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PARTIAL REGULARIZATION OF THE SUM
OF TWO MAXIMAL MONOTONE OPERATORS (*)

by P. MAHEY O and PHAM DINH TAO (2)

Communicated by P. L. LIONS

Abstract. — Tofind a zero of the sum of two maximal monotone operators, we analyze a two-
steps algorithm where the problem is first approximated by a regularized one and the
regularization parameter is then reduced to converge to a solution of the original problem. We
give a formai proof of the convergence which, in that case, is not ergodic. The main resuit is a
generalization of one given by Brezis [4] who has considered operators of the form
I + A + B. Additional insight on the underlying existence problems and on the kind of
convergence we aim at are given with the hypothesis that one of the two operators is strongly
monotone. A gênerai scheme for the décomposition of large scale convex programs is then
induced.

Résumé. — On analyse ici un algorithme qui recherche un zéro de la somme de deux
opérateurs maximaux monotones. On résoud une séquence de problèmes régularisés dont la
solution converge vers la solution cherchée quand le paramètre de régularisation tend vers
zéro. On évite alors de se restreindre à la convergence ergodique. Le résultat principal est une
généralisation d'un théorème de Brézis qui a considéré des opérateurs de la forme
1 + A + B. On peut alors raffiner ces résultats dans le cas fortement monotone. Finalement, on
propose un schéma général d'algorithme de décomposition pour la programmation convexe.

1. INTRODUCTION

We consider the following inclusion problem in a finite dimensional space
X (X = Un):

Find xeX such that Oe (A + B)x (P )

where A and B are two maximal monotone operators.
We analyze hère the convergence of some spécifie splitting algorithms,

Le. such that separate steps on A and B are made to avoid the diffîculties

(*) Manuscrit reçu le 12 mai 1992.
(1) Artemis-IMAG, BP 53X, 38041 Grenoble.
(2) LMAT-TNSA Rouen, BP 8, 76131 Mont Saint-Aignan.
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376 P. MAHEY, PHAM DINH TAO

derived from the coupling between the two operators like in décomposition
methods (other splitting algorithms are described in [9]).

Maximal monotone operators in Hubert spaces have been extensively
studied, mainly in the context of évolution équations, by Brezis [4] who, in
particular, has given some conditions for the sum of two maximal monotone
operators to be maximal monotone. Indeed, this f act happens when one of
the operators is Lipschitzian. This resuit induces a strategy to solve
(F ) which consists in substituting one of the operators, say A, by a
regularized approximation, for instance its Moreau-Yosida approximation
AA, Le., for some À > 0 :

A A ( 7 (/

Then, the regularized problem is :

Find xeX such that 0 e (AA + B) x . (FA )

Properties of AA are well-known (see Moreau [13] and Brezis [4]). In
particular, it tends in some way to the original operator A when
A i 0. We analyze hère the convergence of the following itération :

4 + 1 = (I + AkBTl (ƒ + AkAylx{ (1)

where {A^} is an a priori defined séquence of positive numbers.
It is shown in Lions [8] and Passty [14] that, if both subscripts k and t are

incremented together, Le., if the itération takes the form :

z* + i = (/ + *k*T1 {I + *kATlxk (2)

with \k l 0 and £ At = + oo, then the séquence of weighted averages

converges to a solution of (P ) if one exists. Our purpose is to show the
convergence of a two-steps version of the itérative process (1) where we
iterate first on subscript t for a fixed k, then incrément k and perform another
cycle of itérations. We show in particular that the séquence generated by 1
for a fixed k converges to a solution of (P A ) when it exists. The important
thing is that the solution xA converges to a solution of (P) when
A I 0, avoiding ergodic convergence. In fact, the parameter A acts like a
penalty parameter in a penalty method for constrained programming, which
means that we cannot set it to a too small value at first to avoid ill-
conditioning but we may reduce it if some convergence criterion is not met.
In fact, the itérative process (1) can be seen as a decomposed version of the
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SUM OF TWO MAXIMAL MONOTONE OPERATORS 377

Proximal Point Algorithm but the need of reducing the parameter À to zero
forbids to apply the classical results of convergence given by Rockafellar
[17] in the case of a single operator.

As in all itérative methods where different subproblems are to be solved at
each step, two important questions arise beside the necessity of convergence :
the problem of existence of solutions of the successive subproblems which is
not necessarily guaranteed by the existence of a solution of (P ) and the
computational simplicity of these subproblems without which there is no
interest to manipulate the original problem in that way. We shall see that
these questions are linked to the choice of the operator to be regularized.
Sufficient conditions for existence of solutions in the subproblems and for
the convergence of the whole séquence are obtained when one of the
operators is strongly monotone. In this case, it is natural to regularize the
other one.

The interest for Proximal methods has increased recently motivated by the
theoretical works of Rockafellar [17] and Spingarn [19]. The numerical
behaviour in the applications, initially limited to variational inequalities as in
the pioneering work of Martinet [11], have been analyzed in the context of
Mathematical Programming (see [3], [7], [12], [21] for example). The
positive aspects that corne out of these expérience are :

The numerical stability.
The ability of dealing with nonsmoothness.
The nice effect of the regularization on the decentralization of subproblems

in the décomposition of large-scale programs (see [2], [10] and [15]).
The négative aspects are mostly :
The complexity of the proximal computation which limits the domain of

applications.
The slow rate of convergence.
This latter drawback is minimized by the constatation that, in some

spécifie applications as the Fermât-Weber location problem ([12]) or the
numerical solution of évolution équations for low level vision ([7]), the
proximal algorithms seem to exhibit the best stability and efficiency.

A particular motivation we have in mind beside the gênerai problem
(P ) is the case where A = à f, the subdifferential mapping of a convex lsc
function ƒ and B is the subdifferential mapping of the indicator function
Xc of a closed convex subset C of X. Then, under mild conditions,
(P ) is the optimality condition for the following convex program :

Minimize f(x) ,^)
subject to x e C .

When C is an appropriate subspace of a product space, this formulation is
attractive to décompose large-scale problems. The subspace represents the

vol. 27, n° 3, 1993



378 P. MAHEY, PHAM DINH TAO

coupling between the subsystems. The itération 1 décomposes in two steps,
one proximal itération on ƒ which maintains separability and a projection on
C which satisfies the coupling. This idea has been used by Pierra [15] in this
context, but the convergence proof we propose hère, beside the fact that it
applies to the splitting of gênerai operators, is more straightforward and less
restrictive than his proof.

2. PRELIMINARY RESULTS

In this section, A and B are maximal monotone operators on X, finite
dimensional, with respective domains D(A) and D(B), and we dénote by

AA (resp. Bk) their Moreau-Yosida approximations, Le. AÀ = — (I -
-A

(/ + À A )~ *). The operator (/ + AA)~1 is generally called the résolvent. We
recall below some important properties of these operators which proofs can
be found in Brezis [4] ;

PROPOSITION 1 :

1. A is closed in the sensé that its graph Gr(A) = {(x9 y) e X x
X I y e A(x)} is closed in X x X, Furthermore, for any x s D(A), the set
A(x) is closed, convex and nonempty.

2. (ƒ + AA)"1 is a contraction defined on the whole space X for any
A > 0 .

3. AA is maximal monotone and lipschitzian with ratio 1/A.
4. VxeX, Axxe A((I + AA)-1 x).
5. D(A) is convex, the range of (I + AA)"1 is D(A) and

lim (/ + AA)" 1 x - Proj D(A}\
A 1 0

6. For a ^ A > / i > 0 , for any xeD(A), \\AX x\\ ^ \\A^x\\ ^ \\Aox\\,
where Ao x is the minimum norm element of Ax.

Moreover, when A l 0, we have the following limits :

, lim ||AAx|| = ||Aox||

, lim ||AAJC|| = + oo

The Proximal Point algorithm is based on proposition 1.2. Rockafellar [17]
has analyzed the convergence of the proximal itération :

xk + l = (/ + AkA)~lxk (4)

The main resuit tells us that, when Ak is bounded away from zero, problem
(P) has a solution if and only if the séquence {xk} is bounded. Then it
converges to a point Xe0 such that 0 e Axœ and lim^oo ||AAfe^|| = 0 .

M2 AN Modélisation mathématique et Analyse numérique
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SUM OF TWO MAXIMAL MONOTONE OPERATORS 379

Rockafellar concludes that the convergence becomes faster when
Xk increases. Observe that the Proximal Point method, as it searches a fixed
point of (ƒ + \A)~X, converges to a zero of the operator A A which is also a
zero of A. This is no more true if we look for a zero of A + B and substitute
A + B by AA + B. In f act, we need a séquence { A k} which decreases to zero.
Brezis and Lions [5] have given the following conditions for the convergence
of the séquence {xk} generated by (4) to a zero of A :

• a sufficient condition for the convergence is : £ A \ -• oo ;

• if £ \\ is bounded and V A ^ OO, then the séquence {xk} converges to

a point which is generally not a solution, but on the other hand, the séquence

of average solutions {zk}, with zk = ̂  , does converge ;

• if A = 9/, the subdifferential of a convex lsc mapping, then it suffices to
suppose that £ Â  -• oo to get the convergence of the séquence {xk}.

3. REGULARIZATION TECHNIQUES

The regularization we are interested in is the substitution of a maximal
monotone operator by its Moreau-Yosida approximation. It is well-known
(see [4] or [18]) that the sum of two maximal monotone operators A and B is
maximal monotone when int(D(A)) O D (B) ̂  0.

This condition may be refined when A = a ƒ and B — dg are the subdiffe-
rential mappings of two proper convex lsc functions (see [16] and [20]). In
that case, we have the following inclusions :

ri (dom /)cZ)(A)c dom ƒ
ri (dom g)aD(B)a dom g

where dom ƒ = { x e X l / ( x ) < + oo} is the effective domain of ƒ and ri
dénotes the relative interior. Then, A + B is maximal (i.e. coincides with
<*(ƒ + 9)) if ri (dom ƒ ) n ri (dom g) =£ 0. Moreover, if one function, for
instance ƒ, is polyhedral, D (A ) = dom ƒ and we can omit ri in the precedent
condition.

These sufficient conditions for the maximality of A + B could be
compared to the necessary condition of existence of solutions of (P ) :

D{A +B)

Anyway, the critical cases where A + B is not maximal remain of important

vol. 27, n° 3, 1993



380 P MAHEY, PHAM DINH TAO

interest in the theory or regulanzation and décomposition. We shall develop
these ideas further in section 5.

A natural way to regularize the sum of two operators is to regularize one of
them. We are faced with three distinct stratégies : to regularize A only, to
regularize B only or to regularize both.

In the first case, we approximate (F ) by (F A ) which can be transformed in
the following way :

0 ex- (/ + AA)'1 x + ABx

which, in turn, as B is maximal monotone, is equivalent to :

x= (ƒ + AB)~l (/ + AAT1 x. (5)

Thus, x is a fixed point of the operator TA = (ƒ + AB)~ l (/ + AA )" \ which
is a contraction, inducing the fixed point itération :

X° E X ( 6 )

xt+l = (ƒ + AB)~l (/ + AA)-1 x' .
Bef ore discussing the convergence of itération (6), we recall some useful
results on the existence of solutions for problems (P ) and (P A ).

3.1. Existence results

Existence of solutions is linked with the property of surjectivity of the
operator ; we know for example that, if T is a maximal monotone operator
such that D(T) is bounded, then 2" is surjective (see Brezis [4]).

If T is the sum of two maximal monotone operators, it is clear that its
domain is bounded if one of the domains is bounded. On the other hand, we
have seen before that the sum of two maximal monotone operators is
maximal when one of them is single-valued and Lipschitzian. This implies
that (PA) has a solution if D(B) is bounded (this last result is similar to the
conditions of existence for variational inequalities involving single-valued
and hemicontinuous monotone operators on bounded convex sets given in
Stampacchia [20]).

Another interesting situation which we develop hereafter is the case where
one operator is strongly monotone :

If B is strongly monotone, ï.e., if 3 a > 0 such that :

(x-x',y-y')i*a | | JC-JC' | | 2 , VX, X' and Vy e Bx , Vy' e Bx'

then (P A ) has a unique solution for any A > 0. Indeed, the operator
rA is now a strict contraction :

M2 AN Modélisation mathématique et Analyse numérique
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SUM OF TWO MAXIMAL MONOTONE OPERATORS 381

Note that, in this case, (P ) has at most one solution.
Furthermore, as B is strongly monotone, C = B — al is maximal mono-

tone and (P A ) is equivalent to :

OexA + - C x A + - A A x A .
a a

We observe here that, when a = 1, the present situation fits in the model
analyzed by Brezis [4], page 34 :

Note that a similar results to (7) exists if we regularize B in the place of A.
We will show in Theorem 3 that the strongly monotone case allows some
refinements in the final convergence theorem.

3.2. Convergence of the proximal itération

THEOREM 1 : For some A > 0, assume that the séquence {V} generaled
by (6) is bounded, then it converges to a point xÀ which is a solution of the
regularized problem (P A ).

Proof : Each résolvent is nonexpansive as was seen before (Proposition
1.2), so that the composed operator TA is nonexpansive too. As the itérâtes
are all in a bounded set, by a theorem of Browder et al, (see [6]), the
séquence (6) converges to a fixed point of TA, say xA, which means that :

xK = (ƒ

Remark : If we know that (P A ) has a solution xx (this is the case when one
operator is strongly monotone), then it is a fixed point of Tx and for any t, we
have :

We have seen in section 3.1 that the choice of the operator to be regularized
is not indifferent. More insight on that question can be given by the
application of the regularization to the convex problem (3) (see too
Theorem 3) :

a) Regularizing A :
Then (P A ) is the optimality condition for the regularized convex program :

Minimize fA(x) (8)

xeC

where / A (x) = inf j ƒ (2) + - — \\z - x\\2\. It is known [13] that for every x,

vol. 27, n° 3, 1993



382 P MAHEY PHAM DINH TAO

there is a unique zx such that / A ( x ) = ƒ (zx) + —— \\zx - x\\2, and that
2 À

zx = (ƒ + A 3 / )~l x The regulanzed function fx is smooth and lts gradient

i&Axx = j(x- zx)
A sufficient condition for the existence of solutions of (P ) and

(P A ) is that C is a bounded set Observe that (3) has a unique solution if ƒ is
essentially stnctly convex (ie ƒ is stnctly convex on any convex subset of
D(9/)) But it can be seen from results on the Legendre transform that the
essentially strict convexity of ƒ implies the essentially strict convexity of
/ A , which means that (8) has a unique solution, too

Now, itération (6) takes the form

x°eC

z< + 1 = Argmin {ƒ(z) + J J \\z - *< ||2} (9)

y + 1 =Proj cz f + 1

b) Regulanzing B

If we regulanze By we get the follownig équation

OzAx + Bxx (10)

and, as i?A x = — {x — Projc x), (10) is the optimahty condition for the
A

unconstrained problem

Mmimize f (x) + ^~d(x, C f (11)
2 À

xeX

where ^/(x, C ) is the Euchdian distance between x and C In fact, the
constraint is treated here hke m a penalty method Again, (11) has a solution
if C is bounded Equation (10) leads to the following fixed point équation

zA = (ƒ + AA)"1 (ƒ+ AB)-1zA (12)

and we obtain the same séquences {z1} as m (9) if we ïnitialize by
z1 = (7 + A A r 1 /

In conclusion, we are faced with two dependent séquences, {V} and
{z1}, the first one in C and the second one outside C such that
xl = Projc zf Both converge from Theorem 1 and if xx and zA are their
respective limit points, we have xK — Projc zA

M2 AN Modélisation mathématique et Analyse numérique
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SUM OF TWO MAXIMAL MONOTONE OPERATORS 383

Remarks :

1. If both operators were regularized, we should add the penalty term to
(8) but no direct fixed point itération could be induced.

2. Some additional insight on these models is given at the end of section 4.

4. MAIN CONVERGENCE RESULT

We analyze here the convergence of the séquence {xk} defined by :
xk e X and xk solves problem (PA) for A = Xh where {A^} is a séquence of
positive real numbers such that A^iO, when £-• oo. We assume in this
section that (PA) has a solution for any A*>0. Then, for each £,
xk satisfies :

xk= (I + \kBTl (/ + A . A ) - 1 ^ . (13)

To simplify our notations, we dénote by Ak the operator Ax . Then we dénote
by {ytc} the séquence associated to the séquence {xk} such that yk =
Akxh V£. That séquence plays a central role in the convergence results we
present hereafter.

THEOREM 2 :

1. Let x be a solution of (P) and y e Ax n ( - Bx). Then, \\yk\\ ^
\\y\\ for any Xk^0.

2. Let x be a limit point of {xk} and assume that the séquence
{yk} is bounded. Then, x solves (P ).

3. Assume that the séquence {xk} has a limit point. Then, (P ) admits a
solution if and only if the séquence {yk} is bounded.

4. /ƒ (P ) has a unique solution JC* and if the séquence {xk} is bounded,
then xk^>x* and y^-^y* which is the element of minimum norm in
Ax* O (

Proof :

1. As y E - Bx and yk e - Bxh the monotonicity of B implies that :

(yk -y,xk~x) ^ o .

But, as yk = Akxk = — (xk - (I + XkA)~ l xk\ we can write :

(I + \kATlxk. (14)

Then, (yk- y, Xkyk) =s - (yk - y, (I + Ak A )" { xk - x). The right-hand
side is non positive because yk = Ak xk e A (I + A k A ) ~ x xk (Proposition 1.4),
y e Ax and A is monotone. Then :

vol. 27, n° 3, 1993



384 P. MAHEY, PHAM DINH TAO

2. We show first that any limit point x of the séquence {xk} is in
D(A) Pi D(B) : from (13) and Proposition 1.5, we see that xk e D(B). Again,
from (14) and Proposition 1.5, we see that xke Akyk + D(A). Then, as
yk is bounded, the first term of the sum tends to zero when Â  I 0 and the limit
point x must be in D(A). Then, x e D(A) n D(B).

As xk solves (P A ) for A = Ak9 it satisfies :

— Akxke Bxk or equivalently : - yk e Bxk .

By assumption, the séquence {yk} is bounded and we can extract a
convergent subsequence which we dénote too {yk} to avoid overloaded
notations. Let y be its limit.

On the other hand, if we put zk = (I + A k A )~1 xk, then, from Prop-
osition 1.4, we know that yk G Azk for any k. To prove that lim zk — x, we
compute || zk — x \\ :

\\zk~ (ƒ + \kAYl x+ (/ + \kA)~l x-x\\ ^

« ||(/ + XkATlxk- (/ + A^A)-1*!) + ||(/ + XkA)'1 x~x\\ .

The first norm is bounded by H**. — JC || because (/ + Ak A )~ l is a contraction.
The second norm tends to zero when Â  tends to zero (Proposition 1.5 with
the fact that x e Â

Finally, as yk -• y and zk -* x, A being a closed map, we must have
y e Ax.

But, — yk e Bxk, and from the closedness of B, we conclude that
— y G Bx, which means that x solves (P ).

3. Immédiate conséquence of the two first parts.
4. Suppose now that problem (P ) possesses a unique solution x*. As the

séquence {xk} is bounded, we know from part 2 that its limit point solves
(P ). Then the séquence {xk} has a unique limit point which is exactly
JC* and xk-+x*. Let y* be the element of minimum norm in Ax* f)
(— 5x*) (note that y* exists and is unique according to Proposition 1.1). We
already know from the first resuit of the theorem that, for any k :

Let y be a limit point of the séquence {yk}. Then, ||y || === ||y* ||. But, as in
the second section of the present proof, we have y G AX* D (-BX*). It
follows that y = y^ and the whole séquence {yk} converges to y*. •

Remarks : We have used the fact in section 2 of the above proof that
xke D(B) for any k. Then, the séquence {xk} is bounded if D (B ) is bounded.
This is the case for example if (P ) is the optimality condition for problem (3)
with C bounded.
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SUM OF TWO MAXIMAL MONOTONE OPERATORS 385

On the other hand, if D (A ) is bounded, the existence of a solution of
(P ) implies that {xk} is bounded. Indeed, it follows from the first part of the
theorem that the séquence {yk} is bounded and relation (14) with the same
arguments as in the proof of the second part shows that xk remains bounded.

An important case where unicity of the solutions is observed is the strongly
monotone case. Indeed, if B is strongly monotone and A is regularized,
problem (P ) has at most one solution and problem (P A ) has a unique
solution for any A > 0 (see section 3.1). Then, part4 of the precedent
theorem can be refined in the following theorem which is, in fact, inspired by
a theorem given in Brezis ([4], p. 35) and which proof will therefore be
omitted hère :

THEOREM 3 : Suppose that B is strongly monotone with constant a and
that A is regularized. Then, (P ) admits a unique solution x* if and only if the
séquence {yk} is bounded. In this case, x^->x* and y^^y* which is the
element of minimum norm in Ax* Pi (- Z?x*).

Moreover, we have the following estimation :

II** - x* || M « ' % l b * II Ib* - y* II )1/2

Application : Strongly convex programming

Let us corne back to the convex program (3) with the additional
requirement that ƒ is strongly convex on the closed convex set C. This means
now that B = df is strongly monotone. In this particular case, we know that
(P ) has a unique solution. In addition, Theorem 3 implies the following
convergence results :

1. B is regularized. Then, (P A ) is :
Minimize fx on x e C, which admits a unique solution xA for any

A >0 .

2. A is regularized. Then (Px) is :
Minimize ƒ (x) + -— d(x, C )2 which admits a unique solution xA for any

-Z A

A >0 .
When A i 0, xA -> x* and xA -> je*. Furthermore, wet get the estimations in

a neighbourhood of x* :

| |x A -x* | | =0(x/Â)

| |x A -x* | | = 0 ( N / Â ) .

Observe that these last results mean that the whole séquence generated by
that spécifie penalty method converges at the speed of \/A. We have then
given an elegant and clearcut proof of the convergence for both regulari-
zations.

vol. 27, n° 3, 1993



386 P. MAHEY, PHAM DINH TAO

5. MORE ON THE MAXIMALITY OF^ + if

We state now problems (P ) and (P A ) in the following equivalent form :

( F ) : x = (/ + A +BTlx
(PA):xA = ( ƒ + A A + B ) - 1 J C A .

Let consider a convergent subsequence {x^^)} °f the main séquence
{xk} as A 10, and let x be its limit point. Let define also ux —
(I + AA + 5)" * x.

Brezis-Crandall-Pazy's theorem (see [4]) asserts that (7+A+Z?)~ l is
nonempty if and only if {AA uÀ} is bounded. In this case, we get :

lim uK = (/ + A + B yl x .

On the other hand, we can write :

||(7 + AA +B)" 1 JtA - (/ +A +Bylx\\ ^

\\(I + ^ A + 5 r 1 x A - ( / + A A + B ) - 1 x | | + ||MA — ( ƒ + A + 5 ) - 1 J C | |

which implies that x = {I + A + B ) ~ l x.
The condition {AA ux} bounded is obviously closely related to the

necessary condition for existence of solutions of problem (P ) : {AA;cA}
bounded (cf. Theorem 2). The main différence is that {uk } is defined from
the limits of convergent subsequences of {xk} which turns the test for
boundedness of {AA ux } quite impractical. On the other hand, the assump-
tion « {AA MA } bounded » is equivalent to « {AA xx} bounded » in the
following sensé :

+ x and {AA ux} bounded =̂> {AA xÀ} bounded

• x an<i {^A XA} bounded ^> {AA wA} bounded

Brezis-Crandall-Pazy's results (BCP ) as ours (Theorem 2) have local and
optimal features. Moreover, if A + B is assumed maximal (a global
assumption), any cluster point x of {xA } is a solution of (P ). Observe that
the global form of BCP's theorem may be written as :

lim (/ + AA + B )~ l x = (ƒ + A + B)~ 1 x , Vx o A + B maximal.
À 1 0 +

On the other hand, it is shown in [1] that the maximality of A 4- B is
equivalent to the pointwise convergence of the graph of AA + B towards the
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graph of A + B. We can now understand easier why the global feature of the
maximality assumption on A + B is too restrictive ; indeed, what we are
looking for is the convergence of the zéros of AA + B towards the zéros of
A + B and not of the entire graph. Moreover, the following open question
which concerns the maximal continuation of the monotone operator
A + B is of interest when dealing with décomposition methods :

What happens if {AA xx} is not bounded ?
We already know that, in that case, (P ) has no solution. Moreover,

A + B is not maximal if {xx} has a cluster point x (this happens when
{xA} is bounded). The problem is to know if x is a zero of a maximal
continuation of A + B.

Observe that, if lim Jt^A) = x e D(A\ then A^(A);c -> Aöx when A l 0
A 1 0

(Proposition 1.4), and as :

|| + \\A+{x)x-AQx\\

we obtain the following result which concerns the speed of convergence of
towards x:

The above discussion is illustrated on the following example :
Let consider the problem (Q ) in R3 of finding the closest point to the origin

in the intersection of a two-dimensional subspace L and a cylinder C lying on
that subspace (scefig. 1). We consider below both cases whether 0 e L C\ C
or not.

The problem (Q ) is then :

Minimize - ||x||2

subject to x e L n C

and we may write it as the problem (P ' ) of finding a zero of two maximal
monotone operators A' and B' such that : A' — I and B' = §XLn c It is easy
to show that A ' + B ' is maximal (indeed, for any x e L O C, ( A ' + # ' ) * =
{x} + (L Pi C )^, a two-dimensional plane orthogonal to the boundary
L ne).

On the other hand, if we want to achieve a décomposition of the
constraints, we can split them in the following way : (P ) Find a zero of
A + B where A = I + bxL, and B - 3 ^ c . Then, we get that Dom (A + B ) =
L O C and, for any x e L O C , (A + B)x = {x} + L x , which is the one-
dimensional line orthogonal to L at x. Two situations may arise : either
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Figure 1. — Ëxample in IR3.

O G L H C or not. In both cases, A -h B is not maximal because (A + B ) x is
strictly contained in (A'+B')x and, moreover, in the second case,
A + B has no zero at all. We show that, even in that case, the splitting
method works and* converges to the right point.

As in the first case xA is the optimal solution of (Q) for any A, we analyze
directly the second case when A + B has no zero : let xk e C and
zk be the unique point in L such that :

zk = ArgminI6L( I | |* f + ̂ V II* -

Hence, we can see that zk is the projection on L of xk so that :

For A > 0, the séquence {xk} converges to the point xA whose construction is
shown on figure 2. Observe that the séquence {Ax xx} diverges. It can be
proved easily that xA is the intersection of the section of C closest to the
origin and a hyperbola whose axes are the horizontal axis and a vertical line
passing through the solution x*. When A tends to zero, the hyperbola
dégénérâtes into the two axes and xA tends to x*, which can now be
interpreted as a zero of the maximal continuation A' + B' of A -f B.
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a z\ b x*

b/a — À y\

Figure 2. — Construction of xx.

- z\)

6. APPLICATION TO THE DECOMPOSITION OF CONVEX PROGRAMS

We consider first the following problem in IR" :

p

Minimize £ ƒ;(*)

(15)

where each ft is a proper, convex and lsc function on Sh which are closed
and bounded convex sets of R". We assume too that S is not empty.

To décompose it, we create p copies of the variables denoted by
Xi, ..., xp9 with xi e IR" for all i, Then problem (15) is equivalent to solve in
the product space X = (Un f the following problem :

P

Minimize £ fi(xi)
i = 1 (16)

To apply the precedent algorithm to (16), let, for any /, F t be the proper
convex lsc function defined on W1 such that :
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where gx is the indicator function of the set £,, and F be the proper convex Isc
function defined on X such that :

Then A = dF and B = L1-, the orthogonal subspace to L.
Consequently, it can be easily verified that :

(/ + AA) l \ = (::,, ..., r,,),

with z,

= Argmin {ƒ, (£,) + ̂ L || f ( - x, ||2 I f, G S,}

x = ProjLx = lip Y^xi •

Indeed, each step of the algorithm splits in/? convex subproblems, each one
solved on an isolate set S, :

Initialize A ^ 0, x° e Un ;

a) Solve the independent subproblems for each i :

Minimize ft (xt ) + -— || je, — x*
2 A ( 1 7 )

Let z\ be the optimal solution of (17).

b)

y + 1 = i/p £ z; . (18)

This algorithm has been proposed in Pierra [15]. As (17) has a unique
optimal solution, from Theorem 1, we conclude that the séquence {xf}
converges to a limit point xK and, when A i 0, from Theorem 2, JCA tends to a
solution of (15). In practice, we need a test to décide whether we must reduce
A and solve another cycle of itérations (17)-(18) or not.

Other situations where décomposition is induced on a certain product
space are reviewed in Mahey et aL [10], In particular, when ƒ is the dual
function of a convex constrained separable problem, the proximal algorithm
looks like a separable version of the Augmented Lagrangian method. In this
sensé, it can be compared to similar approaches given in Bertsekas et aL [2]
and in Spingarn [19]. Numerical experiments on these methods for the
décomposition of large-scale convex programs will be published elsewhere.
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1. CONCLUSION

Regularization techniques for inclusion problems depending on the sum of
two maximal operators lead to an itérative process composed of two separate
proximal steps. To avoid ergodic convergence, we need to iterate with a
fixed sufficiently small parameter.

If we come back to the doubly subscripted séquence defined by (1), we
know from elementary analysis that there exists a subsequence {jcj^} which
converges to a solution x* of (P ). This means that itération (2) can converge
without the ergodic artifice. We conjecture that the séquence {Afc} must
decrea&e to zero very slowly (no counterexample with V À \ —• oo has been

found to our knowledge). Some of these numerical aspects will be presented
in a forthcoming paper.

The splitting of the operators induces some classical itérative schemes for
the décomposition of convex programs which, though theoretically slow, are
numerically stable and quite simple to implement in comparison with some
direct approach like Spingarn's Partial Inverse method [19].
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