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A Q-SCHEME FOR A CLASS OF SYSTEMS OF COUPLED CONSERVATION
LAWS WITH SOURCE TERM. APPLICATION TO A TWO-LAYER 1-D

SHALLOW WATER SYSTEM
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Abstract. The goal of this paper is to construct a first-order upwind scheme for solving the system
of partial differential equations governing the one-dimensional flow of two superposed immiscible layers
of shallow water fluids. This is done by generalizing a numerical scheme presented by Bermúdez and
Vázquez-Cendón [3, 26, 27] for solving one-layer shallow water equations, consisting in a Q-scheme
with a suitable treatment of the source terms. The difficulty in the two layer system comes from
the coupling terms involving some derivatives of the unknowns. Due to these terms, a numerical
scheme obtained by performing the upwinding of each layer, independently from the other one, can
be unconditionally unstable. In order to define a suitable numerical scheme with global upwinding,
we first consider an abstract system that generalizes the problem under study. This system is not
a system of conservation laws but, nevertheless, Roe’s method can be applied to obtain an upwind
scheme based on Approximate Riemann State Solvers. Following this, we present some numerical tests
to validate the resulting schemes and to highlight the fact that, in general, numerical schemes obtained
by applying a Q-scheme to each separate conservation law of the system do not yield good results.
First, a simple system of coupled Burgers’ equations is considered. Then, the Q-scheme obtained is
applied to the two-layer shallow water system.
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1. Introduction

The problem that gave rise to the questions addressed in this work was the discretization, by means of
finite volume schemes, of the system of partial differential equations governing the one-dimensional flow of two
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superposed immiscible layers of shallow water fluids:

∂h1
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+
∂q1
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∂q1
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+
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(
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+
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2
h2

1

)
= gh1

dH
dx
− gh1

∂h2

∂x
,
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∂t
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∂q2
∂x

= 0,

∂q2
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q2
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2
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= gh2

dH
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− ρ1

ρ2
gh2

∂h1

∂x
·

(1.1)

In these equations, index 1 makes reference to the upper layer and index 2 to the lower one. The fluid is assumed
to occupy a straight channel with a constant rectangular cross-section. The coordinate x refers to the axis of the
channel and t is time. Each layer is assumed to have a constant density, ρi, i = 1, 2 (ρ1 < ρ2). The unknowns
qi(x, t) and hi(x, t) represent the mass-flow and the thickness of the ith layer at the section of coordinate x at
time t; g is gravity and H(x) is the depth at x from a fixed reference level.

System (1.1) can be written as follows:
∂W1

∂t
(x, t) +

∂F

∂x
(W1(x, t)) = φ(x,W1(x, t)) +B1,2(W1(x, t))

∂W2

∂x
(x, t),

∂W2

∂t
(x, t) +

∂F

∂x
(W2(x, t)) = φ(x,W2(x, t)) +B2,1(W2(x, t))

∂W1

∂x
(x, t),

(1.2)

where

Wj(x, t) =
[
hj(x, t)
qj(x, t)

]
, j = 1, 2, (1.3)

and, given WT = [h, q] with h 6= 0:

F (W ) =

 q
q2

h
+
g

2
h2

 , (1.4)

B1,2(W ) =
[

0 0
−gh 0

]
, (1.5)

B2,1(W ) =
[

0 0
−grh 0

]
, (1.6)

φ(x,W ) =

[
0

gh
dH
dx

(x)

]
, (1.7)

with

r =
ρ1

ρ2
·

Observe that F and φ are the usual flux and source terms appearing in shallow water problems. Bermúdez
and Vázquez-Cendón [3,26,27] have presented some numerical upwind schemes for solving the one-layer shallow
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water equations consisting in a Q-scheme with a suitable treatment of the source terms. Nevertheless, in (1.2)
new kinds of source terms, involving derivatives of the unknowns, appear. These source terms affect the nature
of the system which can even lose its hyperbolic character. In effect, if the two layers were uncoupled, the
eigenvalues of each separate system would be those of the Jacobian matrix of the flux:

A(W ) =
∂F

∂W
=

 0 1

− q
2

h2
+ gh 2

q

h

 . (1.8)

These eigenvalues are:

ui ±
√
ghi, i = 1, 2, (1.9)

where ui = qi/hi is the averaged velocity of the ith layer. On the other hand, if the system (1.2) is written
under the form:

Wt +A(W)Wx = Φ(x,W), (1.10)

where

W =
[
W1

W2

]
, (1.11)

Φ(x,W) =
[
φ(x,W1)
φ(x,W2)

]
, (1.12)

A(W) =
[

A(W1) −B1,2(W1)
−B2,1(W2) A(W2)

]
, (1.13)

it is clear that the eigenvalues of the system are now those of the matrix A(W), whose characteristic equation is:(
λ2 − 2u1λ+ u2

1 − gh1

)(
λ2 − 2u2λ+ u2

2 − gh2

)
= rg2h1h2. (1.14)

Observe that, when r = 0, the eigenvalues are those corresponding to each layer separately, so that for r << 1,
the eigenvalues of the system (1.1) approach (1.9). In this situation, the coupling terms do not affect the nature
of the system in any essential manner.

Nevertheless, we are mainly interested in the case r ∼= 1, as this is the situation occurring in many oceano-
graphical flows. For example, our interest focuses on the Strait of Gibraltar where, in first approximation, two
superposed layers of water of very close densities can be distinguished: the Atlantic and the Mediterranean
waters, with densities of 1 027 kg/m3 and 1 029 kg/m3, respectively.

In the case r ∼= 1, first-order approximation of the eigenvalues were given in [23]:

λ±ext = Ucon ±
(
g(h1 + h2)

) 1
2 , (1.15)

λ±int = Ucon ±
(
g′

h1h2

(h1 + h2)

[
1− (u1 − u2)2

g′(h1 + h2)

]) 1
2

. (1.16)

In the former expression, g′ is the reduced gravity:

g′ = (1− r)g,
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and Ucon, the so-called convective velocity, given by:

Ucon =
u1h2 + u2h1

h
, (1.17)

where h = h1 + h2 is the total thickness.

The two external eigenvalues, λ±ext, are related to the barotropic component of the flow and the two internal
eigenvalues, λ±int, to the baroclinic component. These latter eigenvalues depend on the reduced gravity g′ and
g′ << 1. As a consequence, the velocity of internal waves, relative to Ucon, is much lower than that of waves at
the surface (see [12, 17]).

It is easy to check that, for a two-layer flow with free surface, the condition under which one of the eigenvalues
vanishes is:

G2 = F 2
1 + F 2

2 − (1− r)F 2
1 F

2
2 = 1, (1.18)

where G is the so-called composite Froude number, and Fi for i = 1, 2 are the internal Froude numbers for each

layer (F 2
i = u2

i

g′hi
). When this condition is achieved at a section of coordinate x, the flow is said to be critical

at this point and the section x is called a control. When G2 < 1, the flow is subcritical. Finally, when G2 > 1,
the flow is supercritical.

From equation (1.16), we can observe that the internal eigenvalues may become complex. This situation
occurs when they verify, approximately, the following inequality:

(u1 − u2)2

g′(h1 + h2)
> 1. (1.19)

In this case, the system loses its hyperbolic character. These situations are related with the appearance of the

so-called Kelvin-Helmholtz instabilities. These instabilities appear at the interface and lead, in real flows, to
intense mixing of the two layers. While, in practice, this mixture partially dissipates the energy, in numerical
experiments, these interface disturbances grow and overwhelm the solution. Clearly, we cannot expect to
simulate these phenomena with a two-immiscible-layer model. Therefore, the inequality (1.19) in fact gives the
range of validity of a model based on the equations (1.1), if viscosity effects are neglected.

The fact that some of the source terms affect the eigenvalues of the system makes clear that a correct
upwinding of the fluxes and source terms must use the information given by the global matrix A. Therefore, the
goal of this paper is to generalize to system (1.1) the numerical scheme presented by Bermúdez and Vázquez-
Cendón for solving one-layer shallow water equations in such a way that the upwinding will be performed in a
global manner.

In order to define a numerical scheme with these properties, we consider an abstract system that generalizes
the problem under study. The abstract problem consists of several conservation laws with source terms that
couple every law to each other, and it can be written as a quasi-linear non-conservative hyperbolic system.
The interpretation of the non-conservative terms appearing in this system and, related to this, the notion of
an entropy weak solution, create serious difficulties from a mathematical point of view. These topics have been
extensively studied in [4, 18, 19]. As we are only concerned by the definition of a numerical scheme, we will
assume the existence and uniqueness of an entropy solution, regular enough so that the calculations performed
make sense.

In defining the scheme, we will treat the difficulties progressively. First we consider a system where source
terms of the form (1.12) do not appear. This system is not a system of conservation laws but, nevertheless, Roe’s
method [20] can still be applied to obtain an upwind scheme based on Approximate Riemann State Solvers.
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Then, source terms of the form (1.12) are added. The numerical treatment proposed in [26,27] is applied, but
using again the global matrix A(W) to correctly upwind.

An alternative scheme can be obtained by applying an upwind scheme to each separate system. This pro-
cedure leads to a numerical scheme easier to implement and computationally less expensive. Unfortunately, in
practice, this scheme is useless because it may be unconditionally unstable. This point will be further discussed
in Section 2.

In [7], a similar problem, arising from the simulation of two-phase liquid-vapour flows, has been considered.
Model equations are also a system of coupled conservation laws with source term. Nevertheless, this problem
does not fit into the abstract framework proposed here in Section 2, as their coupling terms also involve time
derivatives of the unknowns. These authors introduce a splitting technique for treating these coupling terms
that allows the use of approximate Riemann solvers to each separate system.

In Section 3, some numerical tests that validate the schemes defined in Section 2 are presented. First, a
simple system of coupled Burgers’ equations with known solution is considered. Then, the numerical solution
of system (1.1) with flat bottom is studied. In order to make clear the fact that numerical schemes with
uncoupled upwinding may be unstable, we apply two different numerical schemes, one with global and another
with uncoupled upwinding, and compare the results.

At our knowledge, exact solutions of the system (1.1) are not known. Nevertheless, in [1] some approximate
steady-state solutions are presented, under the “rigid-lid” hypothesis. In Section 3 we also compare these
approximate steady solutions with the numerical solutions obtained with the scheme presented here, by iterating
in time until convergence. Finally, we present a numerical experiment where a periodic barotropic forcing is
imposed to he two-layer flow over a sill. This represents a first approximation to the study of tidal effects on
such a geometry.

2. Definition of a Q-scheme for a general problem

Let us consider the following system of P.D.E.

∂Wj

∂t
+
∂Fj
∂x

(Wj) = φj(x,W1, . . . ,WK) +
∑
k 6=j

Bj,k(x,W1, . . . ,WK) · ∂Wk

∂x
, j = 1, . . . ,K, (2.20)

where

Wj(x, t) =


wj1(x, t)
wj2(x, t)

...
wjNj (x, t)

 ∈ RNj ,

Fj is a continuous function from a domain Dj of RNj to RNj ; φj is a continuous function from D = D0 ×
D1 × · · · ×DK , where D0 is an open interval of R, to RNj . Finally, Bj,k is a continuous matrix function from
D to MNj×Nk . The first-order P.D.E. system (2.20) contains N = N1 + N2 + · · · + NK unknowns and two
independent variables x and t. The jth equation of this system can be thought as a conservation law with
source terms for the set of variables Wj .

The following global notation will be used:

Wt + F(W)x = Φ(x,W) + G(x,W,Wx), (2.21)
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where

W =


W1

W2

...
WK

 ,

F(W) =


F1(W1)
F2(W2)

...
FK(WK)

 ,

Φ(x,W) =


φ1(x,W)
φ2(x,W)

...
φK(x,W)

 ,
G(x,W,Wx) = B(x,W) ·Wx.

In the latter equation, B represents the N ×N matrix with the following block structure:

B(x,W) =


0 B1,2(x,W) . . . B1,K(x,W)

B2,1(x,W) 0 . . . B2,K(x,W)
...

...
. . .

...
BK,1(x,W) BK,2(x,W) . . . 0

 . (2.22)

A further hypothesis concerning the hyperbolic nature of the system (2.24) is required. But first, let us introduce
some notation. For 1 ≤ j ≤ K, given Wj ∈ Dj ⊂ RNj , Aj(Wj) represents the Jacobian of the jth flux Fj in
Wj :

Aj(Wj) =
∂Fj
∂Wj

(Wj).

Clearly, given W ∈ D1 × · · · ×DK , one has:

∂F
∂W

= A(W) =


A1(W1) 0 . . . 0

0 A2(W2) . . . 0
...

...
. . .

...
0 0 . . . AK(WK)

 .
Let A(x,W) be the matrix:

A(x,W) = A(W) −B(x,W) =


A1(W1) −B1,2(x,W) . . . −B1,K(x,W)

−B2,1(x,W) A2(W2) . . . −B2,K(x,W)
...

...
. . .

...
−BK,1(x,W) −BK,2(x,W) . . . AK(WK)

 .
Using these matrices, (2.21) can be written as follows:

Wt +A(x,W) ·Wx = Φ(x,W). (2.23)
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We assume that this system is hyperbolic, i.e., for all (x,W) ∈ D the matrix A(x,W) has real eigenvalues
and a complete set of linearly independent eigenvectors.

The difficulties related to the numerical treatment of the two kinds of source terms appearing in the equations
are very different. On the one hand, the source terms involving derivatives of the unknown have to be taken
into account to calculate the eigenvalues of the system and, due to this, the upwinding of these terms is strongly
related to the upwinding of the flux term and has to be performed at the same time. This will be done
in Section 2.1 where, in order to separate the difficulties, we will consider Φ = 0. On the other hand, the
difficulties related to the source terms of the form Φ(x,W) are similar to those appearing in a standard system
of conservation laws with source terms. The numerical treatment proposed here is a straightforward adaptation
of the techniques developed in [26,27], and will be presented in Section 2.2.

2.1. A Q-scheme with global upwinding

In this section we consider problem (2.21) with Φ = 0, i.e.,

Wt + F(W)x = G(x,W,Wx). (2.24)

An important remark is that, in the case where the matrices Bj,k are constants, (2.24) can be interpreted as a
standard system of conservation laws:

Wt + FB(W)x = 0, (2.25)

with

FB(W) = F(W)−B ·W.

Hence, the system can be numerically solved using a standard scheme.
In this paragraph, we adapt Roe’s method to define a Q-scheme for (2.24). As this equation is not a system

of conservation laws, this procedure cannot be directly applied, but it can be adapted. The idea is the following:
in Roe’s method, the numerical fluxes at intercells are calculated by solving a Riemann Problem related to a
linearized system. But taking into account the remark above, these linearized problems can be considered as
standard system of conservation laws by including the source terms in the flux. Roughly speaking, the source
terms can be locally viewed as flux terms. Once these local systems of conservation laws are solved, the
deduction of the scheme closely Roe’s method.

Suppose that the system (2.24) has to be solved in the spatial domain [0, L] and the temporal domain [0, T ]
with initial conditions:

Wj(x, 0) = W 0
j (x), x ∈ [0, L], j = 1, . . . ,K. (2.26)

To discretize the equations, M computing cells Ii = [xi−1/2, xi+1/2], i = 1, . . . ,M are considered. For the sake
of simplicity, we assume that these cells have a constant size:

∆x = L/M,

and that

xi+1/2 = i∆x, i = 0, . . . ,M.

xi = (i− 1/2)∆x is the center of the cell Ii. Let ∆t be the time step and tn = n∆t.
As usual, we define the cell averages of the exact solution as follows:

Wn
i =

1
∆x

∫ xi+1/2

xi−1/2

W(x, tn) dx.
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Integrating by parts the system in the control volume Ii × [tn, tn+1], we formally obtain:

Wn+1
i = Wn

i +
∆t
∆x
(
Fi−1/2 − Fi+1/2

)
+

1
∆x

∫ xi+1/2

xi−1/2

∫ tn+1

tn
G(x,W,Wx) dt dx, (2.27)

where

Fi+1/2 =
1

∆t

∫ tn+1

tn
F(W(xi+1/2, t)) dt,

is the averaged flux through the intercell xi+1/2. Clearly, Fi+1/2 depends also on the time level, nevertheless,
in order to avoid an excess of notation, we will not write 0 the dependency on time for quantities that are
computed at time tn without any possible ambiguity. We write (2.27) as follows:

Wn+1
i = Wn

i +
∆t
∆x

(
Fi−1/2 +

1
∆t

∫ xi

xi−1/2

∫ tn+1

tn
G(x,W,Wx) dt dx

)

− ∆t
∆x

(
Fi+1/2 −

1
∆t

∫ xi+1/2

xi

∫ tn+1

tn
G(x,W,Wx) dt dx

)
.

(2.28)

As usual in “Godunov-type” methods, we consider the Riemann problems:
W̃t + F(W̃)x = G(x,W̃,W̃x),

W̃(x, tn) =
{

Wn
i if x < xi+1/2,

Wn
i+1 if x > xi+1/2,

(2.29)

and, assuming that each of these problems has a unique “entropic” solution W̃i+1/2, for i = 1, . . .M − 1 the
parenthesis appearing on the right-hand side of (2.28) are approximated, respectively, by:

g+
i−1/2 =

1
∆t

∫ tn+1

tn
F(W̃i−1/2(xi−1/2, t)) dt+

1
∆t

∫ xi

xi−1/2

∫ tn+1

tn
G(x,W̃i−1/2,W̃i−1/2

x ) dt dx,

g−i+1/2 =
1

∆t

∫ tn+1

tn
F(W̃i+1/2(xi+1/2, t)) dt− 1

∆t

∫ xi+1/2

xi

∫ tn+1

tn
G(x,W̃i+1/2,W̃i+1/2

x ) dt dx.

We assume also that the time step ∆t has been chosen small enough so that the following relations hold:

xi ≤ xi+1/2 + ∆t Si+1/2
L , xi+1 ≥ xi+1/2 + ∆t Si+1/2

R , i = 1, . . . ,M − 1, (2.30)

where Si+1/2
L and S

i+1/2
R are the fastest velocities to the left and to the right of the perturbations arising at

xi+1/2 at time t = tn in problem (2.29).
Under this hypothesis, integrating equation (2.29) on the control volume [xi, xi+1/2]× [tn, tn+1], we obtain:

g−i+1/2 = F(Wn
i )− Si+1/2

L Wn
i −

1
∆t

∫ xi+1/2

xi+1/2+∆t S
i+1/2
L

W̃i+1/2(x, tn+1) dx. (2.31)
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Analogously,

g+
i−1/2 = F(Wn

i )− Si−1/2
R Wn

i +
1

∆t

∫ xi−1/2+∆t S
i−1/2
R

xi−1/2

W̃i−1/2(x, tn+1) dx. (2.32)

In order to approximate the integral expressions appearing on the right-hand side of (2.31) and (2.32), we
introduce linear approximations of the Riemann problems (2.29). To do this, we consider the matrices:

Ãi+1/2 = A(W̃n
i+1/2), 1 ≤ i ≤M − 1,

B̃i+1/2 = B(xi+1/2,W̃n
i+1/2), 1 ≤ i ≤M − 1,

where W̃n
i+1/2 is an “intermediate state” between Wn

i and Wn
i+1 to be chosen.

Then the approximate linear Riemann problems considered are:
Ũt + Ãi+1/2 · Ũx = B̃i+1/2 · Ũx,

Ũ(x, tn) =
{

Wn
i if x < xi+1/2,

Wn
i+1 if x > xi+1/2.

(2.33)

Now, the equations of these problems can be written under the form of standard linear systems of conservation
laws as follows:

Ũt + Ãi+1/2 · Ũx = 0, (2.34)

where

Ãi+1/2 = Ãi+1/2 − B̃i+1/2.

Let us introduce some notation: {λi+1/2
l }Nl=1 are the eigenvalues of Ãi+1/2, assumed to be ordered as:

λ
i+1/2
1 < λ

i+1/2
2 < · · · < λ

i+1/2
N ,

and {Ki+1/2
l }Nl=1 is a complete set of linearly independent eigenvectors. Ki+1/2 is the N × N matrix whose

columns are the eigenvector Ki+1/2
l , and Λi+1/2 is the diagonal matrix whose diagonal coefficients are the

eigenvalues λi+1/2
1 , . . . , λ

i+1/2
N . Clearly,

Ãi+1/2 = Ki+1/2Λi+1/2K
−1
i+1/2.

We also introduce the matrices Λ+
i+1/2, Λ−i+1/2, Ã+

i+1/2, Ã−i+1/2 as usual

Λ±i+1/2 =


(λi+1/2

1 )± 0
. . .

0 (λi+1/2
N )±

 , Ã±i+1/2 = Ki+1/2Λ±i+1/2K
−1
i+1/2.

Assuming that

S
i+1/2
L ≤ λi+1/2

1 , λ
i+1/2
N ≤ Si+1/2

R , 1 ≤ i ≤M − 1; (2.35)
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and repeating the same procedure of integration applied to the solution of (2.29), we obtain

1
∆t

∫ xi+1/2

xi+1/2+∆t S
i+1/2
L

Ũi+1/2(x, tn+1) dx = −Si+1/2
L Wn

i − Ã−i+1/2 ·
(
Wn

i+1 −Wn
i

)
;

1
∆t

∫ xi−1/2+∆t S
i−1/2
R

xi−1/2

Ũi−1/2(x, tn+1) dx = S
i−1/2
R Wn

i − Ã+
i−1/2 ·

(
Wn

i −Wn
i−1

)
,

where the explicit form of the solution of (2.33) has been used (see [25]). Using the values of these integrals to
approximate the integrals appearing in (2.31) and (2.32) we obtain

g+
i−1/2

∼= g̃+
i−1/2 = F(Wn

i )− Ã+
i−1/2 · (W

n
i −Wn

i−1),

g+
i+1/2

∼= g̃+
i−1/2 = F(Wn

i ) + Ã−i+1/2 · (W
n
i+1 −Wn

i ).

Finally, using these approximations in (2.28) the following numerical scheme is obtained:

Wn+1
i = Wn

i +
∆t
∆x
(
g̃+
i−1/2 − g̃−i+1/2

)
, 2 ≤ i ≤M − 1, (2.36)

(the expressions for i = 1 and i = M depend on the boundary conditions imposed). In order to avoid the
introduction of unnecessary notation, for the approximate value of W(xi, tn) given by the scheme we use the
same symbol, Wn

i , already used for the cell averages of the exact solution.
If the intermediate states W̃n

i+1/2 chosen are those of Roe’s method (see [20]), the following equalities hold:

F(Wn
i+1)− F(Wn

i ) = Ãi+1/2 · (Wn
i+1 −Wn

i ), 1 ≤ i ≤M − 1.

In this case, introducing the matrices ∣∣Ãi+1/2

∣∣ = Ã+
i+1/2 − Ã

−
i+1/2,

a new form of the scheme can be obtained:

Wn+1
i = Wn

i +
∆t
∆x

(
Fi−1/2 − Fi+1/2

)
+

∆t
2∆x

(
B̃i−1/2 · (Wn

i −Wn
i−1) + B̃i+1/2 · (Wn

i+1 −Wn
i )
)
,

(2.37)

with

Fi+1/2 =
1
2
(
F(Wn

i ) + F(Wn
i+1)

)
− 1

2

∣∣∣Ãi+1/2

∣∣∣ · (Wn
i+1 −Wn

i ). (2.38)

This scheme is thus the natural extension of the Q-scheme of Roe to system (2.24). We will also consider the
extension of the Q-scheme of van Leer, whose expression is again (2.37)-(2.38) but where the matrix Ai+1/2 is
now calculated using the intermediate state

W̃n
i+1/2 =

Wn
i + Wn

i+1

2
· (2.39)

A straightforward calculation shows that both Roe and van Leer schemes are consistent.
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At first glance it may seem that a centered approximation of the derivatives appearing in the source terms
is performed in (2.37) but, in fact, these derivatives are upwinded with the non-diagonal blocks of the matrix
appearing in the numerical viscosity term, while the flux is upwinded with the diagonal blocks.

Finally, observe that in the case where the matrices Bj,k are constant, the scheme obtained coincides with
the application of a standard Q-scheme to the system of conservation laws (2.25). Moreover, if the flux is also
linear, the scheme coincides with the CIR scheme. Therefore, the scheme is linearly stable, under the usual
CFL condition.

2.2. A numerical scheme for the complete system

In this section we consider the general problem (2.20). For solving this system we propose a Q-scheme with
upwinding of the source term Φ using the techniques introduced in [26,27]. Such a scheme reads as follows:

Wn+1
i = Wn

i +
∆t
∆x

(
Fi−1/2 − Fi+1/2

)
+

∆t
2∆x

(
B̃i−1/2 · (Wn

i −Wn
i−1) + B̃i+1/2 · (Wn

i+1 −Wn
i )
)

+
∆t
∆x

(
P+
i−1/2Φ̃i−1/2 + P−i+1/2Φ̃i+1/2

)
,

(2.40)

with

Fi+1/2 =
1
2
(
F(Wn

i ) + F(Wn
i+1)

)
− 1

2

∣∣∣Ãi+1/2

∣∣∣ · (Wn
i+1 −Wn

i ), (2.41)

Φ̃i+1/2 = Φ
(
xi+1/2,W̃n

i+1/2

)
,

being W̃n
i+1/2 the intermediate state corresponding to the particular scheme, and

P±i+1/2 =
1
2
Ki+1/2

(
Id± sgn(Λi+1/2)

)
K−1
i+1/2, (2.42)

where

sgn(Λi+1/2) =

 sgn(λ1,i) 0
. . .

0 sgn(λN,i)

 .
Observe that the projection matrices used to upwind the source terms are obtained from the global matrix
Ãi+1/2 so that the eigenvalues of the system are taken into account.

2.3. The CFL condition and Harten regularization

Observe that in the deduction of the schemes a CFL-like requirement (2.30) has been imposed. In practice,
we propose the following condition:

∆x
∆t
≤ γ max{

∣∣∣λi+1/2
l

∣∣∣ , 1 ≤ l ≤ N, 1 ≤ i ≤M − 1}, (2.43)

with 0 < γ ≤ 1.
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On the other hand, to prevent the numerical viscosity of the Q-schemes from vanishing when any of the
eigenvalues of the matrices |Ãi+1/2| are zero, we apply the Harten regularization [14]. We define

Fi+1/2 =
1
2
(
F(Wn

i ) + F(Wn
i+1)

)
− 1

2

∣∣∣Ãi+1/2

∣∣∣
ε
· (Wn

i+1 −Wn
i ),

where ∣∣∣Ãi+1/2

∣∣∣
ε

= Ki+1/2

∣∣Λi+1/2

∣∣
ε
K−1
i+1/2.

Here,

∣∣Λi+1/2

∣∣
ε

=


∣∣∣λi+1/2

1

∣∣∣
ε

0
. . .

0
∣∣∣λi+1/2
N

∣∣∣
ε

 ,
with the notation:

|λ|ε = |λ|+ 0.5
{(

1 + sgn(ε− |λ|)
)(λ2 + ε2

2ε
− |λ|

)}
, (2.44)

being ε a small parameter.

2.4. A Q-scheme with uncoupled upwinding

An alternative scheme can be obtained by applying a Q-scheme to each equation of (2.20). If source terms
are treated numerically by using the techniques described in [3, 26,27] the following scheme is obtained:

Wn+1
i = Wn

i +
∆t
∆x

(
F∗i−1/2 − F∗i+1/2

)
+

∆t
∆x

(
P∗+i−1/2Φ̃i−1/2 + P∗−i+1/2Φ̃i+1/2

)
+

∆t
∆x

(
P∗+i−1/2 · B̃i−1/2 · (Wn

i −Wn
i−1) + P∗−i+1/2B̃i+1/2 · (Wn

i+1 −Wn
i )
)
,

(2.45)

with

F∗i+1/2 =
1
2
(
F(Wn

i ) + F(Wn
i+1)

)
− 1

2

∣∣Ai+1/2

∣∣ · (Wn
i+1 −Wn

i ), (2.46)

where

∣∣Ai+1/2

∣∣ =


|Ãi+1/2

1 | . . . 0
...

. . .
...

0 . . . |Ãi+1/2
K |

 . (2.47)

In the former formula, Ãi+1/2
j represents the jth diagonal block of the matrix Ãi+1/2. Let Λi+1/2

j be the Nj×Nj
diagonal matrix whose coefficients are the eigenvalues of Ãi+1/2

j , and Q
i+1/2
j a Nj × Nj a regular matrix such

that
Ã
i+1/2
j = Q

i+1/2
j Λi+1/2

j (Qi+1/2
j )−1.
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With these notations, the projection matrices appearing in (2.45) are defined as

P∗±i+1/2 =

 P ∗±i+1/2,1 . . . 0
...

. . .
...

0 . . . P ∗±i+1/2,K

 , (2.48)

where
P ∗±i+1/2,j =

1
2
Q
i+1/2
j

(
IdNj

± sgn(Λi+1/2)j
)

(Qi+1/2
j )−1.

This scheme, must solve K spectral problems of order N1, . . . , NK at each intercell, instead of a unique spectral
problem of order N , as in (2.40). Therefore, its practical implementation can be easier and computationally
less expensive. Unfortunately, in practice this scheme is useless because it may be unconditionally unstable.
This situation occurs, for instance, if all the eigenvalues of the Jacobians of the fluxes have the same sign and
at least one of the eigenvalues of the global matrix has the opposite sign. To see this, let us apply the scheme
to a linear problem with Φ = 0, so that all the matrices in (2.40) do not depend on i+ 1/2 and the last term
of the right-hand side vanishes. Let us suppose that all the eigenvalues of the matrices Aj have the same sign,
say positive. In this case, the following equalities hold:

|A| = A, P∗+ = I, P∗− = 0.

Using these equalities, some straightforward calculation, show that the scheme can be written as follows:

Wn+1
i = Wn

i −
∆t
∆x
A · (Wn

i −Wn
i−1),

where, as usual, A = A −B. Now, we pass to characteristic variables, i.e., we consider the matrix K whose
columns are the eigenvectors of A and we make the change of basis:

V = K−1 ·W.

In the new coordinates the scheme reads as follows:

Vn+1
i = Vn

i −
∆t
∆x

Λ · (Vn
i −Vn

i−1),

where Λ is the diagonal matrix of the eigenvalues of A. The jth component of Vn+1
i is then obtained with the

formula:
vn+1
j,i = vnj,i −

∆t
∆x

λj(vnj,i − vnj,i−1).

Clearly, the scheme is unconditionally unstable whenever one of the eigenvalues λj is negative, as the upwinded
is performed in the wrong sense.

3. Numerical tests

3.1. Test problem 1

The goal of this test is to validate the numerical scheme obtained in Section 2.1 in an simple system of the
form (2.24) with known solution. We consider a system composed by two coupled Burgers equations:

∂u1

∂t
+

1
2
∂u2

1

∂x
= −u1

∂u2

∂x

∂u2

∂t
+

1
2
∂u2

2

∂x
= −u2

∂u1

∂x
,

(3.49)
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which is of the form (2.24) with:

F1(u) = F2(u) =
1
2
u2,

B1,2 = −u1, B2,1 = −u2.

The eigenvalues of the system are:

λ1 = 0, λ2 = u1 + u2.

In the domain

{(u1, u2), u1 + u2 > 0},

the system is hyperbolic, with a characteristic field linearly degenerated and the other genuinely nonlinear [13].
Given x0, (a1, a2), (b1, b2) such that

a1 + a2 = b1 + b2 > 0,

the function

Wx0(x, t) =



[
a1

a2

]
if x < x0,

[
b1
b2

]
if x > x0,

(3.50)

is a weak solution of (3.49), representing a steady contact discontinuity placed at x = x0 connecting two constant
states.

The Q-scheme of van Leer (2.37), (2.38) and (2.39) is applied to (3.49) with the initial condition

W50(x, 0) =



[
0.5
0.5

]
if x < 50,

[
1
0

]
if x > 50.

In this example, ∆x = 1.0 and CFL = 1.0. Figure 1 depicts the numerical solution obtained at any time tn:
the exact solution is captured.

3.2. Test problem 2

The goal of this test is to illustrate the instability of the scheme with uncoupled upwinding in the case of
the two-layer shallow-water system (1.1). Let us consider system (1.1) with constant depth H. This problem
can be written under the formulation (2.24) with K = 2, N1 = N2 = 2, N = 4 and with W given by (1.11).
Finally,

G(x,W,Wx) = B(x,W) ·Wx,

with

B(x,W) =


0 0 0 0
0 0 −gh1 0
0 0 0 0

−rgh2 0 0 0

 .
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Figure 1. Numerical solution obtained with the Q-scheme of Van-Leer applied to (3.49) with
initial data W50(x, 0).

We have applied the Q-scheme of van Leer (2.40), (2.41) and (2.39) to (1.1). The calculation of the matrices∣∣Ai+1/2

∣∣ demands the resolution of the algebraic equation (1.14). This has been done as follows: first, Newton’s
method is applied to (1.14) with (1.15) as initial guess. Once the first two roots are found, the fourth-degree
polynomial is deflected. The two roots of the resulting second-degree polynomial (if they are real) are used again
as an initial guess for Newton’s method applied to (1.14). With this choice of initial guess, Newton’s method
converges rapidly (one or two iterations are needed in the numerical tests performed). Once the eigenvalues
of (1.13) are approximated, the calculation of their associated eigenvectors is performed. The matrix–vector
and inverse of matrix computations are performed by using the C++-library newmat09.

The following initial conditions are considered:

h1(x, 0) =
{

0.5 if x < 50
0.55 if x > 50 , q1(x, 0) =

{
1.25 if x < 50
1.375 if x > 50 ; (3.51)

h2(x, 0) =
{

0.5 if x < 50
0.45 if x > 50 , q2(x, 0) =

{
1.25 if x < 50
1.125 if x > 50 . (3.52)

At the boundaries two fictitious states are introduced:

Wn
0 = Wn

1 , Wn
M+1 = Wn

M ,

in order to calculate the average states W̃n
1/2 and W̃n

M+1/2 (see [25]).
In the simulations presented here r = 0.98, ∆x = 1.0 and CFL = 1.0 (i.e., γ = 1.0 in (2.43)). Figure 2(a)

shows the free surface and the interface corresponding to the initial state. Figures 2(c) and 2(d) depict the
interface at time t = 5 and t = 10, respectively.

Next, we have applied the scheme (2.45)-(2.46) to the same problem. The choice of the initial condition has
been done in order to have the situation discussed in Section 2.4 above: the eigenvalues of the Jacobians of the



122 M. CASTRO ET AL.

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100

Free surface
Interface

Bottom

(a) Free surface and interface at t = 0.
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(b) Free surface and interface at t = 5 using the scheme

given by (2.45)-(2.46).
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(c) Interface at t = 5 using the scheme given by (2.40)-

(2.41).
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(d) Interface at t = 10 using the scheme given by

(2.40)-(2.41).

Figure 2. Numerical solution for equation (1.1) with initial conditions (3.51), (3.52), using
schemes (2.45)-(2.46) and (2.40)-(2.41).
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fluxes of both layers are all of them positives, but the global matrix has a negative eigenvalue. Furthermore, we
have applied the scheme (2.45)-(2.46) for a variety of CFL conditions ranging from 1 to 10−4. In all the cases
instabilities appear at the free surface and interface. In Figure 2(b) the free surface and interface at time t = 5
obtained with CFL = 10−4 are shown.

3.3. Test problem 3: Farmer and Armi steady solutions

Armi and Farmer studied the stationary solutions of two-layer exchange flows through contractions (in [1]
and [2]) and over sills (in [1] and [9]). In [9] they also considered flows through the combination of a sill
and contraction. Their model is based on the Bernoulli equations under the assumption of rigid lid. They
parameterize the flows in terms of the internal Froude numbers for each layer, Fi, and possible solutions
to the steady two-layer exchange problem are shown as curves in the Froude-number plane (F 2

1 , F
2
2 ). This

parameterization is done by the deduction of a dimensionless Bernoulli equation expressed in terms of F 2
1 and

F 2
2 that, for the case of flows over a sill, can be written as:

∆H ′′(q′1)−
2
3 = F

− 2
3

1 +
1
2
F

4
3

1 −
1
2
q
− 2

3
r F

4
3

2 , (3.53)

where qr = q1/q2 is the ratio of flow rates at each layer and q′1 is the dimensionless first layer flow (that is constant,
as only steady solutions are considered by these authors). The term ∆H ′′ is related to the dimensionless energy
difference between the two layers. In the absence of friction, mixing or any other losses of energy, this quantity,
and consequently ∆H ′′(q′1)−

2
3 , is conserved. Therefore, the curves verifying equation (3.53) with constant

∆H = ∆H ′′(q′1)−
2
3 represent the solutions of the model in the (F 2

1 , F 2
2 ) plane (where dissipative processes are

not considered). These solutions haven been plotted and discussed in detail by Farmer and Armi in [1] and [9].
The aim of this section is to compare the numerical solutions obtained using the scheme given by (2.40)-(2.41)
for flows over a sill with the approximate steady solutions given by Farmer and Armi (F&A hereafter). The
numerical solutions are obtained by iterating in time until reaching a steady state. The procedure has been the
following: a F&A steady solution corresponding to a given value of ∆H, say ∆H0, is taken as initial condition.
Then boundary conditions corresponding to another steady state solution are imposed. More precisely, the
input flow at the right end of the channel for the lower layer and the input flow at the left side for the upper
layer are imposed. The numerical solution is expected to reach a steady state close to the corresponding F&A
solution. Once this steady state is reached, the procedure is repeated to obtain a new stationary state. This
procedure has been done for different values of ∆H and qr. In all the cases the degree of agreement between
the numerical and the F&A solutions is excellent. As an example, we show a numerical experiment consisting
in taking as initial conditions F&A’s steady solution for qr = 1 and ∆H = 2. The boundary conditions imposed
the flow corresponding to the ∆H = 1.8 F&A’s steady solution, being the new steady state rapidly reached.

Figure 3(a) depicts the free surface and interface for ∆H = 2 F&A solution (initial conditions). Figure 3(b)
shows the final stationary state reached in the experiment presented here compared with the stationary approx-
imate solution obtained by F&A and corresponding to the constant ∆H = 1.8 level. It can be observed that
both solutions superposed.

Figure 4(a) depicts the composite Froude number G2 along the channel at the final stationary state reached.
This figure shows that the flow is supercritical to the left of the sill, critical at the sill and subcritical to the
right. Figure 4(b) shows the four eigenvalues for the stationary solution. It can be observed how one of these
eigenvalues becomes zero at the sill, being two eigenvalues positives and two negatives in the subcritical region,
and three negative and one positive in the supercritical region. Note that the two internal eigenvalues are almost
equal in the interval (−3,−1), so that the flow is very close to conditions where Kelvin-Helmholtz instabilities
can appear. Nevertheless, no problem of numerical instability has been observed.

3.4. Test problem 4: periodic barotropic forcing

In this section, the model is used to simulate flows over a sill forced by a periodic barotropic flow. A similar
experiment was performed in [16], where a model for the study of time-dependent two-layer hydraulic flows
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(a) Initial condition: F&A ∆H = 2.0 steady solu-
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(b) Stationary state and F&A ∆H = 1.8 solution.

Figure 3. Transition from ∆H = 2.0 to ∆H = 1.8 stationary states and comparison with the
solution found by F&A for ∆H = 1.8.
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Figure 4. Final stationary state reached (∆H = 1.8 solution).
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through straits is presented. Nevertheless, this author presents results for exchange flows through a contraction
and through a combination of a sill and contraction, but not for flows over a single sill.

As initial conditions the steady state corresponding to the ∆H = 2.0 F&A steady solution is considered. At
the boundaries, q1 and q2 are imposed only on the right border. The barotropic transport considered is periodic
with zero time mean and given by qb(t) = qb0 sin (2πt/T ) , where qb0 = 1 · 10−2 is the barotropic transport
amplitude and T = 800 is the period.

Figure 5(a) depicts the interface along the channel at four points through the forcing period. The interface
moves forth-downwards and back-upwards, with the barotropic flow but still similar in shape to the steady
solutions. The periodic solution is obtained from the initial state without any prior adjustment period. In
Figure 5(b) the same four transient solutions are shown in the Froude number space (F 2

1 , F
2
2 ) (compare this

with, for example, Fig. 11(b) in [1]).
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Figure 5. Exchange flow forced by a periodic barotropic flow.

4. Concluding remarks

The main contribution of this work is the improved discretization of source terms of systems of conservation
laws that involve derivatives of the unknowns, as in the two-layer shallow water system. The efficiency of
the proposed scheme is proved. It has also been pointed out that, in general, numerical schemes achieved by
applying a Q-scheme to each separate conservation law of the system do not yield good results.

The present work is the first stage of a project whose final goal is to obtain a numerical model based on
finite volume techniques well suited to analyze the relationship between the water exchange through the Strait
of Gibraltar and the generation of internal waves induced by tidal effects.
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In order to obtain the model we are carrying out, in collaboration with E. Vázquez-Cendón (University of
Santiago de Compostela), the following research activities:

• Dealing with channels with irregular geometry. In [22] the model studied here has been generalized in
order to include breadth variations. This introduces new source terms in the equations that are of a
similar nature that those written as φ(x,W) in the present work. The case of a single contraction has
already been undertaken in [5] and the results compared with the steady solutions given in [1] and [2],
and also with the periodic solutions obtained by [16]. In [6], we analyze model results for flows through a
combination of a sill and contraction. The following step will consist in considering a simplified geometry
of the Strait of Gibraltar with two sills and one narrows (as in [8], for example). We are also working in
adapting the model to include non-rectangular cross-sections.
• Implementation of a model consisting in two superposed 2D layers.
• Implementation of adaptive mesh techniques.
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