 if e ⊂ ∂Ω\ΓT

[Th] if e ∈ E0
h

.
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The local error indicator is a weighted combination:

ηK =

(
η2

K,1 + h2
Kη2

K,2 +
∑

e∈∂K

h−1
e η2

e

)1/2

,

and the global one is given by:

η =

[ ∑
K∈τh

(
η2

K,1 + h2
Kη2

K,2

)
+
∑
e∈Eh

h−1
e η2

e

]1/2

.

According to [13], we make the following saturation assumption (SA): ∃β < 1 such that

|||V − Vh/2|||h/2 + |s − sh/2|1,h/2 ≤ β
(
|||V − Vh|||h/2 + |s − sh|1,h/2

)
,

where Th/2 is obtained from Th by dividing each triangle into four congruent ones and where σh/2 = (Vh/2, sh/2)
is the unique solution of the variational problem:




Find σh/2 ∈ V
∗
h/2 × Lh/2

Ah/2(σh/2, σ
′) = Fh/2(σ′), ∀σ′ ∈ V

0
h/2 × Lh/2,

(24)

with Ah/2 =
[

A B
−BT C + Dh/2

]
and Fh/2 =

(
F1h

F2h + F3h/2

)
.

We took the same right-hand side terms F1h, F2h as in (17), since they only depend on discrete quantities
already computed at tn−1, but we redefined on Th/2 the terms arising from the upwind scheme.

5.2. Error analysis

We first establish an upper bound for the error. One immediately gets (see for instance [13]):

|||G′|||h/2 ≤ |||G′|||h ≤
√

2|||G′|||h/2, ∀G′ ∈ Vh, (25)
1√
2
|p′|1,h/2 ≤ |p′|1,h ≤ |p′|1,h/2, ∀p′ ∈ Lh. (26)

Then the following statement holds:

Theorem 5.1. One has that:

|||Vh/2 −Vh|||h + |sh/2 − sh|1,h/2 ≤ cη,

with c independent of the discretization and of ∆t.

Proof. Using the stability property (23) for the problem (24) and the fact that Vh −Vh/2 ∈ V
0
h, one has that:

|||Vh − Vh/2|||h/2 + |sh − sh/2|1,h/2 ≤ c sup
(V′,s′)∈V

0
h/2×Lh/2

Ah/2((Vh − Vh/2, sh − sh/2), (V
′, s′))

|||V′|||h/2 + |s′|1,h/2

·
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Let us estimate:

Ah/2((Vh − Vh/2, sh − sh/2), (V
′, s′)) = A(Vh,V′) + B(sh,V′) − B(s′,Vh)

+ (C + Dh/2)(sh, s′h/2) − F1h(V′) − F2h(s′) − F3h/2(s′).

For that, we integrate by parts:

B(sh,V′) =
∑

e∈E0
h∪Γp

∫
e

G′ · n[ph]dσ −
∑

e∈E0
h∪ΓT

∫
e

q′ · n[Th]dσ

and we take into account the boundary terms of F1h(·). The Cauchy-Schwarz inequality then gives that:

A(Vh,V′) + B(sh,V′) − F1h(V′)

≤
∑

K∈Th

η1,K‖V′‖0,K +

(∑
e∈Eh

he‖G′ · n‖2
0,e + he‖q′ · n‖2

0,e

)1/2(∑
e∈Eh

h−1
e η2

e

)1/2

≤
( ∑

K∈Th

η2
1,K +

∑
e∈Eh

h−1
e η2

e

)1/2(
‖V′‖2

0,Ω +
∑
e∈Eh

he‖G′ · n‖2
0,Ω + he‖q′ · n‖2

0,Ω

)1/2

≤ η|||V′|||h.

In the same manner, one may write that:

−B(s′,Vh) + (C + Dh/2)(sh, s′) − F2h(s′) − F3h/2(s′)

= −B(s′,Vh) + (C + Dh)(sh, s′) − F2h(s′) − F3h(s′) + (Dh/2 − Dh)(sh, s′) + (F3h − F3h/2)(s′)

≤
∑

K∈Th

η2,K‖s′‖0,Ω + (Dh/2 − Dh)(sh, s′) + (F3h − F3h/2)(s′)

≤
( ∑

K∈Th

h2
Kη2

2,K

)1/2

|s′|1,h + (Dh/2 − Dh)(sh, s′) + (F3h − F3h/2)(s′).

By using the continuity of Dh(·, ·) and F3h(·) (see the proof of Lem. 3.2) and the relations (25) and (26), one
has that:

Dh(sh, s′) − F3h(s′) ≤ c‖Gn−1
h ‖0,Ω|s′|1,h/2

(∑
e∈Eh

h−1
e η2

e

)1/2

,

and similarly,

Dh/2(sh, s′) − F3h/2(s′) ≤ c′‖Gn−1
h ‖0,Ω|s′|1,h/2

(∑
e∈Eh

h−1
e η2

e

)1/2

.

Therefore, it now comes that:

−B(s′, Vh) + (C + Dh/2)(sh, s′) − F2h(s′) − F3h/2(s′) ≤ c

( ∑
K∈Th

h2
Kη2

2,K +
∑
e∈Eh

h−1
e η2

e

)1/2

|s′|1,h/2 ,
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and finally:

Ah/2((Vh − Vh/2, sh − sh/2), (V
′, s′)) ≤ cη(|s′|1,h/2 + |||V′|||h/2),

with c depending on ‖Gn−1
h ‖0,Ω. This last estimate leads to the conclusion. �

By applying the triangle inequality and the saturation assumption (SA), one can now deduce an upper
estimate for the error in weighted norms:

Theorem 5.2. The following error bound holds:

|||V −Vh|||h + |s − sh|1,h ≤ c

1 − β
η.

Concerning a lower bound for the error, this is easily obtained thanks to the definition of the discrete weighted
norms. Indeed, the regularity of the continuous time-discretized problem (7) gives s ∈ H

1(Ω), therefore by the
trace theorem one gets that [sh] = [sh − s] on every internal edge e ∈ E0

h. So,

(∑
e∈Eh

h−1
e η2

e

)1/2

≤ |sh − s|1,h. (27)

Moreover, since the exact solution (V, s) satisfies:

1
r
MG + ∇p − ρn−1g = 0 and

1
rλ

q −∇T = 0 a.e. in Ω,

one may write that:

η2
K,1 =

∥∥∥∥∇(p − ph) +
1
r
M(G − Gh) − (ρn−1 − ρn−1

h )g
∥∥∥∥

2

0,K

+
∥∥∥∥∇(T − Th) +

1
rλ

(q − qh)
∥∥∥∥

2

0,K

≤ c
(
|p − ph|21,K + |T − Th|21,K + ‖G− Gh‖2

0,K + ‖q− qh‖2
0,K + ‖ρn−1 − ρn−1

h ‖2
0,K

)
.

Hence, ( ∑
K∈Th

η2
K,1

)1/2

≤ c
(
|s − sh|1,h + |||V− Vh|||h + ‖ρn−1 − ρn−1

h ‖0,Ω

)
. (28)

In order to bound the last residual ηK,2, we use that divGh ∈ Lh, for all Gh ∈ Vh. Then the last variational
equation of (14) gives, on every K ∈ Th:

divGh = Ph

(
ra

∆t
pn−1

h − rb

∆t
T n−1

h

)
− Ph

(
ra

∆t
ph − rb

∆t
Th

)
,

divqh = Ph

(
rd

∆t
Th − rf

∆t
ph

)
− Ph

(
rd

∆t
T n−1

h − rf

∆t
pn−1

h

)

+
k

|K|
∑

e∈∂K−

∫
e

(
Gn−1

h · n
)
ηe,2dσ +

l

|K|
∑

e∈∂K−

∫
e

(
Gn−1

h · n
)
ηe,1dσ,

with Ph : L2(Ω) −→ Lh the piecewise constant L2-orthogonal projection operator.
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Then by replacing divqh and divGh in ηK,2, it comes that:

η2
K,2 ≤

∥∥∥∥
(

a

∆t
pn−1

h − b

∆t
T n−1

h − a

∆t
ph +

b

∆t
Th

)
(r − Phr)

∥∥∥∥
2

0,K

+
∥∥∥∥
(

d

∆t
Th − f

∆t
ph − d

∆t
T n−1

h +
f

∆t
pn−1

h

)
(r − Phr)

∥∥∥∥
2

0,K

≤ c

∆t2
‖r − Phr‖2

0,K

and finally,

( ∑
K∈Th

h2η2
K,2

)1/2

≤ ch2

∆t
· (29)

By putting together (27), (28) and (29), we have thus established:

Theorem 5.3. The error estimator η yields the following global, respectively local, lower bounds:

η ≤ c
(
|||V− Vh|||h + |s − sh|1,h + ‖ρn−1

h − ρn−1‖0,Ω

)
+

ch2

∆t

ηK ≤ c
(
|||V −Vh|||h,ωK + |s − sh|1,h,ωK + ‖ρn−1

h − ρn−1‖0,K

)
+

ch2

∆t

where ωK is the set of the triangles K ′ ∈ Th, neighbours of K and c is independent of h and ∆t.

Remark 5.4. One can also consider a posteriori error estimates with respect to the natural norms of H(div, Ω)
and L

2(Ω) (see [2]). Then following Verfürth and Braess [13], one can obtain under a saturation assumption
that:

|||V− Vh||| + ‖s − sh‖0,Ω ≤ cη̃ +
c

h
‖Gn−1

h ‖0,e

(∑
e∈Eh

h−1
e η2

e

)1/2

,

where η̃ is defined by:

η̃ =

( ∑
K∈Th

η2
K,1 +

∑
K∈Th

η2
K,2 +

∑
e∈Eh

h−1
e η2

e

)1/2

.

A lower bound can also be obtained but is not optimal.

5.3. Numerical results

We consider the same case of oil production as the one presented in Section 4.3.
In Figure 14, we represent the local estimators ηK , ηK,1, ηK,2 and (

∑
e∈∂K h−1

e η2
e)1/2 calculated for different

meshes T1, T2 and T3 introduced in Section 4.3, after a one-month production. The approximate pressure and
temperature on the previous meshes were given in Figure 9.
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(a) ηK - Mesh T1
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(b) ηK - Mesh T2
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(c) ηK - Mesh T3
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(d) ηK,1 - Mesh T1
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(e) ηK,1 - Mesh T2
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(f) ηK,1 - Mesh T3
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(g) ηK,2 - Mesh T1
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(i) ηK,2 - Mesh T3
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Figure 14. Local estimators for different mesh refinements.

As expected, the quality of the estimators increases with the mesh refinement. Moreover, one can notice that
the area requiring a local refinement of the mesh is the one located near the wellbore, i.e. where the velocity is
the highest.
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