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Abstract. The paper deals with the application of a non-conforming domain decomposition method
to the problem of the computation of induced currents in electric engines with moving conductors. The
eddy currents model is considered as a quasi-static approximation of Maxwell equations and we study its
two-dimensional formulation with either the modified magnetic vector potential or the magnetic field as
primary variable. Two discretizations are proposed, the first one based on curved finite elements and the
second one based on iso-parametric finite elements in both the static and moving parts. The coupling is
obtained by means of the mortar element method (see [7]) and the approximation on the whole domain
turns out to be non-conforming. In both cases optimal error estimates are provided. Numerical tests
are then proposed in the case of standard first order finite elements to test the reliability and precision
of the method. An application of the method to study the influence of the free part movement on the
currents distribution is also provided.
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Introduction

The computation of the space and time distribution of the induced currents in electromagnetic systems is
of great importance for performances prediction and devices design. Generated in conducting materials by
temporal variations of the surrounding magnetic field, the induced currents can have positive or negative effects
depending on the application. In the case of the induction engines the presence of induced currents is positive
and generates the propulsion forces which are at the basis of the working of the engine. This is not the case
for transformers: any energy lost under heat form by Joule’s effect in the ferromagnetic material during the
transfer from the primary to the secondary coil, reduces the efficiency of a transformer.

The subject of our research activity is the analysis and development of simulation tools to effectively predict
the induced currents distribution in non-stationary geometries with sliding interfaces. As an example, in this
paper we will study a system composed of two solid parts: a fixed one (stator) and a moving one (rotor) which
turns around a given axis.

Several configurations of the physical system are considered: completely conducting ones with discontinuous
conductivities are analyzed as well as partially conducting ones with, for example, air-gaps or materials with
different magnetic properties.
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We use a two-dimensional mathematical model as it results classically in the following situations:

• The physical system can be considered as an infinitely long cylinder and the sources are taken either
tangent or orthogonal to the transverse section of the physical system we are considering: this leads to
two-dimensional problems which are known in literature as TE (transverse electric) and TM (transverse
magnetic) formulations respectively [18]. Here we have adopted the wave propagation terminology where
the propagation direction becomes the diffusion one.
• The displacement currents can be neglected with respect to the conducting ones: we solve a quasi-static

approximation of Maxwell’s equations which is known as eddy currents model. From the mathematical
point of view we deal with a degenerate parabolic problem.
• We aim at studying the variation of the current distribution due to the rotor movement: this suggests

working in the time domain instead of the frequency one.

When a part of the physical system is moving with great amplitude with respect to the rest, the use of a
standard conforming Galerkin method based on the deformation of the finite elements is not recommended.
Due to the elements distortion, a partial or total re-meshing of the computational domain may be necessary.
Generally, the re-meshing process and, most of all, the interpolation of the unknowns at the new nodes increase
the computational cost of the numerical simulations. Some techniques that minimize this cost have already been
analyzed: see, for example, the macro-element method [25], the moving layer method [15], a finite elements-
boundary elements coupling [22].

In this paper, we propose a non-conforming (in space) approximation of the problem based on the so called
mortar element method (see [7] and [4]). This method allows for non-matching grids at the interface between
the stator and rotor domains. The matching constraint at the interface between the rotor and stator is weakly
imposed on the discrete solution by means of Lagrange multipliers. Note that our approach differs radically
from that proposed in [21,26] even if the terminology is quite similar. Indeed, here, the Lagrange multiplier is
never interpreted in terms of the primal unknown.

The discrete approximation space for Lagrange multipliers is chosen, according to the mortar element method
theory, as the space of traces at Γ of discrete functions in the stator part (or equivalently in the rotor one).
Then the Lagrange multipliers are eliminated and we propose to solve the primal problem (and not a mixed
one) in a constrained space which turns out to be a non-conforming approximation of the continuous functional
framework (see [7] or [4] for details).

The use of a method with non-matching grids allows us to work with only one whole mesh composed of a
fixed part and a rotating one: no heavy constraints are imposed between the discretization parameter h (that is
the maximum of the mesh elements diameters) at the interface and the rotation angle associated at each time
step. Loosely speaking, the two discretizations of the interface induced by the stator and the rotor meshes do
not need to coincide after each discrete rotation angle of the rotor domain as in the lock-step method [16].

Note that the main purpose of this paper is to propose a new non-conforming spatial approximation and as
far as the time discretization is concerned, we adopt here an implicit Euler scheme as an “example” of time
stepping. Thanks to the flexibility in the way the movement is treated (no constraint between time step, mesh
size and the speed of the rotor), we expect that any discretization scheme can be used in time providing an
optimal rate of convergence [27].

For what concerns the organization of the paper, in Section 1 we deduce the two-dimensional model from
the system of Maxwell’s equations, we write the variational formulation and prove the well posedness of the
continuous problem. In Section 2 we propose the spatial discretization based on the mortar element method
and in Section 3 we present the time discretization, providing a complete analysis of the method convergence
as well as an optimal error estimate. In Section 4 the effect of iso-parametric finite elements at the interface is
studied and optimal error estimates are provided also in this case. In Section 5 we detail the implementation
aspects of the proposed method in case of standard linear finite elements resulting in the solution of a symmetric
and positive definite system. Finally, Section 6 is dedicated to some numerical results both of validation and
application of the method to an academic concrete problem; we refer to [24] for more physical examples.
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1. The continuous problem

For the sake of completeness, we briefly deduce the mathematical models of the problem we are going to
deal with, starting from the system of Maxwell’s equations and under classical assumptions. In this short
presentation, we will focus our attention only on the derivation of the equations and not on the initial and
boundary conditions that we suppose equal to zero (see [14], Vol. 1 for more general situations).

Let D be an infinitely long cylinder in R3 with a Lipschitz transverse section Ω. We fix a system of coordinates
(x, y, z) such that (x, y) are the transverse ones.

In the following we will use the bold style to denote three-dimensional vectors and the Roman style for
scalars. The system of Maxwell equations in D, when the displacement currents are neglected, reads as follows
(see [8], Chap. 4):

(a) ∇× E = −∂B
∂t

in D

(b) ∇ ×H = σ E + Js in D
(c) ∇ · (εE) = 0 where σ = 0

(d) B = µ H in D
(e) initial conditions in D
(f) boundary conditions on ∂D

(1)

where E, H, B are the electric, the magnetic fields and the magnetic induction respectively.
Concerning the magnetic permeability µ, the electric permittivity ε and the electric conductivity σ, we

assume that the material is homogeneous and isotropic in the two transverse directions. Hence,
• they are functions, not tensors;
• they respect the symmetry of the domain, in the sense that

ε(x, y, z) = ε(x, y) , µ(x, y, z) = µ(x, y) , σ(x, y, z) = σ(x, y).

Both µ and σ are completely characterized by µ|Ω and σ|Ω.
• We assume that µ ∈ L∞(Ω) and that there exists a µ̄ such that µ(x) ≥ µ̄ > 0 a.e. x ∈ Ω. For the

conductivity, we suppose that σ ∈ L∞(Ω) and σ(x) ≥ 0 a.e. x ∈ Ω. ¿From now on, we denote by C the
conducting part of Ω (i.e. C := supp{σ}) and by I := Ω \ supp{σ} the non-conducting part, that may be
reduced to the empty set.

Moreover we assume that the system (1) admits a unique solution (E, H, B). It is well known (see [20]) that it
is true under some regularity assumptions on the parameters and on the transverse section Ω and when suitable
boundary conditions are chosen.

In case the provided source Js respects also the symmetry of the domain, the system (1) can be reduced to
a scalar equation. Basically two different situations may occur [2].

1.1. Magnetic equation for the TE formulation

We consider here a system totally made of conducting material (I = ∅) and, moreover we assume that the
given current density verifies:

Js = (Jx(x, y, t), Jy(x, y, t), 0) and ∇ · (Js) = 0.

From equation (a) in (1) and the uniqueness of the solution of the system (1), we deduce that the electric and
magnetic fields take the form

E = (Ex(x, y, t), Ey(x, y, t), 0) , H = (0, 0,H(x, y, t)).



194 A. BUFFA ET AL.

Then, by eliminating the electric field using equations (a), (b) and (d) in (1), we obtain the following scalar
equation for the third component H of the magnetic field H:

µ
∂H
∂t
−∇ · (σ−1∇H) = ∇× (σ−1Jx, σ−1Jy) (2)

where ∇× (ax, ay) is the scalar defined as

∇× (ax, ay) =

(
∂ax

∂y
−
∂ay

∂x

)
·

By solving equation (2) and using equations (b) and (d) of (1) we can recover both the vectorial electric field
and the scalar magnetic induction.

1.2. Modified magnetic potential equation for the TM formulation

When the current density Js has the form:

Js = (0, 0, Js(x, y, t))

the system (1) can again be reduced to a scalar partial differential equation. This equation can be used to
compute both the electric field [10] and the so-called modified vector potential [11]. We derive here the equation
for the modified vector potential. From which, both magnetic field (computing the curl) and the electric field
(computing the time derivative) can be easily obtained. From equation (b) in (1) and the uniqueness of the
solution of system (1), we have that the electric and magnetic fields take the form:

H = (Hx(x, y, t), Hy(x, y, t), 0) , E = (0, 0,E(x, y, t)).

From (a) in (1), we introduce the quantity

A(x, y, t) = −
∫ t

0

E(x, y, s) ds

which is the third component, and the only non-zero one, of the modified magnetic vector potential. By
eliminating the magnetic field H from equations (a) and (b) in (1), we obtain a scalar equation for the modified
vector potential A which reads:

σ
∂A
∂t
−∇ · (µ−1∇A) = Js. (3)

The electric and magnetic fields can be then recovered from A by suitably deriving this quantity.
From a mathematical point of view, both (2) and (3) are linear parabolic second order partial differential

equations and they can numerically be implemented in the same way. The only difference is that equation (3)
may be non-strictly parabolic due to the fact that the conductivity σ vanishes in a part of the domain. Due to
this fact, from the theoretical point of view (existence of solutions, numerical analysis of the discrete problem)
equation (3) is more difficult to treat (see previous references and articles [8, 17] in steady configurations). On
the other hand, from a numerical point of view, many of the methods for the simulation of moving systems
can be applied only to systems with a not too thin air-gap. For this reason, we have led numerical tests on
equation (2) to show the flexibility of our method and its ability at reproducing the currents distribution in a
fully conducting domain, composed of two parts, a free one rotating in sliding contact with the other.
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1.3. Problem equations in the case of moving geometries

From now on we study a two-dimensional problem defined in a domain Ω ⊂ R2 which is assumed to be a
Lipschitz polygonal bounded open set in R2. We refer to the equation (3) and we consider the case of moving
geometries.

We denote by Ω1 a set containing the moving conducting part of the physical system, that is the rotor, chosen
in such a way that Ω \ Ω1 contains the still conducting part (i.e. Ω1 may contain a part of the air-gap but no
part of the stator). Let Γ := ∂Ω1, we assume that Γ is a circle with center O ∈ Ω1 and that Ω1 is turning with
the rotation speed ω ∈ C2(]0,+∞[). We set Ω2 = Ω \ Ω1 and θ(t) =

∫ t
0 ω(s)ds.

We call rt : Ω1 → Ω1 the rotation operator at time t which rotates the domain Ω1 of the angle θ = θ(t)
and r−t its inverse. We set Ω1(t) := rtΩ1(0): of course the geometric set is always the same, but, the physical
system may change since the physical quantities σ, ε, µ can be non-invariant with respect to rt. Moreover, rt
has always to be seen as a change in the system of coordinates which is naturally defined in Ω1. Accordingly
we denote Ω = Ω1(0) ∪ Ω2 and Ω(t) = Ω1(t) ∪Ω2.

In the case of moving bodies the equations (2) and (3) change accordingly to the movement law (see [19] for
a short presentation) and we consider the formulation in term of Lagrangian variables.

We focus our attention on the equation (3). In the rest of the paper we rename the modified vector potential
A as u since the notation A can be misleading. We also adopt the notation u = (u1, u2) where ui := u|Ωi for
i = 1, 2 (the same for the parameters of the problem.)

The equation determining the dynamic of u (as a function of Lagrangian variables) can be expressed in
transmission form as follows:

(E1) σ1(x)
∂u1

∂t
(x, t)−∇ · (µ−1

1 (x)∇u1)(x, t) = 0 Ω1(0)×]0, T [

(E2) σ2(x)
∂u2

∂t
(x, t)−∇ · (µ−1

2 (x)∇u2) = Js(x, t) Ω2×]0, T [

(IC1) u1(r−t x, t)=u2(x, t) Γ×]0, T [

(IC2) µ−1
1 (r−t x)

∂u1

∂n
(r−t x, t) = µ−1

2 (x)
∂u2

∂n
(x, t) Γ×]0, T [

(BC) u2(x, t) = 0 ∂Ω×]0, T [

(0C) u(x, 0) = 0 C × {0}

(4)

where the partial differential equations (E1) and (E2) are in the sense of distributions in Ω1 and Ω2 respectively
and n is at every x ∈ Γ the unit vector normal outward to Ω2. We further assume that the data Js ∈
L2(]0, T [×Ω) is a source current whose support is contained in Ω2. As regards to (BC), for the sake of simplicity,
we consider only homogeneous Dirichlet boundary conditions, but the general case (with non-homogeneous
Dirichlet, Neumann and mixed Dirichlet-Neumann conditions) could be treated with the same tools. The
interface conditions (IC1) and (IC2) are explained in what follows.

We define, for any t ∈ R, the two rotation operators Rt : H1(Ω1) → H1(Ω1) and Rt : H1(Ω1) ×H1(Ω2) →
H1(Ω1)×H1(Ω2) as:

Rt(u1)(x) = u1(rtx), Rt(u1, u2)(x) := (Rt(u1)(x), u2(x)). (5)

The function R−t(u(t)) turns out to be the physical magnetic potential, that is the magnetic potential expressed
in Eulerian variables. The interface conditions (IC1),(IC2) are the natural transmission conditions on this
function: (IC1) stating the continuity of R−t(u(t)) (i.e. the continuity of E) and (IC2) the equality of the flux
(i.e. the continuity of the tangential component of H).
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Remark 1.1. The same kind of formulation can be done in the context of the heat equation. If the unknown
u is the temperature in a moving structure, the behavior laws are exactly the same. That is, roughly speaking,
the solid material point carries with itself its temperature when moving.

1.4. Variational formulation

We introduce the following notations:

Hs(Ω) = Hs(Ω1)×Hs(Ω2) ∩H1
0,∂Ω(Ω2) s ≥ 1 ;

||u||2?,s = ||u1||2s,Ω1
+ ||u2||2s,Ω2

∀u ∈ Hs(Ω) (broken norm); (6)

|u|2?,s = |u1|2s,Ω1
+ |u2|2s,Ω2

∀u ∈ Hs(Ω) (broken semi-norm).

Moreover we simplify the notation by setting || · ||? := || · ||?,1. We know that Hs(Ω) are Hilbert spaces with the
natural norms and semi-norms defined in (6).

We now introduce the functional setting which is needed to write the variational formulation for the problem (4).
Let

U t := {u := (u1, u2) ∈ H1(Ω) : u1(r−tx) = u2(x) x ∈ Γ} · (7)

Remark that for every fixed t, U t is a isomorphic to H1
0 (Ω) through the rotation operator R−t and, as a

consequence, it is a Hilbert space endowed with the norm ‖ · ‖?.
The natural space for trial functions is then:

L2(0, T ;U t) := {u := (u1, u2) ∈ L2(0, T ;H1(Ω)) : u1(r−tx) = u2(x) for a.a. x ∈ Γ , t ∈]0, T [}·

The space L2(0, T ;U t) is a closed subspace of L2(0, T ;H1(Ω)) and it is isomorphic to L2(0, T ;H1
0 (Ω)) through

the rotation operator R−t.
Now, in order to obtain a variational equation in space, we need to introduce “spatial” test functions. The

natural choice is:

V := {v ∈ L2(0, T ;U t) : ∃u ∈ H1
0 (Ω) v ≡ Rt(u) for a.a. x ∈ Ω , t ∈]0, T [}·

A function v ∈ V corresponds to a unique function u ∈ H1
0 (Ω) that we let evolve in time through the rotationRt.

Then its behavior in time is completely fixed by the rotation. In our non standard setting, V is the counterpart
of the space H1

0 (Ω) which is actually the standard space of test functions (in space) for heat type equations.
In this framework, by formal integration, we obtain the variational formulation for (4), denoted by Problem

(P) in what follows:

Find u ∈ L2(0, T ;U t) ∩ C0(0, T ;L2(C)) such that for every v ∈ V :(
σ
∂ u

∂t
, v

)
Ω

+
∫

Ω1
µ−1∇u1 · ∇v1 dΩ +

∫
Ω2

µ−1∇u2 · ∇v2 dΩ = (Js, v)Ω2

(8)

where (·, ·)D denotes the L2(D) scalar product over a domain D.
In order to give a meaning to the equation (8), we need to be sure that it can be interpreted in the distribu-

tional sense in time. In particular, we simply need to prove that the quantity
(
σ
∂ u

∂t
, v

)
Ω

is a distribution in

time. We have, for any ϕ ∈ D(]0, T [):〈(
σ
∂ u

∂t
, v

)
Ω

, ϕ

〉
= −

∫ T

0

(
σ u,

∂(v ϕ)
∂t

)
Ω

= −
∫ T

0

(
σ u, v

∂ϕ

∂t

)
Ω

− (σ u, ϕV · ∇v)Ω1
dt (9)
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where V is the rotation speed of Ω1, the duality pairing in the left hand side is the one between D(]0, T [)
and D′(]0, T [) and, in the right hand side, the integral is well defined and bounded by the norms of u and v
associated to their own spaces and the norm of ϕ in C1(]0, T [).

Moreover, taking formally v = u in (9) and by using the chain rule in the right hand side, we have:

2

〈(
σ
∂ u

∂t
, u

)
Ω

, ϕ

〉
=

〈
∂

∂t
(σ u, u)C, ϕ

〉
= −

∫ T

0

(σ u, u)C
∂ ϕ

∂t
dt. (10)

As a consequence, if u is solution of (P), the following holds:

1
2
∂

∂t
(σ u, u)Ω +

∫
Ω1

µ−1∇u1 · ∇u1 dΩ +
∫

Ω2

µ−1∇u2 · ∇u2 dΩ = (Js, u)Ω2 . (11)

In the following we will adopt the notation:

a(u, v) =
∫

Ω1

µ−1∇u1 · ∇v1 dΩ +
∫

Ω2

µ−1∇u2 · ∇v2 dΩ. (12)

Remark 1.2. The problem (P) is not standard due to two factors:
1) the L2(0, T ;U t) functional setting;
2) the conductivity σ is not strictly positive, there is a coupling of the heat equation in the conductor with

the Laplace one in the non-conducting part.
In the following we use the Faedo-Galerkin method to show that a solution exists and an a priori estimate to
prove its uniqueness.

The first point has already been partially considered in the interpretation of problem (P) (see also Rem. 1.5)
and the second will be taken into account in the next section in the construction of the Faedo-Galerkin approx-
imation spaces.

1.5. Well posedness of the continuous problem

This section is devoted to the proof of the next theorem:

Theorem 1.3. Let Js ∈ L2(0, T ;L2(Ω2)) be a given current source. Then, the problem (P) is uniquely solvable.
Moreover the solution u of (P) solves also (4) when (Ei), i = 1, 2 are intended in the sense of distributions.

Proof of Theorem 1.3. We start with the uniqueness which is obtained by an a priori stability estimate. Via
the Poincaré inequality, recalling (BC) in (4), we have that:

||u2||0,Ω2 ≤ C(Ω2)|u2|1,Ω2 .

Integrating in time (11) and by the Cauchy-Schwartz inequality, we obtain:

||
√
σ u||20,C +

1
2

∫ T

0

(
|√µu1|21,Ω1

+ |√µu2|21,Ω2

)
dt ≤ C

∫ T

0

||Js||20,Ω2
dt. (13)

This estimate gives directly the uniqueness of the solution by recalling that the traces are continuous at ∂C. If
Js ≡ 0 and u|∂C = 0 then u = 0 almost everywhere in Ω.

We now pass to the existence and for that we use the Faedo-Galerkin method (see [14], Vol. 5, for details).
We solve the system (8) for a suitable sequence of nested finite dimensional spaces {U tN}N≥1 such that:

U tN ⊂ U tN+1 ⊂ U t ∀N > 0 and
⋃
N≥1

U tN dense in U t ; (14)

then by using the stability estimate (13), we prove the existence of the solution.
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The procedure is quite standard in the case of a completely conducting system while in the other case we
have to pay attention to the fact that the equations we are dealing with are not strictly parabolic.

Thanks to the definition (7), in what follows we construct a suitable sequence of approximation spaces in
H1

0 (Ω) and then, by applying the operator Rt we obtain {U tN}N .
We introduce the following L2-orthogonal decomposition in H1

0 (Ω):

H1
0 (Ω) = H1

0 (I)
⊥
⊕ (H1

0 (I))⊥ ; u = uI + uC u ∈ H1
0 (Ω) , uI ∈ H1

0 (I);

the symbol
⊥
⊕ stands for the L2-orthogonal direct sum, where, of course, the functions in H1

0 (I) are extended
by zero outside the insulator I. Since the two spaces H1

0 (I) and (H1
0 (I))⊥ are separable Hilbert spaces, it is

always possible to find two sequences of nested finite dimensional spaces such that

VN ⊂ VN+1 ⊂ H1
0 (I) ,

⋃
N≥1 VN dense in H1

0 (I)

WN ⊂WN+1 ⊂ (H1
0 (I))⊥ ,

⋃
N≥1WN dense in (H1

0 (I))⊥.

Finally we define U tN := RtVN
⊥
⊕ RtWN . It is not hard to see that this space verifies (14). Note that the

movement is exactly taken into account in the construction of these nested finite dimensional spaces.
We have now to study the existence of a solution for the variational problem (P) when replacing U t with U tN .

After defining suitable basis for the spaces VN and WN , for any uN , vN ∈ U tN , the integral
∫

Ω
σuN vNdΩ is

equal to (M(t)vN , uN ) where M(t) is the usually called mass matrix and uN , vN denote here the coefficients
defining uN and vN in the chosen basis (we use the same notation since it is helpful and not misleading.)

Due to the fact that σ = 0 at I, we clearly have that the matrix M(t) has the form (when a right ordering
is chosen)

M(t) =
(

0 0
0 MW (t)

)
where MW (t) is the mass matrix associated only to the space RtWN .

It is easy to show that the matrix MW (t) is non-singular: for every given wN ∈ RtWN such that
wTN (t)MW (t)wN (t) = 0 we want to show that wN = 0. We surely have wN = 0 over C and this means in
particular that wN |∂C = 0. Since wN |∂Ω = 0 and wN ∈ Rt (H1

0 (I))⊥, we deduce that wN = 0 also over I and
so that wN is identically 0. The problem (8) on the finite dimensional spaces U tN reads:

Find uN ∈ L2(0, T ;U tN) ∩C0(0, T ;L2(C)) such that, for every v ∈ U tN:(
σ
∂ uN
∂t

, vN

)
C

+ a(uN , vN ) = (Js, vN )Ω2

(15)

and it can be easily written in matrix form and using our decomposition. The system reads

d
d t

[(
0 0
0 MW (t)

)(
uV (t)
uW (t)

)]
+
(
AV V (t) AVW (t)
AWV (t) AWW (t)

)(
uV (t)
uW (t)

)
=
(

JV (t)
JW (t)

)
.

We can obtain uV (t) as a function of uW (t) from the first set of equations since, thanks to our construction,
the sub-matrix AV V (t) is surely non-singular at every time t and uW (t) from the second one by solving a first
order ordinary differential equation.

By using the a priori stability estimate (13) applied on the sequence uN , there exists a subsequence of uN
(called again uN for convenience), such that uN ⇀ u in L2(0, T ;U t). Let now v be any function in U t and
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vN ∈ U tN be a sequence strongly convergent to v in U t. If we let N go to infinity; we obtain (8). The second
statement of the theorem is now straightforward. �

In the next theorem we prove that, when the datum is regular, the solution u of (P) is in truth more regular
and it belongs to H1(0, T ;L2(C))∩L∞(0, T ;U t). Using this regularity, we immediately have that u verifies (Ei)
in (4) in the sense of L2(Ωi), i = 1, 2 and that the boundary and transmission conditions are naturally fitted.

Theorem 1.4. Let Js ∈ H1(0, T ;L2(Ω)) and µ be such that µ−1 ∈W 1,∞(Ω1). Then, the solution u of problem
(P) belongs to H1(0, T ;L2(C)) ∩ L∞(0, T ;U t).

Proof of Theorem 1.4. We use the same Faedo-Galerkin approximation spaces (and also the same notation) as
in the previous proof. The solution uN of (15) can be written as uN (x, t) =

∑N
i=1 ui(t)φi(x, t) where φi(x, t)

are the basis functions for U tN . We suppose without loss of generality that φi(x, t) ∈ H2(Ω). Now, we choose
the following test function in (15):

vN (x, t) =
N∑
i=1

dui
dt

(t)φi(x, t) =


∂uN
∂t
−V · ∇uN on Ω1

∂uN
∂t

on Ω2

where V is the rotation speed of Ω1. The function vN is admissible by construction and plugging it in (15)
we get

∫
C
σ

∣∣∣∣∣∂uN∂t
∣∣∣∣∣
2

+ a

(
uN ,

∂uN

∂t

)
=
∫

Ω2

Js

(
∂uN

∂t
−V · ∇uN

)
+
∫

Ω1

µ−1∇uN · ∇(V · ∇uN) +
∫
C
σ
∂uN

∂t
V · ∇uN .

(16)

We estimate the three terms in the right hand side starting from the last one:

∫
C
σ
∂uN

∂t
V · ∇uN dΩ ≤

1
4

∫
Ω1

σ

∣∣∣∣∣∂uN∂t
∣∣∣∣∣
2

dΩ + C|uN |2?,Ω. (17)

About the second term, using the chain rule, integrating by parts and reminding that V · n = 0, we have:∫
Ω1

µ−1∇uN · ∇(V · ∇uN) =
∫

Ω1

µ−1∇uN (∇V · ∇)uN +
∫

Ω1

div(µ−1V)|∇uN |2 ≤ C(µ, ω)|uN |2?,Ω1
. (18)

Finally, about the first one, we integrate it in time and we obtain the equality:∫ t

0

∫
Ω

Js

(
∂uN

∂t
−V · ∇uN

)
= −

∫
Ω2

∫ t

0

∂Js
∂t

uN +
∫

Ω2

Js(·, t)uN (·, t)−
∫

Ω2

∫ t

0

JsV · ∇uN . (19)

Then, we have that

the right hand side of (19) ≤ C||Js||H1(0,T ;L2(Ω))||uN(·, t)||L∞(0,t,H1
0(Ω)). (20)

By using these estimates in (16), and integrating in time, we obtain:

∫
C
σ

∣∣∣∣∣∂uN∂t
∣∣∣∣∣
2

dΩ + ||uN ||L∞(0,T ;Ut) ≤ C||Js||2H1(0,T ;L2(Ω)).
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There is then a subsequence of uN (that we call again uN for convenience) which converge weakly also in
H1(0, T ;L2(C)) ∩ L∞(0, T ;U t). By uniqueness, the weak limit is again u and this achieves the proof. �

Remark 1.5. Thanks to this regularity results, we have that σ
∂u

∂t
∈ L2(0, T ;L2(C)) and, as a consequence,

the term
(
σ
∂u

∂t
, v

)
Ω

belongs to L2(0, T ). This means that equation (8) can now be intended in the sense of

L2(0, T ) and it is then suitable for the definition of the finite elements discretization.

2. The spatial discretization

In the previous section we proved that our continuous problem is well posed. We want to propose a finite
element algorithm, but if we think of solving this problem with a standard Galerkin method, the time dependent
transmission condition (IC1) in (4) has to be exactly verified. This fact imposes very heavy calculations since it
is necessary to modify the mesh for the spatial discretization at every time step or to impose a heavy constraint
between the time discretization step and the spatial one.

In the following we propose a non-conforming approximation of the problem (8); non-matching grids are
used at every time step and the transmission condition is weakly imposed by means of a mortar element
method technique (see [4]). Due to the time dependence of the coupling condition, namely (IC1) in (4), this
technique leads us to a sliding mesh-mortar method which has been first introduced in the context of spectral
approximation in [3].

Let T1,h1 and T2,h2 two families of curved triangulations for Ω1 and Ω2 respectively such that:

⋃
K∈T1,h1

K ≡ Ω1

⋃
K∈T2,h2

K ≡ Ω2 .

We assume only the triangles with one edge on Γ are curved and that Ti,hi , i = 1, 2 are regular in the sense of
Ciarlet (see [13] for details), non-matching at the interface Γ. We denote by h1 and h2 their sizes and by h the
maximum between h1 and h2. For what concerns the analysis of the approximation properties for curved finite
elements we refer e.g. to [6].

We denote by T Γ
i,hi

, i = 1, 2 the two discretizations of Γ that are obtained by taking the traces of T1,h1 and
T2,h2 on Γ. Let hΓ

i , i = 1, 2, be the mesh sizes of these decompositions of Γ; we assume that there exist two
constants c, C ∈ R, such that

c ≤
hΓ

1

hΓ
2

≤ C . (21)

With this assumption, we do not loose any generality since the interface Γ is fictitious and can be set where
it is more convenient: the physical system is homogeneous in a neighborhood of Γ. Then there is no interest
in dealing with decompositions of very different sizes. Nevertheless, if one wants to use meshes that do not
satisfy (21), then the results that follow still hold through a much more technical procedure.

Since the sub-domains have necessarily curved geometries, we need to introduce non-affine finite element
spaces. According to [13], we denote by K̂ the reference triangle and for every K ∈ T1,h1 ∪ T2,h2 we define the
application FK : K̂ → K. Thanks to the regularity of Γ it is easy to see that all these applications are regular
and invertible.

We introduce the following spaces of finite elements for i = 1, 2:

Xi,hi = {vi,hi ∈ C0(Ωi) such that vi,hi |∂Ω = 0 and vi,hi |K ◦ FK ∈ Pk(K̂) ∀K ∈ Ti,hi} · (22)



SLIDING MESH-MORTAR METHOD OF EDDY CURRENTS 201

In order to weakly impose the interface condition, we have to define a suitable space of Lagrange multipliers.
For every e ∈ T Γ

2,h2
, we denote by fe :]0, 1[→ e an application which associates the reference interval ]0, 1[ to e.

According to the mortar method theory, we choose the space of Lagrange multipliers as follows (the other choice
turns out to be completely equivalent):

Mh = {ϕh ∈ C0(Γ) such that ϕh |e ◦ fe ∈ Pk(]0, 1[) ∀e ∈ T Γ
2,h2
} · (23)

In the mortar method terminology, this means that we choose the rotor as master and the stator as slave.
According to [7], we define the following approximation space:

U th = { vh = (v1,h, v2,h) ∈ X1,h ×X2,h such that: (24)∫
Γ

(v1,h(r−tx)− v2,h(x))ϕh(x) d Γ = 0 ∀ϕh ∈Mh } (25)

at every fixed time t. The constraint (25) is time dependent and it is the discrete weak version of the interface
condition (IC1) in the continuous problem (4).

For the approximation properties of the family of discrete spaces U th and for the coerciveness of the bilinear
form a(·, ·) defined in (12) with respect to the norm || · ||?, we refer to [7] or [4].

Remark 2.1. Note that our theory allows also for using different degrees of polynomials in the two domains,
say k1 and k2. In this case the Lagrange multiplier space Mh should be of continuous functions which are locally
polynomials of degree k2.

Remark 2.2. According to [4,7] the definition of the Lagrange multiplier space is generally rather more complex
than in (23). In our case the interface Γ is a manifold without boundary, while, in the case of several sub-domains,
the interfaces between adjacent sub-domains are compact manifolds with boundary (geometrically speaking):
the space of Lagrange multipliers can not be chosen as one of the space of traces (as we did in (23)), but only
as a suitable subspace of it. We refer to [4] for the presentation and analysis of the mortar element method in
the general case.

3. Fully discrete approximation

We propose to use an implicit Euler scheme for the time discretization in the interval [0, T ] with T > 0.
Let δt be the time step and N an integer such that T = N δt. Since the time discretization involves also a
“discretization” in time of the space of test functions and of the rotation operators, we shorten our notation in
the following way:

tn = n δt, vn ∈ U tn = Un, vnh ∈ U t
n

h = Unh , Rtn = Rn, Rtn = Rn .

By means of this notation, we denote by un the solution of the continuous problem (P) evaluated at t = tn. By
applying implicit Euler scheme in time and the nonconforming Galerkin method in space, we obtain the fully
discrete problem:

∀n = 0, .., N − 1, find un+1
h ∈ Un+1

h such that:∫
C
σ
un+1
h − unh
δt

vn+1
h dΩ + a(un+1

h , vn+1
h ) = (Jn+1

s , vn+1
h )Ω2 ∀vn+1

h ∈ Un+1
h .

(26)
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Remark 3.1. Note that we simply propose one of the possible time stepping schemes. E.g. the fully discrete
equation with Crank-Nicolson reads, for any θ ∈ [0, 1]:

∀n = 0, .., N − 1, find un+1
h ∈ Un+1

h such that: ∀vn+1
h ∈ Un+1

h∫
C
σ
un+1
h − unh
δt

vn+1
h dΩ + a(θun+1

h + (1− θ)unh, vn+1
h ) = (θJn+1

s + (1− θ)Jns , vn+1
h )Ω2 .

In principle, any other time stepping scheme can be chosen thanks to the flexibility of the method regarding the
movement. No constraint is imposed between the time step and mesh size and/or the velocity of the rotor; this
means that also variable and/or adaptive time stepping can be used without changes in the spatial discretization
and in the construction of the approximation space Unh .

Although the convergence of the scheme is studied only in the easy case of implicit Euler time stepping, there
is no constraint to the application of high order schemes in time (as proposed in [27]).

3.1. Convergence analysis

Since the stability estimate is very similar to the one of the heat equation, we look directly to the error
estimate for the proposed scheme.

Let Πt
h : U t → U th be a time dependent projection operator onto the discrete space U th that will be made

precise later on according to the properties we shall need on it. We denote by Πnh : Un → Unh this operator
evaluated at time t = tn.

We define:

wnh = Πn
h u

n and ξnh = unh − wnh . (27)

By combining (8) and (26), recalling (27), we get the following equality for every vn+1
h ∈ Un+1

h :

∫
C
σ
ξn+1
h − ξnh
δt

vn+1
h dΩ + a(ξn+1

h , vn+1
h ) =

∫
C
σ

(
∂un+1

∂t
− wn+1

h − wnh
δt

)
vn+1
h dΩ

+ a(un+1 − wn+1
h , vn+1

h )−
∫

Γ

∂un+1

∂n
[vn+1
h ] dΓ (28)

where we denote by [vnh ] the jump of R−nvnh across the interface Γ, that is [vnh ] = (R−nvn1,h))|Γ − vn2,h|Γ ,

by ∂un+1/∂n the normal derivative of un+1 in the direction normal to Γ outward to Ω2 and by
∂un+1

∂t
the

time derivative of u computed at t = tn+1. In the right hand side of (28), the first two terms depend on the
approximation properties of the projector Πn

h and the last one is the consistency error due to our non-conforming
(mortar) approximation.

By choosing vn+1
h = ξn+1

h , multiplying by δt both sides of (28) and denoting by

Eappr(n) = sup
vnh∈nh

a(un − wnh , vnh)−
∫

Γ

∂u

∂n
[vnh ] dΓ

||vnh ||?
; (29)

E∂t(n) = sup
vn
h
∈Un

h

∫
C
σ

(
∂un

∂t
−
wnh − wn−1

h

δt

)
vnh dΩ

||√σvnh ||0,C
;
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we get the following estimate:

||
√
σξn+1
h ||20,C + δt a(ξn+1

h , ξn+1
h ) ≤

∫
C
σ ξn+1

h ξnh dΩ + δt Eappr(n+ 1)||ξn+1
h ||? + δt E∂t(n+ 1)||

√
σξn+1
h ||0,C.

Then, by the Cauchy-Schwartz inequality and the ellipticity of a, we have:(
1− δt

T

)
||
√
σξn+1
h ||20,C + α δt ||ξn+1

h ||2? ≤ ||
√
σξnh ||20,C + δt

(
1
α
E2

appr(n+ 1) + TE2
∂t(n+ 1)

)
(30)

where we have denoted by α = α(µ) the coerciveness constant of the bilinear form a(·, ·) with respect to the
broken norm || · ||?. Now, using recursively (30) and by Gronwall’s Lemma, we obtain:

||
√
σξnh ||20,C + α

n∑
i=1

δt ||ξih||2? ≤ C(T, σ, µ)

{
||
√
σξ0
h||20,C +

n∑
i=1

δt

(
1
α
E2

appr(i) + TE2
∂t(i)

)}
∀n = 1, .., N

(31)

where T is the final time, the constant C(T, σ, µ) depends on T and on the parameters of the problem, namely
σ and µ, but not on the mesh size and time step.

This inequality is of key importance in the study the error estimate for our fully discrete formulation (26).
The next theorem states the optimality of the proposed method.

Theorem 3.2. Let u ∈ L2(0, T ;U t) ∩ C0(0, T ;L2(C)) be the solution of problem (8). Let r ≥ 2, we assume:

u ∈ L∞(0, T ;Hr(Ω)) ;
∂u

∂t
∈ L2(0, T ;Hr(Ω)) ;

∂2u

∂t2
∈ L2(0, T ;L2(Ω)).

Then, the following error estimate holds for 1 ≤ s ≤ min{r − 1, k}:

||
√
σ(un − unh)||20,C + α

n∑
i=1

δt ||ui − uih||2? ≤ C(T, σ, µ)

{
h2s

n∑
i=1

δt |ui|2?,s+1

+h2(s+1)
(
||un||2s+1,C + ||u0||2s+1,C

)
+ (δt)2

∥∥∥∥∂2u

∂t2

∥∥∥∥2

L2(0,T ;L2(C))
+ h2s

∥∥∥∥∂u∂t
∥∥∥∥2

L2(0,T ;Hs(Ω))

}
(32)

for all n = 1, .., N and where the constant C(T, σ, µ) depends on the parameters of the problem, but neither on
δt nor on h.

The proof of this theorem requires some preliminary results. We start stating and proving few lemmas and,
at the end, we shall prove the theorem.

Lemma 3.3. Let u ∈ L2(0, T ;U t)∩C0(0, T ;L2(C)). Assume moreover that u verifies the regularity assumption
of Theorem 3.2. There exists a family of projectors

{Πn
h}n=0,..,N , Πn

h : Un ∩H2(Ω)→ Unh

such that ∀ n = 0, .., N and for 1 ≤ s ≤ min{r − 1, k}:

h−1||un −Πn
hu

n||0,Ω + ||un −Πn
hu

n||? ≤ C1h
s |un|?,s+1 . (33)
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Proof of Lemma 3.3. Let P2 : L2(Γ)→Mh be the L2-orthogonal projection toMh and Ih : H2(Ω)→ X1,h×X2,h

the interpolation operator. We define now a finite element lifting operator Lh : Mh → X2,h such that for every
φh ∈Mh, Lh(φh) is a finite element function which takes the value zero at every internal node in Ω2.

Then we choose the operator Πn
h in the following way:

wnh ≡ Πn
hu

n = Ihun + Lh(P2(R−n(Ihun1 )|Γ − Ihun2 )|Γ). (34)

It is easy to see that Πn
hu

n ∈ Unh for every n = 0, ..., N . Similar operators have been often used in the context
of mortar method and a first construction was proposed in [7].

Using the triangle inequality:

||un −Πn
hu

n||2? ≤ 2||un − Ihun||2? + 2 ||Lh(P2(R−n(Ihun1 )− Ihun2 ))||21,Ω2
(35)

and, since the first term in the right hand side can be estimated in a standard way, we focus our attention on
the second one.

Using scaling arguments between any triangle K ∈ T2,h2 and the reference triangle, the following local
inequalities

||Lh(φh)||20,K ≤ C hK ||φh||20,ΓK ;

|Lh(φh)|21,K ≤ C h−1
K ||φh||20,ΓK

hold for every triangle K ∈ T2,h2 such that K̄ ∩ Γ = ΓK 6= ∅; here hK is the diameter of K and C is a constant
independent of the mesh size.

By summing up for every K ∈ T2,h2 and assuming that T Γ
2,h2

is quasi-uniform (see [13] for the definition) we
obtain:

h−1
2 ||Lh(φh)||20,Ω2

+ h2|Lh(φh)|21,Ω2
≤ C ||φh||20,Γ. (36)

By using (36) and the stability of the L2- projector P2 in (35) we obtain:

||un −Πn
hu

n||2? ≤ 2||un − Ihun||2? + Ch−1
2 ||R−n(Ihun1 )− Ihun2 ||20,Γ; (37)

and, on the other hand:

||un −Πn
hu

n||20,Γ ≤ 2||un − Ihun||20,Γ + Ch2||R−n(Ihun1 )− Ihun2 ||20,Γ. (38)

By the triangle inequality and recalling that R−n(un1 )|Γ = un2 |Γ, we have:

||R−n(Ihun1 )− Ihun2 ||20,Γ ≤ 2||R−n(Ihun1 )−R−n(un1 )||20,Γ + ||un2 − Ihun2 ||20,Γ. (39)

Finally, (33) is obtained by using (39) in (37, 38) and standard estimates for the interpolation operator. �

Lemma 3.4. Let ψ be a function belonging to H1(Γ), ω ∈ C0([0, T ]) the angular speed and Rn the associated
rotation operator at time t = tn. The following inequality holds:

||(R−n −R−(n−1))ψ||0,Γ ≤ C δt||ψ||1,Γ (40)

where the constant C is independent of the time step.
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Proof of Lemma 3.4. We set:

ϕ(ρ, θ) = ψ(ρ cos θ, ρ sin θ), θ ∈ (0, 2π) , ρ = r̄,

where (ρ, θ) is the polar system of coordinates naturally associated to Ω1 with respect to its rotation center O
and r̄ is its radius. It is easy to see that

||(R−n −R−(n−1))ϕ||0,Γ =
√
r̄||ϕ(r̄, θ)− ϕ(r̄, θ − ωnδt)||L2(0,2π); (41)

where min
t∈ [tn,tn+1]

|ω(t)| ≤ ωn ≤ max
t∈ [tn,tn+1]

|ω(t)|.

Now we estimate the right hand side of (41) as:

||ϕ(r̄, θ)− ϕ(r̄, θ − ωnδt)||2L2(0,2π) ≤ ωnδt
∫ 2π

0

dθ
∫ θ

θ−ωnδt

(
∂ϕ

∂θ
(r̄, ξ)

)2

dξ.

We denote now χ(r̄, θ) =
∫ θ

0

(
∂ϕ

∂θ
(r̄, ξ)

)2

dξ and we have:

||(ϕ(r̄, θ)− ϕ(r̄, θ − ωn δt))||2L2(0,2π) ≤ ωn δt
∫ 2π

0

(χ(r̄, θ)− χ(r̄, θ − ωnδt))dθ ≤ (ωn δt)2χ(r̄, 2π) (42)

since χ is an increasing function.

Actually, χ(r̄, 2π) =
∥∥∥∥∂ϕ∂θ

∥∥∥∥2

L2(0,2π)

and (40) follows from (42) by passing to Cartesian coordinates. In partic-

ular the constant C in (40) is C = C(||ω||∞, r̄). �

Lemma 3.5. Let u ∈ L2(0, T ;U t)∩C0(0, T ;L2(C)). Assume moreover that u verifies the regularity assumption
of Theorem 3.2. The following estimate holds:

Eappr(n) +E∂t(n) ≤ C1 h
s |un|?,s+1 + C2 (δt)1/2

∥∥∥∥∥∂2u

∂t2

∥∥∥∥∥
L2(tn−1,tn;L2(C))

+ C3h
s (δt)−1/2

∥∥∥∥∥∂u∂t
∥∥∥∥∥
L2(tn−1,tn;Hs(Ω))

(43)

where Ci = Ci(µ, σ), for i = 1, 2, 3 do not depend on h or δt.

Proof of Lemma 3.5. To shorten our notation, we set σ ≡ 1 on C and µ ≡ 1 on Ω. We estimate first the term
Eappr(n) and then E∂t(n).

For what concerns Eappr(n) we have to pay attention to the boundary term. Since, by construction, the
jump [vnh ] is orthogonal to the Lagrange multiplier space Mh, we have:

∫
Γ

∂un

∂n
[vnh ] dΓ = inf

ϕh∈Mh

∫
Γ

(
∂un

∂n
− ϕh

)
[vnh ] dΓ ≤ inf

ϕh∈Mh

∥∥∥∥∥∂un∂n
− ϕh

∥∥∥∥∥
−1/2,Γ

||[vnh ]||1/2,Γ. (44)

By the Aubin-Nitsche argument [23] and standard trace theorems [1], we have that:

inf
ϕh∈Mh

∥∥∥∥∥∂un∂n
− ϕh

∥∥∥∥∥
−1/2,Γ

≤ C hs|un|?,s+1 and ||[vnh ]||1/2,Γ ≤ ||vnh ||?. (45)
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Combining (33, 44–45) and the definition of Eappr(n) in (29), we have

Eappr(n) ≤ C hs|un|?,s+1.

On the contrary, the estimate for E∂t(n) is quite technical. We have that:∥∥∥∥∥∂un∂t − Πn
hu

n −Πn−1
h un−1

δt

∥∥∥∥∥
0,C

≤
∥∥∥∥∥∂un∂t − un − un−1

δt

∥∥∥∥∥
0,C

+

∥∥∥∥∥un − un−1

δt
−

Πn
hu

n −Πn−1
h un−1

δt

∥∥∥∥∥
0,C

(46)

where the estimate of the first term in the right hand side is standard (see e.g. [27]), while the second term has
still to be studied. By the triangle inequality, we have:

||un − un−1 − (Πn
hu

n −Πn−1
h un−1)||0,C ≤ ||un − un−1 − Ih(un − un−1)||0,C

+||Lh(P2(R−n(Ihun1 )− Ihun2 −R−(n−1)(Ihun−1
1 ) + Ihun−1

2 ))||0,C;

where again it is the second term in the right hand side that we have to analyze. In what follows we set

Eh := ||Lh(P2(R−n(Ihun1 )− Ihun2 −R−(n−1)(Ihun−1
1 ) + Ihun−1

2 ))||0,C . (47)

By means of (36), the stability of L2− orthogonal projection P2 and triangle inequality, we obtain:

Eh ≤
√
h2 ||R−n(Ihun1 )−R−(n−1)(Ihun−1

1 )− (Ihun2 − Ihun−1
2 )||0,Γ.

By summing and subtracting
(
un2 − un−1

2

)
|Γ =

(
R−n(un1 )−R−(n−1)(u

n−1
1 )

)
|Γ and by the triangle inequality:

Eh ≤
√
h2( ||R−n(Ihun1 − un1 )−R−(n−1)(Ihun−1

1 − un−1
1 )||0,Γ + ||Ih(un2 − un−1

2 )− (un2 − un−1
2 )||0,Γ). (48)

Now the first term in the right hand side of (48) can be bounded in the following way:

||R−n(Ihun1 − un1 )−R−(n−1)(Ihun−1
1 − un−1

1 )||0,Γ ≤ ||R−n(Ih(un1 − un−1
1 )− (un1 − un−1

1 ))||0,Γ
+||
[
R−n −R−(n−1)

]
(Ihun−1

1 − un−1
1 )||0,Γ.

Then, coming back to the estimate of Eh, by standard arguments we get:

Eh ≤ C hs|un − un−1|?,s + C
√
h2||(R−n −R−(n−1))(Ihun−1

1 − un−1
1 )||0,Γ. (49)

The estimate of the second term in the right hand side of (49) is then obtained by applying Lemma 3.4 to the
function Ihun−1

1 − un−1
1 . Finally we have:

Eh ≤ hs|un − un−1|?,s + δt hs2|un1 |s+1/2,Γ. (50)

Coming back now to the estimate of E∂t(n), by using (46, 47) and (50) we have then

E∂t(n) ≤
∥∥∥∥∥∂un∂t − un − un−1

δt

∥∥∥∥∥
0,C

+ hs

∥∥∥∥∥un − un−1

δt

∥∥∥∥∥
?,s

+ hs|un1 |s+1/2,Γ.
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By means of standard estimates for first order schemes in time (see e.g. [27]) and by the continuity of the
trace operator γ0 : Hs(Ω)→ Hs−1/2(Γ) for 1 ≤ s < k, we get:

E∂t(n) ≤ C
√
δt

∥∥∥∥∂2u

∂t2

∥∥∥∥
L2(tn−1,tn,L2(C))

+
hs√
δt

∥∥∥∥∂u∂t
∥∥∥∥
L2(tn−1,tn,Hs(Ω))

+ hs|un|?,s+1.

�
We are finally in the position to prove Theorem 3.2.

Proof of Theorem 3.2. Using the triangle inequality in (31) we easily obtain the following inequality:

||un − unh||20,C + α
n∑
i=1

δt ||ui − uih||2? ≤ C(T, µ, σ)

{
||un − wnh ||20,C + α

n∑
i=1

δt ||ui − wih||2?

+ ||u(0)− w0
h||20,C +

n∑
i=1

δt

(
1
α
E2

appr(i) + TE2
∂t(i)

)}
· (51)

In order to obtain the estimate (32) it is sufficient to apply the results of Lemmas 3.3 and 3.5 in the right hand
side of (51). �

4. Effects of using iso-parametric finite elements

In Section 2, we introduced curved finite element triangulations in both domains Ω1 and Ω2 and the advantage
of using non-matching grids has been pointed out.

The use of curved finite elements is not suitable for a fast and easy implementation and makes the exact
computation of the stiffness and mass matrix almost impossible. The remedy is to use, at the place of curved
finite elements, iso-parametric finite elements for which the basis functions are polynomials and which allow for
an exact numerical integration using Gaussian points.

The purpose of this section is the analysis of the non-matching method in order to take this additional factor
into account. The fact of using such finite elements changes the definition of the approximation space (24–25).
The constraint condition (25) no longer makes sense since, in general, neither v1,h nor v2,h in (25) are defined
over Γ.

Due to the existing literature on the subject for a fixed domain, the only new point is the effect of using
iso-parametric elements along the interface. We assume that it is the only place where a problem may raise by
making the hypothesis that Ω has a polygonal boundary.

Now, it is easy to see from the analysis of the error that we carried out in Section 3 that we can focus our
attention on deriving optimal approximation and consistency error bounds for the following static problem:

Find u ∈ H1
0 (Ω) such that: (52)

a(u, v) = (f, v)Ω ∀v ∈ H1
0 (Ω)

where the bilinear form a is defined in (12), Ω = Ω1(0) ∪ Ω2 as in Section 1 and where the discretization
relies on a space U0

h (see (24–25)) that now takes into account the effect of using iso-parametric finite element
approximations in both Ω1 and Ω2.

More precisely, according to [13], we introduce two families of iso-parametric finite elements (T̃1,h, X̃1,h) and
(T̃2,h, X̃2,h) for Ω1 and Ω2: T̃1,h (respectively T̃2,h) is an iso-parametric triangulation of Ω1 (resp. Ω2) of degree k
and X̃1,h (resp. X̃2,h) is a finite element space of degree k defined on T̃1,h (resp. T̃2,h). For the sake of simplicity
we shall suppose that both X̃1,h and X̃2,h are of degree k, but the same theory can be developed in the case of
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approximations of different degrees without any substantial change. Moreover we adopt the following notation:

Ω1,h =
◦⋃

K∈T̃1,h

K ; Γh1 = ∂Ω1,h ;

Ω2,h =
◦⋃

K∈T̃2,h

K ; Γh2 = ∂Ω2,h \ ∂Ω;

Ωh = Ω1,h ∪ Ω2,h.

Finally we denote by T̃ Γ
i,h the trace of T̃i,h over Γhi , for i = 1, 2. Since Γh1 differs from Γh2 , the condition (24)

can not be imposed; we thus need to introduce some transfer operators. Here is an example that is natural, at
least from an analytical point of view: recalling that O is the rotation center of Ω1, we denote by S1 : Γ→ Γh1 ,
S2 : Γ→ Γh2 , Γ 3 (r̄, θ) 7→ (ri(θ), θ) ∈ Γhi , the two one-to-one radial shift operators with respect to O. It is very
easy to see that Si ∈W 1,∞(R2)2 and that the following property holds:

|J Si| = 1 +O(hk) i = 1, 2 ; (53)

where J Si denotes the Jacobian of Si.
Accordingly we define the shift operators over functions, Si : L2(Γhi )→ L2(Γ) for i = 1, 2, such that:

Si(ui)(x) = ui(Six) a.e. x ∈ Γ , ui ∈ L2(Γhi ).

It is easy to see that these operators are Hs-continuous for s ∈ [0, 1] (with the standard convention that
H0 = L2) with continuity constants bounded independently of h.

By abuse of notation, when it is useful, we write S2(v) instead of S2(v|Γh2 ) for every v ∈ H1(Ω2,h) and,
moreover, we denote by S2(X̃2,h) the range of S2 restricted to the set of traces of functions in X̃2,h (of course
the same notation is also used for S1).

We are now in the position of defining a new approximation space for the solution of problem (52). Let
e ∈ T̃ Γ

2,h be an edge on Γh2 , we denote by fe : ]0, 1[→ e a bi-continuous application between the reference
element ]0, 1[ and e. Following the same steps as in Section 2, we start from the space of Lagrange multipliers
defined as:

M̃h = {ϕh ∈ C0(Γh2 ) such that ϕh |e ◦ fe ∈ Pk(]0, 1[) ∀e ∈ Γh2} · (54)

We choose again the rotor as master but the other choice would be completely equivalent.
We define the following approximation space:

X̃h = { vh = (v1,h, v2,h)∈ X̃1,h × X̃2,h such that: (55)∫
Γh1

(S1v1,h(x) − S2v2,h(x))S2ϕh(x) dΓ = 0 ∀ϕ ∈ M̃h}· (56)

Remember that we focus our analysis on the spatial discretization thus, with respect to (25), there is no rotation
operator r−t involved.

Let us define X̃0
h = {vh ∈ X̃h such that vh|∂Ω2,h\Γh2 = 0}.

According to the standard domain decomposition method, we propose to solve the following discrete problem:

Find uh ∈ X̃0
h such that ah(uh, vh) = (f, vh)h ∀vh ∈ X̃0

h (57)
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where

ah(uh, vh) =
∫

Ω1,h

∇u1,h∇v1,h dΩ +
∫

Ω2,h

∇u2,h∇v2,h dΩ ; (58)

(f, vh)h =
∫

Ω1,h

fv1,h dΩ +
∫

Ω2,h

fv2,h dΩ .

Furthermore we define a suitable mesh-dependent broken norm as:

||u||2?,h := ||u||21,Ω1,h
+ ||u||21,Ω2,h

, u|Ω1,h ∈ H1(Ω1,h) , u|Ω2,h ∈ H1(Ω2,h) .

Lemma 4.1. The bilinear form ah defined in (58) is uniformly coercive in X̃h equipped with the broken norm
|| · ||?,h; that is

∃α > 0 such that ah(vh, vh) ≥ α||vh||2?,h ∀vh ∈ X̃h (59)

where the constant α does not depend on the mesh size h.

The proof of this lemma is analogous to the standard one in the mortar element method context and it can
be found in [7] for example.

Also the following lemma does not need a proof since it is the well known Second Strang lemma (also known
as Berger-Scott-Strang lemma [23]):

Lemma 4.2 (Second strang). Let u and uh be the solutions of problems (52) and (57) respectively. There exist
two positive constants C,C′ such that the following error estimate holds:

||u− uh||?,h ≤ C inf
vh∈X̃h

||u− vh||?,h + C′ sup
wh∈X̃h

(f, wh)h − ah(u,wh)
||wh||?,h

· (60)

In particular the first term in the right hand side of inequality (60) is the best approximation error while
the second one is the consistency error: in the following we study separately these two contributions.

4.1. Best approximation error

We only have to follow the basic steps of the proof for the best approximation error in the case of the standard
mortar element method which has been proposed in [7].

Lemma 4.3. Let Π : H1(Ω1)→ S2(X̃2,h) ⊂ H1(Γ) be the L2-projector defined in the following way:∫
Γ

(u|Γ −Πu)S2(φh) dΓ = 0 ∀φh ∈ M̃h; (61)

the following approximation property holds:

||u|Γ −Πu||0,Γ ≤ C hs||u||s+1/2,Ω ∀u ∈ Hs+1/2(Ω), s ∈ [1, k + 1/2] . (62)

Proof of Lemma 4.3. We denote by I2
h the interpolation operator in Ω2,h, then, since Π is an L2-projection, we

surely have that

||u|Γ −Πu||0,Γ ≤ ||u|Γ − S2(I2
h u)||0,Γ,
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and, by using the triangle inequality and the L2 stability of S2, we have:

||u|Γ −Πu||0,Γ ≤ ||u|Γ − S2u|Γh2 ||0,Γ + C||u|Γh2 − (I2
h u)|Γh2 ||0,Γh2 . (63)

The estimate of the second term in the right hand side is standard; we focus our attention on the first one and
of course we want this term to be bounded by the right hand side of (62).

Let (ρ, θ) be the system of polar coordinates with respect to the rotation center O of Ω1 and r̄ be the radius
of Ω1. Without loosing generality, we suppose that B(3r̄/2, O) ⊂ Ω where B(3r̄/2, O) denotes the ball of center
O and radius 3r̄/2. For h small enough, there exist c ∈ L∞([0, 2π)) such that −r̄/2 ≤ c(θ) ≤ r̄/2 and the
following equality holds:

||u|Γ − S2u|Γh2 ||
2
0,Γ =

∫ 2π

0

(∫ r̄+hk+1c(θ)

r̄

∂u

∂r
(s, θ) ds

)2

dθ. (64)

By using the Sobolev embedding theorems we deduce that:

||u|Γ − S2u|Γh2 ||
2
0,Γ ≤ C h2(k+1)

∥∥∥∥∂u∂r
∥∥∥∥2

L∞(Ω1)

≤ C h2(k+1)||u||23,Ω. (65)

While, using Cauchy-Schwartz inequality, we have from (64):

||u|Γ − S2u|Γh2 ||
2
0,Γ ≤ C hk+1

∫ 2π

0

∫ r̄+hk+1|c(θ)|

r̄

∣∣∣∣∂u∂r (s, θ)
∣∣∣∣2 ds dθ ≤ C hk+1|u|21,Ω. (66)

By standard interpolation theory, from (65) and (66), we surely obtain that

||u|Γ − S2u|Γh2 ||0,Γ ≤ C h
s||u||s+1/2,Ω ∀s ∈ [1, k + 1/2]. (67)

Using now (63), (67) and standard results on the interpolation operator, we have that (62) holds. �
We want now to construct a function vh ∈ X̃h which provides an optimal approximation error and we do

that by means of the projector Π defined and analyzed in the previous lemma.

Proposition 4.4. Let Ih1 (resp. Ih2 ) be the interpolant operator in Ω1,h (resp. Ω2,h), Ih = (Ih1 , I
h
2 ) and Lh :

M̃h → X̃2,h an extension operator such that for every φh ∈ M̃h, Lh(φh) takes the value zero at all the internal
nodes in Ω2. Moreover, let u ∈ H1

0 (Ω) be the solution of the problem (52); we assume that u ∈ Hm(Ω) for some
m > 1. The function vh = (v1,h, v2,h) ∈ X̃h defined as:

v1,h = Ih1 u and v2,h = Ih2 u+ Lh
(
S−1

2

(
ΠS1(Ih1 u)

)
−Ih2 u

)
is such that vh ∈ X̃h and it verifies for every 1 ≤ s ≤ min{k,m− 1}:

||u− vh||?,h ≤ C1 h
s|u|s+1,Ω;

||u− vh||0,Ωh ≤ C2 h
s+1|u|s+1,Ω.

Proof of Proposition 4.4. By means of (36) we have that

||u− vh||?,h ≤ ||u− Ihu||?,h + h−1/2||S−1
2

(
ΠS1(Ih1 u)

)
− Ih2 u||0,Γ
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and, from now on we focus our attention on the second term in the right hand side. By summing and subtracting
the terms Π(u) and u|Γ, using the triangle inequality and the continuity of S2, we have:

||S−1
2

(
ΠS1(Ih1 u)

)
− Ih2 u||0,Γ ≤ C

{
||Π(S1I

h
1 u)−Π(u)||0,Γ + ||Π(u)− u|Γ||0,Γ + ||u|Γ − S2I

h
2 u||0,Γ

}
· (68)

By the L2 continuity of the operators S1 and S2 and using the same step as in proof of Lemma 4.3 in order to
bound the first and third terms in right hand side of (68), we end the proof. �

4.2. Consistency error

In this section we analyze the contribution coming from the second term in the right hand side of (60) and
we state the following proposition:

Proposition 4.5. Let u ∈ H1
0 (Ω) be the solution of the differential problem (52); we assume also u ∈ Hm(Ω)∩

H1
0 (Ω) for some m > 1, then the following estimate holds for every 1 ≤ s ≤ {k,m− 1}:

sup
wh∈X̃h

(f, wh)h − ah(u,wh)
||wh||?,h

≤ C hs ||u||s+1,Ω. (69)

Proof of Proposition 4.5. Using the integration by parts and recalling that u verifies (52), we have:

(f, wh)h − ah(u,wh) = −
∫

Γh1

∂u

∂n1
w1,h dΓ +

∫
Γh2

∂u

∂n2
w2,h dΓ ∀wh ∈ X̃h (70)

where we denote by n1 (resp. n2) the outer (resp. inner) normal to Ω1,h (resp. Ω2,h) at Γ1
h (resp. Γ2

h).
We apply the change of variables S1 (resp. S2) to the first (resp. second) integral in the right hand side

of (70). Summing and subtracting the quantity
∫

Γ

S2

(
∂u

∂n2

)
S1w1,h dΓ and recalling the fact that the test

function wh fulfills the constraint (56), we obtain that the following inequality holds for every ϕh ∈ M̃h:

∣∣∣∣∣
∫

Γh1

∂u

∂n1
w1,h dΓ−

∫
Γh2

∂u

∂n2
w2,h dΓ

∣∣∣∣∣ ≤
∫

Γ

[
S1

∂u

∂n1
− S2

∂u

∂n2

]
S1w1,hdΓ

+
∫

Γ

[
S2

(
∂u

∂n2

)
− S2ϕh

]
(S1w1,h − S2w2,h)dΓ + Chk

2∑
i=1

∥∥∥∥ ∂u∂ni

∥∥∥∥
0,Γi,h

||wi,h||0,Γi,h (71)

where ϕh is any function in M̃h and the last term, Chk, comes from the fact that the Jacobian was neglected
in the change of variables while writing the second integral in the right hand side.

We estimate now the two integrals in the right hand side of (71). Starting from the first one, the following
estimate holds:∣∣∣∣[S1

(
∂u

∂n1

)
− S2

(
∂u

∂n2

)]
S1w1,hdΓ

∣∣∣∣ ≤ C

∥∥∥∥S1

(
∂u

∂n1

)
− S2

(
∂u

∂n1

∣∣∣
Γ2,h

)∥∥∥∥
0,Γ

||w1,h||0,Γ1,h (72)

+C
∥∥∥∥ ∂u∂n2

− ∂u

∂n1

∣∣∣
Γ2,h

∥∥∥∥
0,Γ2,h

||w1,h||0,Γ1,h .
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Furthermore using the same argument used in (66) (resp. (65)) in (72) in the case k = 1 (resp. k > 1), we have:∥∥∥∥S1

(
∂u

∂n1

)
− S2

(
∂u

∂n1

∣∣∣
Γ2,h

)∥∥∥∥
0,Γ

≤ Ch||u||2,Ω k = 1∥∥∥∥S1

(
∂u

∂n1

)
− S2

(
∂u

∂n1

∣∣∣
Γ2,h

)∥∥∥∥
0,Γ

≤ Chk+1||u||7/2,Ω k > 1∥∥∥∥ ∂u∂n2
− ∂u

∂n1

∣∣∣
Γ2,h

∥∥∥∥
0,Γ2,h

≤ ||u||2,Ω||n1 − n2||0,Γ2,h ≤ Chk||u||2,Ω k ≥ 1.

(73)

Using (73) in (72) we obtain for every 1 ≤ s ≤ min{k,m− 1}∣∣∣∣∣
∫

Γ1,h

[
S1

(
∂u

∂n1

)
− S2

(
∂u

∂n2

)]
S1w1,h dΓ

∣∣∣∣∣ ≤ Chs||u||s+1,Ω. (74)

For what concerns the second term in the right hand side of (71), we start by writing:

∣∣∣∣∫
Γ

[
S2

(
∂u

∂n2

)
− S2ϕh

]
(S1w1,h − S2w2,h) dΓ

∣∣∣∣ ≤ C
{

inf
ϕh∈M̃h

∥∥∥∥∂u∂n
− S2ϕh

∥∥∥∥
−1/2,Γ

+
∥∥∥∥∂u∂n

− S2
∂u

∂n2

∥∥∥∥
−1/2,Γ

}
||wh||?,h.

Now, the second term in the right hand side is treated with the same arguments as the ones used above in this
proof, namely (73), while, by the Aubin-Nitsche argument, we obtain:

inf
ϕh∈M̃h

∥∥∥∥∂u∂n
− S2 ϕh

∥∥∥∥
−1/2,Γ

≤ hs||u||s+1,Ω 1 ≤ s ≤ min{k,m− 1} · (75)

Finally using estimates (74) and (75), we obtain that (69) holds. �
Remark 4.6. In this section the matching condition and the definition of the approximation space (55–56)
depend on the choice of the one-to-one shift operators S1 and S2 and of the integration domain in (56).
Nevertheless we point out that other choices are possible and the associated proofs (which might use the
explicit form of the one-to-one operator) still hold when replacing Si by other regular one-to-one operators
verifying condition (53). Moreover the interface condition can be replaced with a condition defined on Γhi , for
i = 1 or i = 2, or also, if needed, on any Γh polygonal inscribed into Γ whose vertices are a superset of the
union of the vertices of Γ1,h and Γ2,h. We set:

S1,2 : L2(Γh1 )→ L2(Γh2 ) u 7→ S−1
2 S1u ; (76)

S2,1 : L2(Γh2 )→ L2(Γh1 ) S2,1 = S−1
1,2 .

The condition (56) could be replaced by any of the following ones:∫
Γh2

(S1,2v1,h(r−tx)− v2,h(x))ϕh(x) dΓ = 0 ∀ϕh ∈ M̃h ; (77)∫
Γh1

(v1,h(r−tx)− S2,1v2,h(x))S2,1ϕh(x) dΓ = 0 ∀ϕh ∈ M̃h ; (78)∫
Γh

Sh(S1v1,h(r−tx)− S2v2,h(x))ShS2ϕh(x) dΓ = 0 ∀ϕh ∈ M̃h ; (79)
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where in the last line the operator Sh is then associated to the shift operator from Γ to Γh. From a theoretical
point of view the difference among these constraints relies on changes of the integration variables where Jacobians
can be neglected thanks to (53). From a numerical point of view it brings flexibility to be able to deal with
other choices than the ones specifically used in the proofs of the previous sections.

Remark 4.7. In this section we carried out the estimates of the best approximation and consistency errors for
the mortar element method in the case of iso-parametric finite elements. Although we explicitly treated only
the case of interest, that is a decomposition in only two sub-domains with the interface Γ which is a manifold
without boundary, the proofs we presented apply unchanged to more general decompositions. The use of iso–
parametric finite elements preserves then the optimality of the mortar method and make the assembly of the
mass and stiffness matrix inexpensive.

4.3. Error estimate in the case of iso-parametric finite elements

The theory developed in this section can of course be applied for the discretisation of problem (8) and allow
the use of iso–parametric finite elements along the interface Γ.

Applying the machinery developed in Sections 2 and 3 with this new choice of approximation space, we
obtain the following Theorem:

Theorem 4.8. Let

Ũnh :=
{
vh ∈ X̃h such that vh |∂Ω = 0 and

∫
Γ

(S1v1,h(r−nx)− S2v2,h(x))S2ϕh(x) d Γ = 0 ∀ϕh ∈ M̃h

}
and {ũnh}n be the solution of the problem

∀n = 0, .., N − 1, find ũn+1
h ∈ Ũn+1

h such that:∫
C
σ
ũn+1
h − ũnh
δt

vn+1
h dΩ + ah(ũn+1

h , vn+1
h ) = (Jn+1

s , vn+1
h )Ω2 ∀vn+1

h ∈ Ũn+1
h .

If the solution u of the problem (8) verifies the same regularity assumptions as in Theorem 3.2, the following
optimal error estimate holds:

||
√
σ(un − ũnh)||20,C + α

n∑
i=1

δt
2∑
j=1

||uij − ũij,h||21,Ωj∩Ωj,h
≤ C(T, σ, µ)

{
h2s

n∑
i=1

δt |ui|2?,s+1

+ h2(s+1)
(
||un||2s+1,C + ||u0||2s+1,C

)
+ (δt)2

∥∥∥∥∂2u

∂t2

∥∥∥∥2

L2(0,T ;L2(C))
+ h2s

∥∥∥∥∂u∂t
∥∥∥∥2

L2(0,T ;Hs(Ω))

}

for all n = 1, .., N and where the constant C(T, σ, µ) depends on the parameters of the problem, but neither on
δt nor on h.

5. Implementation aspects

In this section we detail the some aspects related to the implementation of the proposed method (26).
We focus our attention, firstly, on the numerical treatment of the interface condition (25) which appears to

be a new task in a standard finite element code and, secondly, on the construction of the final system. To
simplify the exposition, we treat the case in which the rotor doesn’t move but the same arguments hold also
when the rotor moves and any difference will be pointed out where necessary.
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In Section 4 it is proved that the use of curved triangulations can be avoided and, without loss of generality,
we assume here that:
• Ω1 and Ω2 are decomposed by triangular meshes with straight edges and non-matching at the interface Γ.
• The degree of the polynomials is set equal to 1 in both domains.

5.1. Numerical treatment of the mortar condition

Since we use standard triangulation on both domains, the mortar condition must be treated according to
Section 4. In the following we focus our attention on the implementation of the constraint (56) and of some of
its variants (see Rem. 4.6). Below, in Figure 1, we present the general configuration we have to deal with from
the implementation point of view: on the left, a simplified situation with only one triangle from the stator and
rotor meshes and, on the right, an enlargement of a global mesh in a neighbourhood of the interface. As it can
be seen, the stator mesh penetrates that of the rotor and vice versa.

A

BC
D

O x

θ

rotor

stator

Γ

P

0.0003511 0.0004 0.0005 0.0005733
−4.0×10−4

−3.0×10−4

−2.0×10−4

−1.0×10−4

−4.0×10−5

Figure 1. Intersection between two mesh sides belonging one to a stator mesh triangle and
the other to a rotor one (left). A real mesh configuration in a neighbourhood of the interface
(right). The intersection of the two mesh edges AB and CD can be defined either in terms of
angles or in terms of segments. In the case of the figure, the intersection is represented either
by the interval (θB , θC) or by the line CB.

We propose two different approaches to compute the integral in the mortar constraint.
1. The first approach is based on the representation of the mortar constraint presented in Section 4 and on

a clever choice of the operators Si. We choose Si in a way that the functions involved in the integral (56)
are piecewise polynomials of first degree with respect to the curvilinear parameter s.

2. The second one relies on the representation (79) of the mortar constraint and Γh is chosen to be the
polygonal obtained by using all the stator and rotor mesh nodes lying on Γ. In this approach a quadrature
formula is used.

In what follows, keeping in mind Figure 1 (left), we will denote by ϕ1
A and ϕ1

B the basis functions associated to
nodes A and B of the rotor mesh triangle and by ϕ2

C and ϕ2
D those associated to nodes C and D of the stator

mesh triangle.
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First approach

Since Γ a circle, we know a global parameterization of it and the integration of polynomials of degree two over
Γ can be done exactly. In the following we see that through a suitable choice of the operators, the mortar
constraint can involve only integrals of that type. We use the constraint (56) and we choose the operators Si in
such a way that Si send the set of piecewise linear functions onto itself. Namely the operators Si send segments
of equal length into segments of equal length. In this way, referring to Figure 1 for the considered configuration,
we have the following expressions

S1(ϕ1
A)(s) =

sB − s
sB − sA

, S1(ϕ1
B)(s) =

s− sA
sB − sA

, on the arc AB ;

S2(ϕ2
C)(s) =

sD − s
sD − sC

, S2(ϕ2
D)(s) =

s− sC
sD − sC

, on the arc CD .

The idea is that now the integrands in (56) are product of piecewise polynomials of degree one.
This approach relies on the intersection between the two discretizations of the interface given in terms of

angles and the general integral that one has to calculate is:

∫
arcBC

S1(ϕ1
B)S2(ϕ2

C) ds =

θC∫
θB

(
θ − θA
θB − θA

) (
θD − θ
θD − θC

)
ρ dθ

that can be exactly computed (ρ = |O − P |).

Second approach

In this second approach we use a constraint of the type (79) where Γh is the polygonal inscribed in Γ composed
of all the intersection segments. Its nodes are all the stator and rotor mesh nodes lying Γ. The operator Si and
Sh are chosen to be the orthogonal projection with respect to Γi,h.

If we look at Figure 1, the integral we are considering as example becomes∫
segAB ∩ segCD

ϕ1
B ϕ

2
C dt .

This approach relies on the intersection between the two discretizations of the interface given in terms of
segments as it has been previously defined. If the intersection segment CB is not an empty set, we have∫

segAB∩segCD

ϕ1
B ϕ

2
Cdt =

∑
k | ξk∈segCB

ϕ1
B(xk)ϕ2

C(yk)ωk

where xk and yk are the orthogonal projections of the integration nodes ξk on AB and CD respectively and ωk
are the weights of the integration formula.

5.2. The construction of the final matrix system

In this section, we aim at writing problem (26) in a matrix form. First, we construct a basis of the ap-
proximation space U th. It involves a set of linear systems whose solutions represent the columns of a matrix,
called Q in the what follows, that allows to couple at the interface the information coming from the stator and
rotor domains. Its construction is a crucial point in the method implementation. Next, we present the matrix
structure of the discretized problem pointing out the characteristics of the involved matrix.
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It is important to remark that all the line integrals over Γ which appear in what follows, have to be considered
as explained in the previous section, although by abuse of notation we shall use the symbol

∫
Γ to simplify the

description.

5.2.1. A basis for the approximation space U th
Let us consider the discrete spaces Xi,hi defined in (22) with k1 = k2 = 1. The degrees of freedom are the

values at the vertices of the mesh triangles K. We denote the nodes of triangle K by aK and we define the sets
of global nodes Ξ0

i

Ξ0
i := {aK |K ∈ Ti,hi , aK /∈ ∂Ωi \ Γ}·

In defining the set Ξ0
h, an assembly process has taken place and in the global numeration we denote a node by

a. The two sets of nodes on the interface will be denoted as follows

ξi = {a ∈ Ξ0
i ∩ Γ} ,

and we define mi
Γ = card (ξi) and mi = card (Ξ0

i ).
Let us denote by ϕia the basis function associated to node a ∈ Ξ0

i . This function is the element of the spaces
Xi,hi defined by

ϕia(b) = δab ∀b ∈ Ξ0
i

where δab is the Kronecker symbol.
Let us denote by B a basis for U0

h(t): we suppose that

B = B1 ∪ B2 ∪ BΓ ;

where the sets of functions B1, B1, and BΓ will be defined below.
The functions in B1 are zero in Ω2, the functions in B2 are zero in Ω1, and the functions in BΓ have their

support in the union of the mortar elements. The mortar elements are the triangles having a vertex lying on Γ.
Due to the properties of the considered basis functions, we set

B1 = {(ϕ1
a, 0) |a ∈ Ξ0

1 \ ξ1} ,

B2 = {(0, ϕ2
a) |a ∈ Ξ0

2 \ ξ2} ,

and a possible choice for the basis functions centered on the nodes lying on the interface is

BΓ =


(
ϕ1

a,
∑
b∈ξ2

qabϕ
2
b

)
| a ∈ ξ1, qab ∈ R

 · (80)

For each of the m1
Γ nodes a, the coefficients qa

b, b ∈ ξ2 are determined by imposing the integral matching
condition ∫

Γ

(
ϕ1

a −
∑
b∈ξ2

qabϕ
2
b

)
ϕ2

c dΓ = 0 ∀c ∈ ξ2 .

Each of these m1
Γ systems of m2

Γ equations can be put into the following matrix form

Cqi = Di (81)
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where

(qi)T = (qaib1
, . . . , qaib

m2
Γ

),

C(r, j) =
∫

Γ

ϕ2
ar ϕ

2
aj dΓ r, j : ar,aj ∈ ξ2 ,

Di(j) =
∫

Γ

ϕ1
ai ϕ

2
aj dΓ i : ai ∈ ξ1 , j : aj ∈ ξ2 .

The system (81) allows us to determine the vector qi, ∀i : ai ∈ ξ1, and thus the set of basis functions on the
interface. For following considerations, it is useful to define the rectangular matrix Q of dimension m2

Γ ×m1
Γ

Q = C−1D .

5.2.2. The matrix structure of the discretized problem

The system we solve to get numerical results can be obtained directly by expanding uh = (u1,h, u2,h) in terms
of the basis functions of B and inserting this expansion in equation (26).

Here we prefer to get the final system with a different two-step procedure: the first step consists in writing,
in each domain, the system associated to equation (26) with homogeneous Neumann conditions on the interface
Γ. In the second step the two previous systems are coupled by means of the mortar condition. This procedure
is easier to be understood and involves few modifications in an already existing finite element code. Now, let
us go through it in a more detailed way.

We expand the numerical approximation uh = (u1,h, u2,h) of the solution u in terms of the basis functions
of Xi,hi :

u1,h(x, t) =
∑
i : ai∈Ξ0

1
u1
i (t)ϕ

1
ai(x),

u2,h(x, t) =
∑
r : ar∈Ξ0

2
u2
r(t)ϕ

2
ar (x),

(82)

where we have used m1 coefficients u1
i and m2 coefficients u2

r. Among these m1 + m2 coefficients, only card
B = m1 +m2 −m2

Γ are real unknowns. In fact, the m1
Γ coefficients associated to nodes in ξ1 are linked to the

m2
Γ coefficients associated to nodes in ξ2 through the integral matching condition (25).
We divide the unknowns in each domain in two blocks with names reported in parentheses: the first block

(uΓ) contains the unknowns associated to the mj
Γ nodes lying on Γ and the second block (ui) those associated

to the mj −mj
Γ nodes interior to the domain (j = 1, 2). The vectors of unknowns are then

u1 =
(

u1
Γ, u1

i

)T
, u2 =

(
u2

Γ, u2
i

)T
where the exponent T stands for the transpose operator. In each domain, we build the system associated to
equation (26) with a homogeneous Neumann condition at the interface Γ. In this way, we obtain two linear
systems of the following form (j = 1, 2)

Aj

 ujΓ

uji


t=tn+1

=

 FjΓ

Fji


t=tn

with Aj =


M j

Γ,Γ

∆t
+Kj

Γ,Γ

M j
Γ,i

∆t
+Kj

Γ,i

M j
i,Γ

∆t
+Kj

i,Γ

M j
i,i

∆t
+Kj

i,i

 .
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Neither u1 nor u2 are solution of the previous problems since the two sets of values u1
Γ and u2

Γ are linked one to
the other by the mortar matching condition. Choosing the traces on Γ of the stator shape functions as mortar
elements, we have that

Qn+1 u1
Γ(tn+1) = u2

Γ(tn+1), Qn u1
Γ(tn) = u2

Γ(tn)

where Qn+1 and Qn are the rectangular full matrices of dimension m2
Γ × m1

Γ obtained from the matching
condition discretization at time tn+1 and tn. We introduce then the following matrices:

Q̃n+1 =


0 Qn+1 0
Id 0 0
0 Id 0
0 0 Id

 and A =

(
A2 0
0 A1

)
(83)

together with Q̃n of the same structure as Q̃n+1 but involving Qn and

M =

(
M2 0

0 M1

)
where M j =

(
M j

Γ,Γ M j
Γ,i

M j
i,Γ M j

i,i

)
. (84)

Indicating by wn+1 the independent unknowns at time tn+1, i.e.

wn+1 =
(

u2
i (tn+1), u1

Γ(tn+1), u1
i (tn+1)

)T
the approximation of the physical solution is computed solving the system

Q̃Tn+1 A Q̃n+1wn+1 = Q̃Tn+1

M

∆t
Q̃nwn + Q̃Tn+1Jn+1 . (85)

In particular, the left-hand side matrix can be represented in a block-displayed structure as follows

Q̃Tn+1 A Q̃n+1 =


A2
i,i A2

i,ΓQn+1 0

QTn+1A
2
Γ,i QTn+1A

2
Γ,Γ Qn+1 +A1

Γ,Γ A1
Γ,i

0 A1
i,Γ A1

i,i

 .

The final matrix is symmetric, since for both domains we have that Ai,Γ = (AΓ,i)T , and positive. The final
system can be solved either by a direct method such as the Cholesky factorization or by an iterative one such
as the Conjugate Gradient procedure [23]. In the second case, residuals can be computed in parallel thanks to
the two-step procedure that has been chosen to derive the stiffness and mass matrices (see [4]).

For what concerns the way the mortar and the final system matrices are built, there is no difference in
structure between the case in which the rotor domain is fixed and the case with the rotor domain rotating
around its center. In the first case, the matrix Q is constructed once at the exterior of the temporal loop.
In the second case, it is built at each time step: the intersection between the stator and rotor meshes at the
interface changes from one time iteration to the next one and so the elements of Q do. The stiffness and the
mass matrices in A and M , instead, do not depend on time.
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6. Numerical results

In the following, we are going to present some results concerning the comparison between the two techniques
adopted for the matching condition discretization and the ability of the method at reproducing the physical
solution (continuous at the interface). Moreover, we will analyse the precision of the method and present the
results related to its application in studying a more realistic, even if academic, eddy currents problem (TE
formulation is here considered).

6.1. Geometry and simulation parameters

We consider the situation displayed in Figure 2 (left). The stator is a square of edge L = 2 mm, and the
rotor is a circle of radius ρ = 0.5 mm and center at the origin of the (x, y) coordinates system.

dnH = 0 dnH = 0

H = 0

x

y

Γ

o

rotor

stator

H = 1

−0.001 0 0.001
−0.001

0

0.001

Figure 2. The geometry of the problem and boundary conditions (left); an example of stator
and rotor meshes that do not match at the interface (right).

The source is represented by a constant magnetic field parallel to the z-axis, of intensity 0 T/m at the bottom
and 1 T/m at the top of the stator domain; homogeneous Neumann conditions are considered on the stator
vertical boundaries.

We use linear finite elements for the spatial discretization. The stator mesh is composed of 423 nodes and
736 triangles whereas the rotor one has 84 nodes and 138 triangles (see Fig. 2 (right); the mesh parameter h
is equal to 0.1 mm for both meshes.) A first order implicit Euler scheme is applied to discretize the temporal
derivative.

A characteristic dimension of the problem is the depth of penetration of the magnetic field in the domain

δ =
1√

π µ0 σ f
·

If v is the rotation tangential speed, the rotation angular speed is ω =
v

ρ
to which it corresponds a frequency

f =
v

2πρ
. The value v = v1 ≈ (18 π ρ 102)−1 has been chosen by supposing that

σ = 109 S/m, µ0 = 4π10−7 H/m, δ ≈ 3 ρ.
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To have the rotor cycling once in 40 time iterations, we impose that the rotation angle at each time step is
equal to 9◦. In this case we have

δt = δt1 =
9 π

180ω1
≈ 0.025 s.

Finally, to accelerate the convergence of the simulation, we have initialized the solution of the magnetodynamic
problem (2) with the solution of the magnetostatic one described by equation (2) without the time derivative
term.

6.2. Comparing the two approaches

In Figure 3 are reported the results of the comparison among the two techniques we have adopted to numer-
ically compute the line integrals involved in the mortar matrix construction. Results are obtained on the mesh
displayed in Figure 2, with time step δt = δt1 and supposing the rotor still. Each mesh node on the interface is
located by its angle (reported on the x-axis). On the y-axis, we display the values of the computed solution at
these nodes. Let us remark that on the interface we have at our disposal two sets of nodes: that of the nodes
belonging to the stator mesh and that of the nodes belonging to the rotor mesh. In this case, we have reported
the values at the stator mesh nodes: those related to the rotor mesh nodes describe the same curves (as it will
be remarked in the next section).
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Figure 3. Values of the solution at all the stator mesh nodes on the interface when the elements
of the mortar matrix are computed by the two considered techniques.

By looking at the Figure 3, we can see that the two approaches can not be distinguished from the point
of view of the numerical results. Moreover, results confirm that the two approaches have the same order of
approximation as proved in the theory.

6.3. Comparing the stationary and the non-stationary cases

In Figure 4, are shown the values of the computed solution at the stator and rotor mesh nodes lying on
the interface. Once again, results are obtained on the mesh of Figure 2 with time step δt = δt1: the rotor is
supposed still in one case and moving at speed v1 in the second case.
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Figure 4. Values of the solution at all the nodes on the interface: the values are computed
keeping once the rotor fixed and once rotating.

Despite the weak imposition of the matching condition, the results show that the numerical solution repro-
duces a physical one: indeed it looks “continuous” at the interface. Moreover, this qualitative “continuity” is
respected even when the rotor domain is rotating around its center. The intensity of the computed magnetic
field at the interface nodes (and in all the other rotor mesh nodes) is lower when the rotor is moving due to
the minor penetration of the magnetic field in the moving part (any increase in the rotation speed v implies a
decrease in the depth of penetration δ.)

6.4. Precision of the method

In this subsection we are going to analyse the precision of the proposed method and the simulation parameters,
slightly different with those defined in the first section, will be defined later on. Here, we are going to make
a quantitative comparison, at the interface Γ, between the “exact solution” (u) and the one (uh) numerically
computed with different meshes and different time steps. The term “exact solution” will refer either to the
analytical solution when available (cases 1 and 2 in what follows) or to a solution numerically computed on the
finest mesh with the smallest time step (case 3). The spatial error at a fixed instant t is represented by

||u− uh||L2(Γ)

||1||L2(Γ)
≈


∑
ak∈Γ

|ak+1 − ak|(u− uh)2(ak, t)

∑
ak∈Γ

|ak+1 − ak|


1/2

(86)

where ak are nodes either belonging to T Γ
1,h1

or to T Γ
2,h2

. In the first case, uh = u1,h1 , and in the second case,
uh = u2,h2 . The temporal error is the maximum for t ∈ [0, T ] of the spatial errors. In the figures which follow,
we will draw the logarithm of the spatial error with respect to the logarithm of the number N of mesh nodes
on Γ and the temporal error with respect to the time step (in seconds) with a little difference in the last case.
In the following we set l = L/2.
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To spatially discretize the domain, we now consider different meshes such that the corresponding discretiza-
tions of the interface Γ are nested: this means that (i = 1, 2)

T Γ
i,hri
⊂ T Γ

i,hr+1
i

where hri =
hi
2r

and r = 0, 1, 2, 3, 4

and Γ has successively 12, 24, 48, 96, 192 nodes. The number of nodes lying on Γ is denoted by N. In the fol-
lowing, we will use the term “matching grid” to denote a couple of meshes T Γ

i,hi
(i = 1, 2) such that T Γ

1,h1
= T Γ

2,h2

and the term “non-matching grid” to denote a couple of meshes such that T Γ
1,h1
6= T Γ

2,h2
. For all values of r, the

defined meshes are matching grids: starting from these meshes, we obtain a couple of non-matching grids by
simply rotating T Γ

1,hr1
with respect to T Γ

2,hr2
of a suitable angle.

The method precision will be tested in the three following cases:

(Case 1) on a magnetostatic problem;
(Case 2) on a magnetodynamic problem when the rotor does not move;
(Case 3) on a magnetodynamic problem when the rotor moves with a constant angular speed.

(Case 1): let us start by considering the magnetostatic problem described by equation (2) without the time
derivative term. In this case, we suppose that the source, always represented by a constant magnetic field parallel
to the z-axis, has intensity −1 T/m at the bottom and 1 T/m at the top of the stator domain; homogeneous
Neumann conditions are considered on the stator vertical boundaries. Due to these assumptions, the magnetic
field H = (0, 0,H) depends only on the y coordinate and is solution of the following problem

d2H
dy2

= 0, H(l) = 1, H(−l) = −1 .

So, the (third component of the) analytical (exact) solution of the problem is given by H(y) =
y

l
.

Let us remark that, since the analytical solution belongs to the finite element space, this example allows to
quantify the error associated to the mortar element method. In Figure 5 are reported the spatial errors when the
numerical solution uh is computed on differently meshes that in one case match and in the other do not match
at the interface. These errors are given by expression (86) in which the temporal variable has been neglected.
Looking to Figure 5, we note that, in the logarithm scale, the spatial errors depend linearly on the number of
mesh nodes on Γ. Moreover, the displayed lines has angular coefficient equal to one confirming the first order
of the proposed method.

In the matching case, the error should be equal to zero. Its non-zero value is due to the fact that the element
of the coupling matrix Q are computed by using the first approach described in Section 5.1.

(Case 2): let us consider the magnetodynamic problem described by equation (2) and we suppose that the rotor
does not move. In this case, the source is represented by a sinusoidal magnetic field parallel to the z-axis, with
intensity is −1 T/m the bottom and 1 T/m at the top of the stator domain; homogeneous Neumann conditions
are considered on the stator vertical boundaries. Due to these assumptions, the magnetic field H = (0, 0,H)
depends only on coordinates y and t and is solution of the following problem


σ µ

∂H
∂t
− ∂2H

∂y2
= 0

H(l, t) = cos(ωt), H(−l, t) = − cos(ωt), ∀t ∈ [0, T ].
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Figure 5. Spatial error (case 1): the matching and not-matching cases are compared.

In this example we have chosen the source frequency f = 1 Hz (ω = 2π rad/s) and the final instant T = 2 s.
The (third component of the) analytical (exact) solution of the problem is given by

H(y, t) = Real
{

sinh(λ y)
sinh(λ l)

eiωt

}
, λ =

(1 + i)
δ
·

In Figure 6 are reported the temporal errors when the numerical solution uh is computed on the finest mesh
with different time steps, both in the matching and non-matching cases. The considered time steps (in seconds)
are

δt =
δt1

10 2s
and s = 0, 1, 2, 3.

Since on Γ the mesh size is small, the temporal error of the non-matching case does not significantly differ from
that of the matching case. Moreover, both the errors depend linearly on the time step.

In Figure 7 are reported the spatial errors when the numerical solution uh is computed with the smallest
time step (corresponding to s = 3) on different meshes that in one case match and in the other do not match
at the interface. In the logarithm scale, the spatial errors depend linearly on the number of mesh nodes on Γ.

Let us remark that, in both Figures 6 and 7, the fact that the two lines are almost parallel implies that
the order of the conforming and non-conforming method is the same. In addition, it has to be noted that the
constant contained in the error estimate related to the non-matching case is close to the constant contained in
the error estimate related to the matching case since the two lines are very close.

(Case 3): let us consider the magnetodynamic problem described by equation (2) with the same conditions
of case 1. The exact solution is not of analytical type but computed numerically on the finest mesh with the
smallest time step defined below. In this third case, the rotor will move at a constant speed. The rotation angle
is chosen so that the finest rotor mesh is always matching with the stator finest one at the nodes lying on Γ.
In this way, we get rid of the numerical error due to the geometric non-conformity while computing the exact
solution.
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Figure 6. Temporal error computed on the finest mesh (case 2): the matching and not-
matching cases are compared.
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Figure 7. Spatial error computed with the smallest time step (case 2): the matching and
not-matching cases are compared.

The computation of the spatial and temporal errors rely on different choices of the simulation parameters
which are connected to the rotor movement. Since we want to analyse the influence of the rotor movement on
the precision of the method, we will consider two different tangential speeds: v′ ≈ 10v1 and v′′ ≈ 100v1 with v1

defined in Section 1.
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Spatial error parameters. During the numerical tests for the spatial error, we impose that the rotation angle at
each time step is equal to 7.5◦. This angle is chosen so that the finest rotor mesh (obtained with r = 4) is, at
each rotation, always matching with the finest stator one in all the nodes lying on Γ; the smallest angle that
allows for this geometric conformity at r = 4 is 360◦/192 = 1.875◦. Since we use a rotation angle that is four
times bigger than 1.875◦, the geometric conformity is also preserved for r = 2 and r = 3. For r = 0 and r = 1,
instead, we loose the geometric conformity. In relation to the chosen rotation angle, the correct time step for
the tangential speed v′ is δt = δt1/10 ≈ 0.0025 s and for v′′ it is δt = δt1/100 ≈ 0.00025 s.

Temporal error parameters. To get the temporal error, we compute the numerical solution on the finest mesh
(r = 4 for both domains) with different time steps. Two rotation velocities are considered, v′ and v′′ = 10 v′.

Results on the spatial and temporal errors related to the chosen rotation speeds are contained in Figures 8
and 9. The time interval where the transient effects take place varies with the rotation speed and it is difficult to
localize it within the simulation interval. For these reasons, we have computed the error when the steady-state
configuration is achieved. Moreover, at the steady-state configuration, the distribution of the values of the
magnetic field as well as of the current density does not depend on time.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
 (current time step , reference time step)
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0.015
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0.03
Temporal error in magnetodynamics with movement

v = 10 v1
v = 100 v1

Figure 8. Temporal error computed on the finest mesh (case 3) when the rotor moves at
constant speed: for v′ the reference time step is δt1/10 and for v′′ the reference time step is
δt1/100.

The spatial error associated to v′′ behaves as the spatial error related to v′: its smaller (absolute) values are
due to the fact that the faster the rotor moves, the smaller the magnetic field values at the interface are (as it
was observed in Fig. 4). As explained before, for r = 0 and r = 1 we deal with non-matching grids: despite
this, in Figure 9 we can see that the corresponding error values lie on a straight line. Moreover, at the rotation
speed v′′ the constant in the error estimate related to the non-conforming case is not much bigger than that in
the same error estimate at speed v′.

Since for both experiments we obtain straight lines, the first order of the method is actually numerically
verified.

Concerning Figure 8, the temporal errors are plotted with respect to the ratio between the current time step
and the reference one (obtained with s = 0 at both speeds). This choice comes from the wish of drawing in the
same graph the errors related to different speeds which are characterized by different time step scales. In both
cases, the temporal error behaves linearly with respect to the time step.
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Figure 9. Spatial error computed with the smallest time step (case 3): the rotor moves at
two different constant angular speeds.

6.5. A realistic simulation

In the previous section the physical interpretation of the numerical results was not the point. The tests have
been done in order to give qualitative and quantitative “support” to the theory developed at the beginning of
the paper. The aim of this section is to use the mortar tool to analyse a more realistic situation.

The simulation of the induced currents propagation into the domain represented in Figure 2 (left), is charac-
terized by two intervals: a first one during which the rotor is kept fixed and the magnetic field invades the whole
domain with a constant gradient and a second one in which the rotor moves around its axis. Both intervals
are important and the simulation parameters have to be chosen in such a way that these periods are respected.
Taking care of this aspect, we can analyse the effect of the rotor movement on the established magnetic field
distribution, avoiding wrong interpretations of the numerical results. Another important point is to understand
what means to accelerate the rotor movement. The acceleration of the rotor movement is not obtained increas-
ing the angle of which the rotor turns at each time step but decreasing the time step itself. This is more natural
as regard the error bound.

The numerical results displayed in Figure 10 are obtained in the first case (left) by considering nit1 = 800
time iterations with time step of length δt′ = 0.25 10−3 s and keeping the rotor rotating with speed v′ = 0.63 103

rad/s. In the second case (right) we accomplish nit2 = 8000 time iterations (nit2 = 10nit1) with time step of
length δt′′ = 0.25 10−4 s (δt2 = δt1/10) and the rotor is rotating with speed v′′ = 0.63 104 rad/s (v′′ = 10 v′).
We have then that the rotor moves of 9◦ in the first case and of 90◦ in the second one, each time step δt′.

In Figure 10 can be seen the effects of the rotor movement on the current density distribution: each arrow
represents the current density vector at an element barycenter. Looking at Figure 10, we remark that the faster
the rotor moves, the more the currents circulate in the stator domain while in the rotor domain they concentrate
near the sliding interface forming a limit layer.

Moreover, in the rotor domain, the current density distribution is such to create an angular momentum that
contrasts the rotation: this contrasting effect increases with the rotation speed.

At the web address http://www.asci.fr/Francesca.Rapetti/figures.html is available an animation that
reproduces at each time step the computed magnetic field distribution, starting from an linear one. When the
rotor starts moving, a transient phenomenon takes place; soon after, the transient solution lets the way to a
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Figure 10. Effect of the rotor movement on the current density distribution. Steady state
configurations with the rotor moving at v′ = 0.63 103 rad/s (left) and v′′ = 10 v′ (right).

steady-state one. We can see a similarity between this problem and the heat one when the solution is computed
in a domain with a moving part.

Further results on the influence of the rotor movement on the currents distribution as well as on the power
losses in dependence of the rotor angular speed are presented in [24].
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