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DISCRETE SOBOLEV SPACES AND
REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES (*)
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Abstract. — This paper is concerned with the regularity of elliptic finite difference schemes
with respect to discrete (fractional order) Sobolev spaces. For schemes arising from discretisations
that are from the same « type » at the boundary as in the interior, it proves the discrete equivalent
of Necas’ regularity theorem for differential operators on Lipschitz regions. A different proof was
given by Hackbusch. However, the proof here is shorter and more transparent. In case of a
curved boundary, usually different discretisations are applied in points near the boundary. For
schemes of this kind, it is shown by using Necas’ theorem for the corresponding « unperturbed »
scheme, that « minimal » regularity implies the stronger regularity from Neéas’ theorem.
Finally, conditions sufficient for minimal regularity are given.

Résumé. — Dans cet article on s’occupe de la régularité des schémas de différences finies
elliptiques relativement a des espaces de Sobolev discrets (d’ordre fractionnaire). Pour des
schémas provenant de discrétisations qui sont du méme « type » a la frontiére que dans lintérieur,
on démonire [’équivaieni discrei du ihéoréme de régulariic de Necas pour les opéraiéiirs
différentiels sur les domaines a frontiére lipschitzienne. Une démonstration différente a été
donnée par Hackbusch. Toutefois, la démonstration donnée ici est plus courte et plus
transparente. Dans le cas d'une frontiére courbée, d’habitude on utilise des discrétisations
différentes aux points prés de la frontiére. Pour les schémas de ce type on démontre, en utilisant le
théoréme de Necas pour le schéma « imperturbé » correspondant, que la régularité « minimale »
implique la régularité plus forte du théoréme de Necas. Enfin, on donne des conditions
suffisantes pour la régularité minimale.

(*) Received March 1990.

(') Mathematical Institute, University of Utrecht, Budapestlaan 6, P.O. Box 80.010, 3508
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608 R. STEVENSON

1. INTRODUCTION

In this paper, we define spaces of grid functions, which are discrete
versions of the Sobolev spaces H*(R?) and Hj(Q) respectively. We study
finite difference discretisations L, of the homogeneous boundary value
problem

Lu=f ue Hy(Q),
where

L= y  (-D!*l D*a,, D?

fol .| B =m

is an strongly elliptic differential operator of order 2 m. We are interested in
regularity properties of L, with respect to the « discrete Sobolev spaces »,
which are uniform with respect to the mesh-width 4. « Discrete regularity »
of L, is a useful property, for instance, to give sharp error estimates for the
solution u,, of the discretized boundary value problem (cf. [5], [9] § 9.2) or to
prove convergence of multi-grid methods to approximate u, (¢f. [4, 5], [8]
§ 6.3.2.2).

For © a « Lipschitz domain » and L, arising from discretisations which are
from the same « type » at the boundary as in the interior, a very important
regularity result has been proved by Hackbusch in [5]. In this proof, he

mentions and nuses many resn]fe for the discrete Q(\hn]PV spaces'

uiws 201 uao GISUICWC 3000

The purpose of our paper is to give

a shorter and more transparent proof of Hackbusch’s theorem in [5]

a more systematic and complete account of properties of the discrete

Sobolev spaces

e easy-to-check conditions for the regularity of «general L,»,i.e. L,
arising from discretisations which are possibly of a different type at the
boundary as in the interior

e casy-to-check conditions for the regularity of « scaled » general L, ; the

nature and purpose of this scaling will be explained in § 3.5.

The paper is organized as follows. In § 2, we define the discrete Sobolev
spaces and show a number properties of these spaces, most of them being
equivalents of well-known properties of the continuous Sobolev spaces. The
properties proved in this section can also be found, possibly in slightly
different forms, in the existing literature ([S] mainly, [12], [13], [14]), but
there the results are either less general or stated without (satisfactory)
proof. In particular, the author has never found proofs of the lemmas 2.4
and 2.6 (for s ¢ N) in the literature. Lemma 2.10 generalizes lemma 2.2 (ii)
in [5]. Moreover, the proof. of that lemma given in [5] does not cover all
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 609

situations which have been considered there. The proof of theorem 2.12
(given in § 4) is based on [5], but two errors have been corrected.

In § 3, we concentrate on the question of the regularity of L,. It is well
known that, under very weak conditions concerning the smoothness of the
coefficients, for the (generalized) L, it holds that

(L+\)"': H ™(Q) - HQ) is bounded

for A = 0 large enough (Gérding inequality). Necas ([10]) has proved that,
for Q a Lipschitz domain and for « sufficiently smooth » coefficients, it even
holds that

(L+N) "' H"+%Q) - H"°(Q) is bounded ,

the so-called m + 0 regularity of L + NI, for all |6| < 6,, 6, =< 1/2 small
enough (precise formulations in § 3.1). These problems are often called
«less regular », because for smoother coefficients and for Q € C2™or Q
bounded, convex and m = 1, it holds that

(L+ N ) ' L%(Q) » H'Q) N H>™(Q) is bounded

(the « standard » 2 m regularity), while even for still smoother problems the
operator

(L+N)™" ' H(Q) - HMQ) NH>*"+5(Q)

can be proved to be bounded for s = 0 (« higher order » 2 m + s regularity).

In §§ 3.2-3.3, we consider only L, arising from discretisations which are of
the same type at the boundary as in the interior. We prove two regularity
results, namely discrete versions of theorems of Garding (§ 3.2) and Necas
(8§ 3.3). Our discrete version of Garding’s theorem is a generalization of a
result obtained by Stummel in [12]. A quite different proof of the discrete
Necas theorem can aiready be found in [5]. Howevcer, in contrast with [S],
our proof makes use of the m + 6 regularity of the corresponding
L + \I. This technique has been developed by Hackbusch in [7] to prove
standard and higher order regularity for a number of « smoother problems ».

In § 3.4, we consider general L,. We prove that m regularity of
L, + M, in combination with m + 6 regularity of the operator induced by
L, + N, without the « discretisations of the different type » at the boundary
(discrete Necas applies) implies m + 6 regularity of L, + A,. For given
L,, the reduced problem of checking m regularity is much easier to solve
than proving m + 0 regularity in the more direct manner of [5]. It will turn
out that we are able to take A =0 in all above regularity results if
L, is stable with respect to the Euclidian norm.

In § 3.5, we discuss the regularity of « scaled » general L,. We give some
easy to check conditions sufficient for the m regularity of scaled and

vol. 25, n” 5, 1991



610 R. STEVENSON

unscaled versions of L,. Finally, as an illustration, we use the obtained
results to investigate regularity of two popular discretisation schemes.

Notations 1.1. Q is a domain (i.e. open and connected) in R¢

=30 =0\Q. For any geN of interest, we equip both C? and
R? with standard basis {ei}, ;> where ¢, = (0,...,1,..,0 )eRY, and

g L\ 12
norm |a| = (Z |a; | ) .

i=1
h e (0, hy] is the mesh-width of the grid #Z°. The constant h, is always
assumed to be « small enough ». We consider families of grids (£),¢ (0, 4,
with the property that there exists a D = 0 such that for all 2 € (0, 4]

q

{x € hZ?: dist (x,R\Q)=Dh} cQ,c {xehZ?:dist (x,Q) <Dh},

where for A «R?, dist (x, 4) =inf {|x —y| :y € 4}. An example of such
a family is (Q N hZ%), ¢ oy

In this paper, we investigate operators, grids etc., which depend on the
mesh-width 4. In most cases, the obtained results are only significant since
they hold « uniformly in /4 ». In order to reduce the number of clauses as
« uniformly in 4 », « for all 4 » etc., we use in this paper the convention that
¢, ¢', C etc. stand for positive constants not necessarily the same throughout
the text, but which are always independent of h € (0, hy). Furthermore in
the sequel, we also use notations as L,, €, etc., where formally seen
(Li)re o, 1y ()pe (o, 1,1 €tc. would be more correct.

For A «cR% m =0, we deno}e {xe R4 : dist (x, A) <m} by A(m). For d-

tuples o € N9, we put |a| = Y |e;|. Allinequalities for matrices should be
i=1
understood in terms of their elements.
Forne Ny =NU {0}, C"(Q) is the space of complex valued functions
u with uniformly continuous and bounded derivatives D*u(|a| <=n) on (,
with norm

||u||cn(n)== sup {|D*u(x)|: |a| =sn,x€ Q} .

mC”(ﬁ) is denoted by C°(Q).
n=0

For N\ € (0, 1], we define
™M @) = {ue C"(@): |[u] gy < o}
where
leell nray = max {[D%ull corgg,: fe] <n}
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Mathematical Modelling and Numerical Analysis



REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 611

and

[v(x) —v()]

= :x,yeﬂ.,x;ey}}.
|x -yl

o]l corgy = max {||v|| c%ay > SUP {

. 0/ ne oy
Finally, we put C™" () = C"(€) and | . lenoy =1l - I enay-

2. DISCRETE SOBOLEV SPACES
2.1. Definitions and basic properties

In this subsection the discrete counterparts of H*(R?) and H3(Q) are
defined. For the notation of the spaces H°(R) and Hj(Q) see, for instance,
[1]. For each k € (0, k4], we consider the space G (AZ%) of complex valued
grid functions u, on hZ¢ with Y |unGh)| 2 < 0. G(KZ?) is a Hilbert space

jeZd
with the standard scalar product

(ups Uiy = ¢ Z u,Gh) v,Gh) ,
jEZd
which defines the norm
lenlly = </ ot ) -
In order to define an s-scalar product on G(AZ“) corresponding to the
scalar product of H*(R%), we use the discrete Fourier transform
™ 1\ : —ij .k d d
B© = (32 )° T ke T e = [-mm)h)
jEZd
with back transformation formula
. 1 -df2 ij.E
wim) = (5 )7 | m@ e .
Note that (u;, v,) = h%u, U">L2(Td) (Parseval relation).
We define for s € R

d C\s —_
(upy Vi), = hde (1 +4h™2 Y sinz-ii ) @h(8) V(&) de

i=1

and

huall, = </ Gt s, -

vol. 25, n° 5, 1991



612 R. STEVENSON

For s € R, it holds that

| (et O ) |

Hoall

lunll_, = sup { IO#'M,EG(/IZ”I)} ) 2.1)

For each 4, all s-norms are equivalent, but the equivalence does not hold
uniformly in 4.

Note that for s <z, || . ||, c(t—=s)h°"'|| .|,

The above definition of the s-norm is natural since for s=n=1 it
corresponds to the usual definition

12
nuhn:=( 5 nazu,,nﬁ) (neNo), @2)

| a| sn,nENg
where
=29, ..0; 5 (aeNd), T)=T),..T) (veZ%
h b1 - Opa O 0)> h a1 Lpa Y ’
d; =h~ 'y —T,)) and T uy(x) = up(x + ¢ h),

while for general n = s € Ny, ¢, C =0 exist with

el -l*x< -1l <Cl-|I*. (2.3)
n n

Wa now cangidar A‘Snw.\fn analaonag of HS(OY Far anch = (O L 1 lat

YY L 11U VY LUULIOIUVLL Ulouvilivilw uLAu.LuBuuo i .‘.‘0\\1‘4}. 4 UL vawvii 1 O \\I, ILOJ’ v

G(Q,) be the space of the grid functions u;, on Q, (¢f. notation 1.1) with
y |uh(x)|2<oo. Define w,:G (Q,) > G(hZ?) as the extension with

xey,
zero. G (Q,) becomes a Hilbert space with the scalar product

Qup, V) = (@pttp, @40, .

We define norms on () by

lunll, o = llonusl, (s=0)
and

| €uns v1) |

:0£0,eG(Q)} (s=0).
loall o

lunll s, = sup

Note that || . ||_ , # ||@-

|_, (unless Q, = hZ 9.

Remark 2.1 : Sometimes, we will apply norms || . | and || . ||, (seR)
also to non-grid functions. In that case,

|, stands for the norm on
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 613

H(R?Y) and I - ||s,0 for the norm on H3(Q) (or H(Q) = (Hy *(Q)), if
§ < O).

2.2. Further properties

For the discrete Sobolev spaces we state a couple of properties, which,
except for lemma 2.10, have well-known equivalents in the corresponding
continuous spaces.

LEMMA 2.2: Forany h =0, t >0, {(G(th), (ere ))i—tsss< t}, with
pivot space (G(WZ?), (.,. Y), is a so-called Hilbert scale (cf. e.g. [8]
§ 1.4.4).

Proof : Define

Ay=IFy— Y Tp; (34,7 :G(HZ?) -~ G(WZ?) . 2.4

j=1

For any h =0, &, is bounded, and because of (3})* = (— 1)l T a2,
(TH* = T, %, self-adjoint and positive definite, so &7} exists for all
r € R. One can verify that

Il = =i, (2.5)

which implies the Hilbert scale property. a

Remark 2.3 : The Hilbert scale property makes it possible to use
«interpolation » (c¢f. [8] § 1.4.4).

LEMMA 2.4:Vp,q,r€R, withp <q <r and e =0 there is a C (&) such
that

T
1 ¥k

| U | I | . 7 N 1l 17 A s
lq§‘ll“hllr"'c\h)lluhllp Sorallu, e
Proof :

”uh”q - <dzf2uh’ Jy;11/2uh>1/2: <d1;/2uh’ dz—r/2uh>l/2

< (lwl, Nual,, )

I

€ 1
3 “uh”,"‘g ”uhllzq_,'

The repetition of this argument at most a finite number of times will
complete the proof. O
DEFINITION 2.5 : For u;, € G(hZ"), we define
”uh”w = Sup {|ulx(.]h)| ] € Zd}

vol. 25, n” 5, 1991



614 R. STEVENSON

LEMMA 2.6: Vs > g dc(s) such that

(|2 || o =c(s) [| 2 ||s forall u, e G(hZ?) « discrete Sobolev inequality » .

Proof : From the back-transformation formula and the Schwarz inequality
it follows that

1 \dr2 - 1 a2
ol = (55 ) [ m@ra=< (55 )"
) IPTNPE T 12 —dp
X(L‘ (1+4h .Zsmi) dg) X h o]l -

j=1

For given 4, define the continuous function f by f(x) =1 forxe [— h, k]

and f(x)=h"%x? for "xe T\[-hh]. VEeT? it holds that
2

Z f(gj)<c<1 +4h2 Z sin? g ), where ¢ = max <d, % ) It follows

j=1 Jj=1

from this inequality that for s > d/2

d . g -5 o d s
Jo (e fong) wse ] (5r0)
d
f (ﬂf(é,) W) dt
\j

J T‘" j=1

me( )
2s—-d

which gives the proof of the lemma. O

LEMMA 2.7 ([14] lemma 24): For Qc [a,b] xR‘"', peN,,
AC (b — a, p ) such that

12
||uhl|p’0$C(b—a,P)< Y ||aﬁ‘mhuh”;) Sforall u, e G(Q,)

| of =p
« Discrete Poincaré inequality ».
DEFINITION 2.8 : For every he (0, hyl, let A, be a subset of hZ". Then

Ay (more exactly the family (Ap)pe (o,n,)) s Said to have the discrete cone
property, hereafter abbreviated by d.c.p., if

VkeN IM=0,h,e (0,hy] Yhe (0,h],xe 4, FoaeZ% |a|<M
with {x+ah+3h:3eZ |8| <k} < A,

M?AN Modélisation mathématique et Analyse numérique
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 615

DEFINITION 2.9 : For {eN, we denote {x € Q,:dist (x, hZ\Q,) < {h}
by Ty(f).
We define v,(£): G (Q,) - G(Q,) by

(v (€) 1) (x)

Il

up(x) xeTl,(¢)
=0 xe Q\TI, ).

The following lemma plays a crucial role in many of the proofs given in
sections 3 and 4.

LEMMA 2.10: Let Q, such that hZ\Q,, has the d.c.p.. Then for all ¢,
keN, there exists a ¢ =0 such that

“'Yh(f)u:,o._s,o <sch®~! foralls,te [k k].

Proof : Since 3¢ such that |. | =<ch?"?| .| , for all g,
pe [—k,k],p>gq, it holds that

llyh(f)”t,o._s,o <ch=*! “'Yh(g)“—k,o._o,o ”Vh(e)“o,o._k,o ch*~~.

Furthermore  because v, (£)* = v,(£),  ||[v.a(0)| _ ko oo cquals
I v (D) 0.0 k0 (M), so it suffices to give the proof of the lemma for the case
s=kand t = 0.

Now let A, M as in definition 2.8, he (0,4,], u,e€ G(Q,) and
x € T, (). There exists an o € Z%, with |a| <? + M, such that

{(x+oh+8h:8eZ% |8| <k} chZ\Q,. ()

(") For any fixed 2 e (0, k], s, t € R and any linear operator C, on G(Q,), bounded with
respect to an || . ||, -norm, it holds that ||C,, , o= [IC¥]| 0 p0" This follows from
the following observations : Since all || . ||, -norms are equivalent (% fixed), the vectorspace
of bounded linear functionals on G(Q,), denoted by G(£,)’, does not depend on
r. Moreover f, € G(,)’ can be written as f, = ., R,(f,)), where R, is the Riesz operator
with respect to the standard inner product. It holds that C# = R,C} R;' where
Cr :G(Q,) - G(Q,), the dual of C,. The Hahn-Banach theorem implies that the operator

norm of C; 1 (G(Ry), || - [, 9)' = (G, |[ - |l, )’ with respect to the dual norms, equals
ICull, ., Finally, from the definition of the | .|, -norm, we find that
R, (G, |- 1l,4) = G, || - ll_, ) is an isomorphism for all € R.

(® The proof of [5] lemma 2.2 (ii), a lemma which corresponds with our lemma 2.10,
requires a = o; ¢;. Also for the more restrictive class of 2, considered in [5], this is clearly not
always possible.
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616 R. STEVENSON

Firstly we assume that a = a(x) = 0. We state the discrete Taylor formula
(¢f. [14] lemma 2.1):

There exist constants r with indices B, v € Ng, such that

afy>
Tpi*=Uy—hd)*= Y (—m)F (([;L) oh+r* ¥ Fapy Ti "9} 5

| B] <k | B] =k
B=a L9l =lal -k

o o oy
where (B) = <B1) (Bd). Consequently

u,(x) = Ty @, u,(x + ah) = h* Y Tapy T; Y 8% w, u,(x + ah) .
Bl =k
|9l =lal —k

It is clear that for a = 0 a similar relation can be obtained. For example for
o= 0, write n:a = (Ih + hTh ah)““.

Since every y(= x + (a —y) h) € hZ? is involved only in at most finitely
many (only dependent on f and M, and thus on { and k) of such sums and
|- l,and || . || are equivalent norms, one can now conclude the proof by

summing over x € I',(£) and applying the Schwarz inequality. O

Remark 2.11 : Let €, such as always be related to () as explained in
notations 1.1. Then if Rd\Q has the cone property (c.p.) (cf. [1] p. 66),
hZ°\Q,, has the d.c.p. The converse of this statement does not hold. This
can be seen by noticing that the « discrete cones » shrink if 4 goes to zero.

We will now state the theorem that, for O with « sufficiently smooth »
boundary, the jj . jj 5, g-norms on G(Q,) are equivalent to the corresponding
norms of a Hilbert scale (¢f. lemma 2.2). The proof of this theorem 2.12,
which is rather lengthy and technical, is not given until section 4.

THEOREM 2.12: Let Q have the strong local Lipschitz property (see
definition 2.14 below) and let k € N be given. Denote Af by B,, where
d

Ay=Fn— Y T); (3, )? (see (2.4)), and o B, 0,:G () - G(Q,) by

j=1
By,. Then ¢, C =0 exist with

cllunlly o= "B;Z/Zkuhno’osC||u,,||s’0 forallse [—k,kl,u,eG(Q,).

(recall that, by convention, ¢, C are independent of h).

Remark 2.13 : Since B, is bounded (fixed 4), self-adjoint and positive
definite, one can verify that for any 2 >0

{((G(,), (BP*. . Bi**.y):—k<s<k},

M?AN Modélisation mathématique et Analyse numérique
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REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES 617

with pivot space (G(£,), ¢ ... »), is a Hilbert scale (cf. proof lemma 2.2).
Consequently interpolation can now also be applied to the | . ||s’0-norms.

This result is not needed in the remainder of this paper, but can be used
for example for proving the so-called smoothing property (cf. [8])
(|| Ly S,‘,’||q’0‘_p’0 =nw)h *witha=2-p+qg)m=0) for two(multi)-
grid methods applied to difference schemes if a <2 m (¢f. [8] § 6.2.4.4, [4]).

We will be interested in this case when dealing with multi-grid methods

applied to «less regular» difference schemes, such as considered in
section 3.

The definition of the strong local Lipschitz property is given in [1]
chapter IV. Since we will refer to constants which appear in the definition
we recall this definition here :

DEFINITION 2.14 : A domain Q has the strong local Lipschitz property
(hereafter abbreviated by s.1.L.p) provided there exist positive numbers & and
L, a countable open cover {Uj} of T = 38Q, and for each U; a real-valued
Sunction f; of d -1 real variables, such that the following conditions hold :

(1) For some finite R, every collection of R + 1 of the sets U; has an empty
intersection.

(i) For every pair of points x, y € T'(8) (%) (cf. notation 1.1) such that
|x —y| <38, there exists j such that

x,yeV,;={xeU:dist (x,3U;) =3} .

(i) Each function f; satisfies a Lipschitz condition with constant L :

|f(§1: ~--a§d—l)_f(nl’---)'nd_l)‘ sLl(gl—nla"-’gd—l —ﬂd—1)| .

(iv) For some Cartesian coordinate system (§; ., ... & ; 4) in U; the set
Q N U; is represented by the inequality

gj’:_l<.fj(§j,1a ---agj,d_1) .

Remarks 2.15 : If Q has the s.LL.p., then Q (and R\ Q) has the c.p. For
bounded Q, Q has the s.l.L.p. if and only if each point x € 3} has a
neighbourhood U such that the set U N Q is represented by the inequality
¢, <f (&, .- § 4_1) for some Cartesian coordinate system, where function
f satisfies a Lipschitz condition.

Remark 2.16 : In the proof of theorem 2.12 we use the following
property : Let © be a domain with the s.L.L.p. Then there is an
1y > 0 such that for all m € (0, ng], 2(m) has the s.1.L.p. with the same « L »
and « R » as Q has.

() In [1], condition (ii) is imposed for x, y e I'(8) N Q& only. We have adapted this
definition slightly in order to make the s.].L.p. symmetric in the sense that if Q has the s.1.L.p.,
then R\ Q also has this property.
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618 R. STEVENSON

3. REGULARITY OF ELLIPTIC DIFFERENCE SCHEMES
3.1. Introduction

In this section, we study the regularity of difference operators
L, G(Q,) ->G,). In doing so, we will have to distinguish between
(general) L, arising from discretisations which are possibly of a different
« type » at the boundary than in the interior (§ 3.4) and L, arising from
discretisations which are of the same « type » everywhere on Q, (§§ 3.2-
3.3). Hereafter, difference operators of the second kind will be denoted as
L;.

For L;, we will prove discrete versions of the Garding inequality (theorem
3.1) and Necas’ theorem (theorem 3.3) stated below ; these theorems
concern the homogeneous boundary value problem Lu = f, ue€ H{'(Q0).
These results for L; will be used to show regularity of general L,. Finally in
§ 3.5, we discuss the regularity of a scaling of a general L, ; the purpose of
the scaling being to keep the coefficients of the corresponding « difference
star » O(h~2™) also at the boundary. Furthermore, in this subsection we
discuss two examples.

THEOREM 3.1 (Gérding inequality) : Let

L= Y (=D Doag,(.)DP,
lal | Bl =m
with meN, a,z€ LP(&) for all o, B, a€ C%&) (thus uniformiy
continuous) for |a| = |B| = m, and L strongly elliptic, which means

Je >0 withRe ( Y aaB(x)§“+B) =
e =| 8] =m
=e|E|?" forallteR%, xe Q.

Then the sesquilinear form associated with L is Hy'(Q)-coercive :

INg=0,c=0Vue HJ(Q)

( — -
Re Y Jnaap(x)DBu(x)D u(x) dx = cllull2, — Nollull2.

ol .| Bl =m

The proof of this theorem can be found in every textbook about elliptic
partial differential equations (%).

(¥ In many monographs the condition Q bounded is added. However, this condition is not
needed because one can adapt the proof such that the Poincaré inequality has to be applied
only to functions with uniformly bounded support, also in case € is unbounded.
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COROLLARY 3.2 : Since the sesquilinear form is bounded too, it follows
Jfrom the Lax-Milgram lemma that
YA=Ng (L+ N ) H-™(Q) (= (HF(Q))') - Hy' () bounded .
THEOREM 3.3 (Necas [10] théoréme 3) : Consider the situation of theorem
3.1, but now let © be bounded and have the s.1.L.p.
Put o =sup {x|Vo, B|a| =m, a,€ CoXQ)},

T=sup {x|Vo,B|B| =m a,e C*¥D)},

where by convention sup & = 0.
Then there is a 0y € (0, 1/2], such that for all

0e (—0p,9,) N(—7,0)U {0},
there exists a \y= 0 with
VA=A (L + NV H-"48(Q) - HP+%(Q) bounded .
If a,g + ap, is a real-valued for |a| = |B| = m, the theorem holds with
Remark 3.4: In § 3.4, it will turn out that we are able to take
A = 0 in the discrete analogues of the above theorems, if || L;
(stability).

1“0,0‘_0,0 =c¢

3.2. The difference operator L; and the discrete Garding inequality.
DEFINITIONS 3.5 : We consider difference operators &), on hZ° of the form
gh= Z Z(_l)l“l azncuﬁvﬁ(',h)Tl?ag’ mEN’
lof .| B =mv,3

with for o, B € N§, v, 8 € Z% c,g,5 bounded functions on R4 x [0, hol, of
which finitely many are non-zero (°).

) Let & = y (- 1)l D*a4(.)D". Consider a discretisation of & of the

form

u lzl (= D' Prog Lhag Rnag »
of .} Bl =m

with finite difference operators 2, ., =h"!"°l S P (W) Thy 2o = Y duap (-, £) Tj and
» n

Rpo = 1™ PV Y r,g(B) Th, which are consistent discretisations of D® a,(. )/ and
»
DP respectively. Assume that p, ., € C!® ~"! ((0, ) if o # 0, p,,, bounded on [0, k) if
o =0, g, bounded on R x [0, kg], 7, a6 C! P ="' (0, hy)) if B 0, r,,, bounded on
[0, Ao if B = 0. Lemma 2.2 of [14] shows that such a discretisation can be written in the form of
2Ly, with Y €,0,5(x, 0) = agq(x).
v, 8
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Corresponding to an ), we define

@ 2P = > Y (=D 8T copye (-, 1) TR 8E

fal =B =my5
®) L =%, - L.
(¢) for x € R?,
L) = y Z (- Dl el apy ) Capys (X, 0) T}, 05 ;
el =]B] =m .3

that is, L) « frozen at » (x, 0).

(d) the symbol

d . .

PLE) = Y Y g 0) e IO T (1 - e TP (1 — )Y

|af =| Bl =m¥,3 j=1

(e) Lj = of &£, w, a difference operator on Q.
L} is said to be strongly elliptic if 3e > 0 such that

Rep(x, &) = (Z4sm )m forall xeQ, teT*.

Jj=1

THEOREM 3.6 (discrete Garding inequality) : Let L; be strongly elliptic,
with copy € CURY x (0, hg)) for |a| = |B| =m ().
Then L; is (G(Q), |||, o)-coercive :

IN=0,¢c=0, Vhe (0,h, u,eGQ,)
" n2 n n2
Re Ljup upy = cllugll, o — Aollunily o -

In particular, for all X = \q || (Lj + X )7

N, 0 - —m, 0 = l/C

Before proving this theorem, we state two lemmas in order to treat
variable coefficients using a partition of unity. Except for the trivial part b of
lemma 3.10, these lemmas are special cases of lemmas in [5] and proofs can
be found there. '

LEMMA 3.7 : (a) Let {gk}kEN = CP(R?) be a sequence of functions with
the following properties : '

(1) For all K =0, there is an N(K) = 0 such that for all x* € R¢ at most
N (K) functions ar not identically zero on the ball

Sk(x*) = {xeR?: |x - x*| <K}.

(® In fact, it is sufficient if there is an m > 0 such that for |a| = |B| = m, ¢y, restricted
to 2(m) x (0, mg), is an element of C°%(Q(m) x (0, hy)). However, by [11] Ch. VI § 2, for all

open .sets AcR", neN, Are[0,1], there exists a bounded extension
&:C™MNA) - CMNRY). (Analogous remarks hold for proposition 3.14 and theorem 3.15).
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(2) The diameters of the supports of the g, are uniformly bounded by a
p > 0.

(3) Yp e Ny, 3c;(= ¢,(p)) with for all k, ”ngc”(lR") = .
Then Vp € Ny, 3C(= C({ge}, 1)) Yur € G(HZ), ¥ || g usl’ < Cllusll.
k

(b) If in addition to the properties (1)-(3), a sequence has also the property
@ 0=<g,<1 (keN), Ygi=1,
k

then Vp € Ng, 3c(= c({gi},P)) C(=C({gc},P))s Yu, € G(HZ)

2
cllunls < ¥ 1geunll, < C lluall, -
p . b P

DEFINITION 3.8 : A sequence {e;}, <C P(RY) with the properties (1)-
(4) of lemma 3.7 is called a partition of unity.

Remark 3.9 : For each p >0, there exist a partition of unity {ek} with
sup {diam (supp (er)) : k€ N} <p (see e.g. [1] theorem 3.14).

LEMMA 3.10. Va € N¢, a # 0, 3C such that for all u, € G(hZ%)

(@ ”g dpuy — af‘,(guh)llo = Cll!l”cs o -L1Rd) n Uy ” o] —1

(gecC! - LR

and

®) ||gT;up — Ti(gup) ||, < ch gl corgaylluanll, (g € C>'(RY).

Proof of theorem 3.6 : Consider a partition of unity {e;}, - Denote
sup {diam (supp {ec)): k¥ € N} by p. Choose {g;}, _» so that it satisfies the
conditions (1)-(3) of lemma 3.7, and such that there is a & =0 with
VkeN, g.=1on {xeR?: dist (x,supp (¢)) < 6}. Furthermore select
for those k for which dist (supp (e), Q) <p an x,e€Q with
dist (supp (e;), ) <p. By summing over these k only (h, «small
enough ») we get

<L/': uh:uh> = Z <€k glgp)“)h Up, € Wy uh> + <gi$r)(’°h Up, Op uh>
k

= Z (%”Q Cp Wy Up, € O “h> (@)
- .

+ ) <($;fp) - L) e wyu, € oy uh> ®

k
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+Z<(ek3;5p)—gifp)ek)gkwhuhaekwhuD ©
k
+ (L oy uy, 04 u,) (d)
For (a), straightforward calculations give

<$h xy €k Wp Up, € W uh> =

~Re DA | oG 6) (o) ('

- m
~2m+d
= (L} strongly elliptic) 9, 7 J ( Y 4sin ) x

k Jj=1

x | (ep w0, up)7(8)|% dt

eh” 2"'*"2 . (4sm’g ) | (e uy) ()]
\«I -"IJ=1

ISZ Z “E)f,‘ekwhuh”o

k |a| =m

If we take p (¢f. remark 3.9) and h, «small enough», the uniform

continuity of c,g,5 for |a| |B] = m implies that we can majorize the
absolute value of (b) by = 5 Z Y | oher wpuy "(2) (h e (0, hyl).
k |af =m
Fol (a) and (b) combined, we thus have
~) =

€ - 2 €

= 2 2 Z ” Bhey @y uy H 0 = (emma 2.7, cf. footnote 4) € Z llex @y u, ”f"
k

= (lemma 3.7(b)) Efjuy, ”1271,0 :

By writing out (¢) we get

Y Y Y {{(= D)l (e 85Ty — 85T er) x

k | af =|Bl =m~,8
X Copya(» 1t ) T, 8RG ) 0y up, € wp 1)
+ (=D 3T copys (- s b ) (e Th 8% — T 05er) gi @ uy, € 0 1) )

=3 Y Y {{Copys (s 1) T 03Gs w0 1y,
k

fol =B =my5
(T Y ofe — e, Ty~ 97) e @), uy,)
+ ((ex T}, % — T} 9%er) Gr @p s > Capyo,hy Th ¥ Ofer wp ) }-
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By lemma 3.10, the absolute value of this expression can be majorized by

¢ ¥ {lgxonunll, lex onunll,_, + lgeonunll,,  lecwnuall,} <
k
s c'|lupll,, oll#sll,,_, , (the Schwarz inequality and lemma 3.7 (a)) .

Finally, because the c,g,; are bounded, (d) can be estimated on
C”uh“m,o"uh”m_l,o'
By combining the results for (a)-(d) we get

Re ¢Ljup ) =Eul? o = Elunll, o luall,, o -

Using lemma 2.4, the desired inequality can now be obtained easily. 0O

3.3. Discrete version of Necas’ theorem

In order to prove a discrete version of Necas’ theorem, we will make use
of the results of (the continuous version of) Necas’ theorem (theorem 3.3).
For this purpose, we will need restrictions and prolongations between the
discrete and the continuous Sobolev spaces (¢f. definitions 3.11 and 3.13).

DEFINITIONS 3.11: For a € Ng, we define of, oj*: CP(R?Y) - CPR?)
by

d d
of= ¥ (o), = ] or®)"

€;

are given by

. 1
u(x +e gh)de, (of u)(x) =J u(x +e; &h) dt .
0

€;
where o), off

0

(o5 u)(x) = j

—1

For s € R, we denote (s, ...,s ) e RY by (s).

For a € Ng, we define Ry: CPR?Y) - G(hZ%) by Ry = R o, where
R is given by (RO u)(Gh) = (o u) (jh).

Since the proof of the following lemma is straightforward, it is left to the
reader (except (9)).

LEMMA 3.12: It holds that

@ | Q,EO)HOA =sc (2a) “ of,i||o‘_ <c (2b) no*e‘ || oS¢

(a) o) D“=D%0} =9,; (3b) op“ D =D"cj}" =T, 8,

@) |25 - R, _,<ch («,BeN])

) ||as - Rial,_,=ch¥|al cxwb (x € [0, 1], @ € N).

Because of (1), (2), £} can be extended as a map L*(RY) - G (hZ?) and
o . LYRY) -» L*(R?) both with the preservation of norm.
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DEFINITION 3.13: For aeN{, we define 27: G(hZ?) — L*(R?) by
Py = PO, where PO is defined by (P u,)(x)=u,Gh) if
jh— (1) h<x<jh.
LEMMA 3.12 (continued) : For all « € N¢, it holds that
6) (#D*=2;
(7) R and P} are local, i.e. Ic such that
supp (27 u) = {x € hZ": dist (x,supp (u)) <ch} (ue C{PRY)),
supp (25 u;) « {x e R?:dist (x,supp (u,)) <ch} (u,€ G (hZ%) .
From (3) and (6), it appears that for a e Ng, seZ with (5) <a,
Ry can be regarded as a bounded map H*(R?) —» (G(hZ?), | . |_,), and
2P} as a bounded map (G(#Z?), | . ||,) » H*(R?). By applying lemma 2.2
and an interpolation theorem (e.g. [8] lemma 1.4.3), one can obtain the
same results in case s € R\Z.

LEMMA 3.12 (continued) :
8 VaeNd seR with (s)<a, 3c such that I @;‘,‘”_h__s =c,
|| .@f,‘”s(_s =c.

©) VkeN,, 3¢, Vs,re [k—1,k] | RO P - S, <ch'™

Proof of (9) : It holds that | 2”2~ #,| _ =< c. So by interpolation
it is sufficient to show that | 20 2~ #,|| <ch R P/ canbe

written as Y a, T}, in which finitely many a, are non-zero and

“p
ueZd
Ya,=1,and thusalsoas £, —h Y by, T} 3% in which finitely many
" | Bl =1v
bg, are non-zero ([14] lemma 2.1). This last notation directly yields the
desired estimate. O

PROPOSITION 3.14 : Consider an L;, of the form given in definition 3.5 (e).
Let 0 € R such that for all a, B, v, 3, for which

s=max{|a|]-m+86, |[B]—-m—-0} =0,

there exist ne Ng, Ne [0,1] with n4A=s if seN and n+\>s if
s¢N, such that c53(.,h)€ C™MR?), with norm which is uniformly
bounded in h € (0, hy).

Then c(0) exist with || L] = c(9).

m+0,0-m+0,0

Proof : It is easy to verify that it suffices to show that Vs=0,
neNgNe [0,1]withn+ A=sifseNandn+ X\ >=sifs ¢ N, 3Icsuch that

lgunll, < cllgllcnrgelunll, (uneGHZY, geC™ RY). @3.1)
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Since C™™(R?) is continuously embeddable in C">"*R?), whenever
n; + Ny = n, + \, and n; = n, (see e.g. {1] theorem 1.31), it suffices to show
@B for n=s—-1, \=1if seN and for n= [s], e (s— [s],1] if
s¢N.
ForseN, n=s—-1, A =1, (3.1) follows directly from lemma 3.10(q).
Nowlets¢ N, n = [s] and A € (5 — [s], 1]. Write s = n + w. There exist
c(=c(n)), C(=C(n)) =0 with

el a1

=C|- I

”n+w n+w?

where

lunll ¥, = ( 5 ||azuhl|i)'/2(cf. (2.3)).

| af =n
For g € C™»MR?), write

o

ou) = T (g

Bsa

)(T,:Baz-‘*g» (3Buy) -

Since for |a| =n, B=a, T;P02"Pge CONR?), with
” T;B ah_Bg "Co,x(Rd) = "g”c"-"(ﬂd) (h=0),

it is sufficient to show (3.1) for s e (0, 1).

Finally, let s€ (0,1) and X\ € (s, 1]. For any g € C%*({R?), denote the
map GWZ?% - GHZ%) u, »gu, by g, and the map
CPRY » CP(R?Y) : u— gu by g. It is well-known that 3¢ such that

lgll,_,=cllgllcorgs (g€ CONRY) (see e.g. [15] Hilfsatz 4.3 and 4.5 ) .

Write
6= 20920 + (0, B0 - R0 9) P - (RO PV~ S ).
By lemma 3.12 (8), (5), (9), it follows that
|2 920, _,<cllglcorge and [[gh— 292V, _ <cllgll cos@e

S8 S«

and thus
lgall, ,<cllgllcorgs (9 € COMRY). O

THEOREM 3.15 (discrete Necas theorem): Consider the situation of
theorem 3.6, but now let Q be bounded and have the s.l.L.p.
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Put
o =sup {x|Va,B,v,3 || =m, copp€ C"XRT x (0, hg))}

and
T = sup {XIVa, B,Y,8 |B| =m, copp € CO"X([Rx (O,ho))} ,

where by convention sup & = 0.
Then, there is a 8y € (0, 1/2], such that for all

6e (—0p,08) N (—7,0)U {0},
there exists a Ny =0 with

VYN =N || (Lh + N, sc(=c(9,\)).

1
“m+6,04——m+9,0

If Z Copys + Cpays IS real-valued for |a| = |B| = m, the theorem holds with
v, d
60 = 1/2.
Proof : The proof consists of the steps (a)-(¢).
(o) Since
' -1 _ 1 -1
”(Lh+)\1h) "m+0,04——m+6,0 - “(Lh +)\Ih) ”m—0,0.——m—-0,0
and \
Li* = of ( DI AT Sy nay THOE)
Vel , ] B} =m vy, 8

it suffices to prove the theorem for 8 = 0.

(B) Put
L0 =of( £ 0 GTe Ti0t) o

faf =mB v, 8

and Ly = L;— L;). Then |L;®|_ <c. By the discrete

m+1,0em0

Garding inequality (theorem 3.6) I\, with

=C.
m,O«——m,O

VA =N | (L + M)

Suppose that for certain 6 =0, IN; with

VA =N [ (LD + 1) <sc(=c(0,N\)). (3.2

m+0,0e-—-—m+0,0

Since ||7,] _ =c, | =< ¢ and

m+0,0—-m+1,0 mOe——-m+86,0

(L;’ + Alh)_l = (L;l(l) + AIh)_1 - (LI;(I) + )\Ih)*l Ih LIII(Z)(LI; + )\Ih)._l Ih s
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we see that (3.2) implies that

YA =max (Ao, \,), || (L + N, <c(=c(8,\)).

m+6,0—-—m+06,0
Therefore, without loss of generality, we can assume hereafter that
Copys =0 whenever |a| # m.

(y) Define w: CP(Q) — CL(R?) (both spaces with L? scalar products)
as the extension with zero,

&L = Y (-D!* D%a, D",
lof ,| Bl =m

where a,g = Z Capyp(-50), and L = 0™ Lo.
v, 8
The strong ellipticity of L; implies the strong ellipticity of L, so the
(continuous) Necas theorem (theorem 3.3) is applicable to L.
Now let 6 € (0,64) N (0, 0) U {0}, where 6, is taken from theorem 3.3.
It follows from the theorems 3.3 and 3.6, that there is a Ay = 0 such that

V=N, (L+N)':H"H(Q) » HI(Q) bounded, and  (3.3)
YA =N || (L + MY <c. (34

m0e—m0

Let XA = )\, be fixed. Using (3.3) and (3.4), we will show that

, -1
| (L + \1,) |‘m+e,o.__m+e,o =¢-

For notational convenience, we assume that A = 0; if N\ £ 0, consider
Coppo — M instead of cgyp. Since we have assumed earlier on that c,g.,5 = 0
whenever |a] s m, ¢y IS DOW a constant.

() Put Ry = 0/ ' w and P = w* 2w, (a € N§) (cf. definitions 3.11
and 3.13) and write

Ly = ROL PO - 1,(Lj) " x
x {(Ly RO~ RML)L™' PO+ (R PO —1,)} .
We will show that
0)
(a) "Rff “m+e,0+-m+9,0
(©) |Li R - R{MLY
@ |R™WPO -1,

<c & [P

m+0,0—m+98,0

e .
=
PR ch” (consistency )

9 . .
mOe-mioo = ch” (interpolation error) .

Because of (3.3), (3.4) and |L]l, oo o < ch=% (a)-(d) imply
ILi= =sec.

m+6,0-m+86,0
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The properties (a), (b) and (d) follow easily from lemma 3.12 (7), (8), (9),
(6). In order to demonstrate the type of arguments, we show (a) and leave
the proofs of () and (d) to the reader. Write

Wy R}SO) = .@h(o)w + ((.Oh (x);:k —_ jh) .@;50)0.) .
Since 2% is local ((7)), it holds that
supp (2 wu) c Q)= {xe hZ?: dist (x, Q) <ch} (ue CPQ)).

Now remark 2.11, lemma 2.10 (applied to }), and (8) show that

¢ (0) i i
| (@ wfF — F1) Ry m”m+8<—m+0,0 <c. This result and the estimate

I @,5°)w||m+hm+9,0 < ¢ (see (8)) imply (a).
In (g), we will show (¢'):

12, 20 - 2" 2| <ch®.

mem+9

From (¢’) and lemma 3.12 (7) (8), (¢) follows easily.
(¢) In order to prove (c¢'), we have to show that 3¢ such that

| (L) B — R{™ LY u,v,) | < ch®|ull,,,, 0l

(e CPRY, v, e GZ?Y)):
REESD I E DYDY | ({(= DIl 95T copys( -, h) T} R R —

| @] =mB v,8
—R"(= D) D¥copys(.,0)DPYu,v,) |
+ | <on00] | <(9?/‘;0) — R u vy

By using lemma 3.12 (8) (s = 0), (4) and interpolation, one can estimate the
second part on the right by cA®||u ||, ||v, || o- We now consider one term of the

double sum of the first part and write d instead of c,gy5:
|<{---} uavh)l = (lemma3.12(3)a)
[{{Td (.. h) T, RE— R -*d(.,0)} DPu, Thojv,) | <
<[7RdC..h) Th RE = R0 d( 0o g Nullmso NEal,, -

Write

Td(..h) T) RE— R{™~*d(.,0) =d(.,0)(T} "> RE - R™ ) +
+ (T7d(.,h)—d(.,0)T) T; R}
+d(.,0)RM - _ @M -2d(.,0).
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It holds that
d m) —a
"TZ’+ @E_'%’S ) ”0._9s

<70 Iullg o N BEN, o+ I 2R — Ry < ch”®

0«9

by lemma 3.12 (4) and interpolation,
“T‘zd("h)_d(':o) T‘;AYHOQ_OS
< T h)—dC ) Ty o+ (A h) = d(.,0)) T}, _, < chX

because of d = ¢ 5,5 € C4XRTx (0, hy)) (|a| = m), and finally

[d(.,0) B~ — R 2d(.,0), _, =< ch”

by lemma 3.12 (5) and again the smoothness of d.
All the above estimates together show (c¢'), with which the proof is
completed. ]

3.4. Regularity of L,, the general difference operator

So far we have discussed the regularity of L;(+ X,). In our definition of
Lj, we have assumed that the coefficients c,g,5 are bounded. To obtain
regularity results, we had to impose some additional conditions concerning
the smoothness of the c.g,;. Because of all these restrictions on the
Copys» the regularity theorems concerning L; are for instance not applicable
to difference operators arising from discretisations which, at points near the
boundary, depend on certain distances between these points and the
boundary (see examples 3.28). Since such operators are quite familiar, we
will introduce in this subsection a class of more general difference operators
L, and formulate sufficient conditions for the regularity of such L,, which
make less severe demands upon the underlying discretisations at points near
the boundary.

DEFINITION 3.16: We consider L,:G(Q,) > G(Q,) of the following
general form :

L,=h™2" ¥ b,(.,h) T}

uEZd

withb,(x, h) =0, if x ¢ Q, or x + ph ¢ Q, and with an M € N, independent
of h, such that b,(.,. )=0if |n| >M and (I, - v,(M))(L, — L;) =0,
for some L, of the form given in definitions 3.5 (e).

The two propositions below give sufficient conditions for the m + 6
regularity of L,.
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PROPOSITION 3.17 : Let hZ*\Q, have the d.c.p. and let

[|(Lh+)\1,,)‘1|| <c, ||(L,’,+)\I,,)“” =c

m,0 e —m,0 m+0,0——-m+86,0

(L;, induced by L, as indicated in definition 3.16).
Then | (Ly+ N7 <c().

m+0,0—-m+0,0

Proof : As in the proof of theorem 3.15, we can take 6 =0 and
A=0.
Since L,(I, —v,(2M)) =L;(I, - v,(2 M)), we have
Li' =Ly '+ Liy Ly = Ly(Ty = v M)} L™ — v, 2 M) L™
=Ly '+ L(Ly "Ly~ L) v @ M) L~

The assumptions concerning L; ' and L, ! together with the estimates

120l s 000 —mo <ch™" M2 M) < ch® give the result.
PROPOSITION 3.18 : If || (L, + )\I,,)“||m+6 O s

and "Lh_l.”o,o‘_o,o < c (stability), then ||L"_1”m+e,o.__m+e,0 <c.

m0e—m+8,0

=< ¢ for a certain \

Proof : From the identity
Li'= (Ly+ M) "+ NLy (L, + N1,

it follows easily that || L, < ¢. Hence

1
”0,0.__m+9,0
Li'= (Ly+ M) "Ny + N VL !

. -1 .
gives ”Lh ||m+9,0.——m+0,0 =c O

Remark 3.19 : For the demonstration of the m regularity of L, + NI, (cf.
proposition 3.17) in some situations, we refer to [7] theorem 2.4 step 1, [9]
Lemma 9.2.7, Satz 9.2.8, 9.2.9 or remark 3.23 below in combination with
the examples 3.28.

Remarks 3.20 : We now discuss the condition of stability in proposi-
tion 3.18. Only in some special cases where L, = L} can the eigenvalues of

L, be computed and therefore |Lj;'|| 6.0. 0 N many other cases, where

(") In [5] section 2.5, which corresponds to this lemma, it is not used that the difference
between L, and L; is located at the boundary. As a result much stronger conditions concerning
L, are needed there. (In the notation of [5), it suffices for our lemma that (7 + ¢, L;')~':
H§™™ > # ™ is bounded for 8 = 0 only.) Moreover in contrast to criterion 2.1 in [5], we
achieve m + 0 regularity of L, for the same 9 as is assumed for L;.
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with respect to the canonical basis of G(€,) we have diag (L,) =0 and
R, =diag (L,) - L,=0 (i.e. all entries =0), the boundedness of
IZi'|l, _, (cf definition2.5) and || L~ |, .., can be shown using the

concepts of «irreducibility » and « M-matrix » (see e.g. [9] §8 4.3, 4.4, 4.6,
48, 5.14). Then using [Lji'ls, o =<Li'l . NLi"", .. the
desired stability follows.

Conversely, if Q is bounded and m = dj2, then | L; ‘Hm

is
+0,0-m+6,0
bounded for every 6 in some neighbourhood of 0 only if ||Lj; '||°° ., and

||L,;“‘1|[m‘_‘m are bounded. Indeed, the boundedness of Q implies

1 74llg . o =<¢> lemma 2.6 gives |7, =<c if 6 >0, and so

0em+6,0
||Lh—1”m&m = ||Ih"oo<-m+9,0"Lh_lum+8,0<——m+9,0 “Ih”_m+9,0<—oo =c.

The result || Ly~ || o < C is obtained by using the m + 6 regularity for a
0 <0.

3.5. Regularity of scaled difference operators

There are (general) difference operators L,, with
~1
124 "m+e,0.__m+9,o =c(=c(9))

for 6 small enough, while || Ly||_, . o, _, ., does nothave a bound that is
uniform in A€ (0, hy): The coefficients of the «difference star» of
L, at the boundary multiplied by #2™ are unbounded (see the examples in
this subsection). The unboundedness of [[L,[|_ . . . ., o is undesirable,
since it hinders a number of applications of the regularity result (see e.g. [4]
example on p. 431).

In this subsection, we scale such an L, using an operator D, in order to
obtain || D, L, ”—m+e,0._m+e,o = ¢. Moreover, for some rather usual situ-
ations we will show that this can be done whilst the m + 6 regularity of
D, L, is retained. Although, in view of a consistent discretisation, the
construction of D, L, seems to be unnatural, there are useful applications.
For instance in [9] § 9.2, it appears that regularity of D, L, can be used to
prove an « optimal » error estimate for the solution u, of the discretized
boundary value problem L, u, = f,.

Notations 3.21: Write %, = diag (%)) — #,, L, = diag (L;) — R;, and
L, = diag (L,) — R;, with respect to the canonical bases on G(HZ?) or
G(Q,) respectively. We assume that (diag (L,))”! exists and define
Dy, = (diag (L,))™ " diag (Lj).
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Remark 3.22 : If hZ\Q,, has the d.c.p., | Dy Lylly,. oo <¢h >" and
< ¢ (c¢f. proposition 3.14) (L] induced by L,), then
=< ¢ (use lemma 2.10).

“Li’lll_n1+e,0+—m+8,0
Dy Ll

-m+0,0m+6,0

Remark 3.23: If hZ*\Q, has the d.c.p. and 1 Dilly oo =¢ then
m + 0 regularity of D, L, implies m + 6 regularity of L,. Indeed, write

Li'= Dy Ly) ' Dy = (Dy L) ' {I+ va(2 M)(D, - 1))} ,
then
”'Yh(ZM) (Dh_’lh)||_m+e,0+-—m+9,0 =

= ”"/h(z‘M)”_m+e,o~o,o(”Dhno,o..o,o + 1) 1Ml oo _pmioo =€

gives the result.

D, L, can be considered as a special difference operator of the form given
in definition 3.16. Therefore, to prove m + 6 regularity of D, L, for all 6
small enough, the propositions 3.17 and 3.18 can be applied to D, L,. In
order to check the desired stability of D, L, (cf. prop. 3.18), the reader is
referred to the discussion following that proposition and to footnote (8).
The two following propositions give sufficient conditions for the m
regularity of D, L, + Al, (c¢f. proposition 3.17).

PROPOSITION 3.24: Let L;, induced by D, L, be (G(), ||-|,, o)-

coercive (cf. theorem 3.6), c,gys constant if o =0 or (exciusive) B =0,
Z Cooys =0, diag (L) =0, #,=0 and — nR, <D, R,<R; for some
v, 8

M < 1, independent of h e (0, hy).
Then D, L, is (G(Qy), .|, o)-coercive. In particular, there exist
N =0, ¢ >0 such that

YA=Xy |[(DyL,+ N, ”m’oh_m’o <ljc.
Proof :
Re (D, L, uy, u,y = ! ;T' Re {Ljuy,u,y +
+ Re <( L “;*‘diag (L,’,)+1;T]R,’,—Dth) uh,uh> .

-1
2
product on the right is non-negative. This non-negativity follows from
Gershgorin’s circle theorem applied to the Hermitian part of the matrix in

Since

= 0, it suffices to show that the real part of the second inner
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combination with the following observations :
Because of the assumptions concerning the coefficients c,g,5, the row- and
column-sums of .#, are non-negative and so by £, = 0, the same holds for

! : ' I 1— ' 1+ ,
Lj; diag (Lj) = 0; Ri=0; |~ Rj— D, Ry| < —2 R (). -

Remark 3.25: Since D,L, is coercive 1S equivalent to

% ((D, Ly)* + D, L,) is coercive, the conditions of proposition 3.24 can be

relaxed to corresponding conditions on % ((D,L)*+ D, L,).

For general %,, ie; without the assumptions of proposition 3.24
concerning the ¢,q.5, We use the following notations :

Notations 3.26: Write %, = £V + # (¥, where £ is of the form
given in definitions 3.5 with «c,gs» =0 if |a| + |B| = 2 m. Similarly,
write L, = L,V + L;® and L, =L{" + L®. If (diag (L{V))" "' exists,
define DV = (diag (L))~ ! diag (L;V).

PROPOSITION 3.27 : Let hZ%\Q, have the d.c.p.,

|-Dx Ly —D,EI)L,Q)”O’O‘_O’O <ch 2m+"

for some m=0 and DL (G(Q,), |-, ,)-coercive (¢f. prop-
osition 3.24).
Then Dy, L, is (G(,), |-, o)-coercive.

Proof: We can assume m=1. Write L;® =L;® 4+ L;®, where
L;®(L}®) does not contain coefficients « Capys » If || =m(|B| = m).
Since
D,L,—DVL® =

= vy(M) {D, L, — DML — L} y,2 M) + L;® + L,
|va() {Dy L, - DMLY~ LD} v, 2 M)

=
m+n,0em0

(use lemma 2.10),

(A =<cand ||Z;7]
applying lemma 2.4. O

= ¢, the result follows by

m+1,0em,0 -m0em-1,0

(%) The proof shows that, under the conditions of the proposition, strong (G(Q,), |-l ,, 0"
coercivity of Lj, i.e. Re {Lju,, u,) = cllu, ||f" o> implies strong G, - I, o )-coerCivity

of L, and so || L;'|| =< 1/c (thus certainly || L; || < 1/e, ¢f. proposition 3.18).

m0 =m0 0,000
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Examples 3.28 : d = 2, Q bounded, Q, = Q N hZ°,
0

0 3 9
=—a—a1(x)————a2(x) )
X1 ox; 9x 09X,

m=1, g,=ze=00n Q(=1,2),
# 1 # 1
gh = ah’lal X'—Ehel ah’l —+ ah,z a) x—-ihez Bh,2

1 1
(«cr101000(% ) » = a4 (x — zhe1>, «Cororoto0(x A)» = a, (x — §he2>)
is elliptic (and has consistency order 2 if the g;’s are sufficiently smooth).
From theorem 3.6, it follows that L; is (G(%,), |.||,, ,)-coercive if
a; € Co(ﬂ?). Because of the boundedness of 0 and lemma 2.7, direct

calculations show that even without the assumption q; € CO(W)
Re {Ljuy, u,y =cf| u,,||’2n’0 (strong (G(Q,), ||| m,o)—coercivity) .

We will now investigate the m regularity of the scaled versions of two
difference operators, which both coincide with L; in the interior of
Q,, but differ from L; at the boundary.

(I) In the (generalized) Collatz discretisation, for an x € {,, for which
X+ s, he,, x—s,he,, x—35,he,, x+s,he,e QUT for some s,, s, S,,
s, € (0,1], with s,.5,.5, .5, <1, the equation
gh uh(x)

(= h~*{(a,(x + 1/2 hey) + a;(x — 1/2 hey) + ay(x + 1/2 he,)
+ ay(x — 1/2 hey)) up(x) — a,(x — 1/2 hey) uy(x — hey)
- al(x + 1/2 hel) uh(.x + hel) - az(x - 1/2 h€2) uh(x — hez)
—ay(x + 1/2 hey) uy(x + hey)} ) = « f(x) » (the right-hand side)

is replaced by the sum of zero order interpolation formulas in both
directions. These formulas are chosen such that the resulting L, is
symmetric.

If s,=1, s,<1 (similarly if s,<1, s, =1), the formuia in the
x;-direction is chosen as

_3 1+,
h {25 (a1(x + 1/2 he)) + a1 (x — 1/2 hey)) u,(x) —

—a;(x + 1/2 hey) uy(x + hey)

1-s, 1+s,
- a(x +1/2 he)) + ai(x —1/2 hey) ) up(x — s, he)y =0
2s, 2s

w
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and if s,, 5, <1, we take

h=2((a;(x + 1/2 hey) + a;(x — 1/2 hey))/2) x

Se + sW 1 1
X uh(x)—_uh(x_sw hel)__uh(x+sehel) =0.
Pe Py Sw Se

Note that in the last case, the formula is a linear (first order) interpolation
formula. In the first case, this is only true if g, is a constant (that is why we
called the method generalized Collatz discretisation). However, if
a; € C%1(Q) the extra error as a consequence of non-constant a; is of the

same order as the interpolation error if a, is constant.

In the x,-direction we use similar formulas. The ultimate equation for
u,(x) is the sum of the appropriate formulas in both directions (cf. [9]
§4.8.2 (4.8.16)). After eliminating the boundary values in the obtained
equations, we get a symmetric L,, which meets the conditions of prop-
osition 3.24. From footnote (8), it appears then that D, L, is strongly
G (), |-,y o)-coercive and thus

| (DyLy)~ < 1/c.

1”m,0¢—-—m,0

(I) As a second example, we discuss the Shortley-Weller discretisation.
In this discretisation 8" a;(x — 1/2 he;) 8), ju,(x) is replaced by

{—ai(x +1/2s,hey) (u(x + s, hey) — uy(x))/s, h

(S +54) B

e = 125, hey) (uy () = = 5, s, ) [ 20

SN [ 2a(x+1/2s,hey) 2a(x—1/2s, he,)

=h" + u,(x)
Se(se + SW) SW (se + sW)

2a(x—-1/2s, he 2ai(x+1/2s, he

2O PR e syheyy - ZAC IR by
Sw(se + s)V) se(se + SW)

(if s,.s, <1) and the same procedure is used in the x,-direction.

For a, = a, =1 (Poisson equation), it holds that 0 <D, R, < R}, (¢f.
proposition 3.24) and so || (D, L,)™'|| = 1/e.

For a)/a, =1 and a(=a,)€ CO(W), O0<D,R,<R,+0(1)h2m
whereas in the interior as always D, R, = R;. From this, it follows that

m0 e« —m0

Re <Dh Lh Up, uh> B("”l'lh"z;.,’o - o(l)h—2m||7h(2 M) uh”(z),o

and thus || (D, L,)™" "m 0 —mo < 1/€ (ho small enough), if hZ\Q,, has the

d.c.p. (¢f. lemma 2.10).
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For arbitrary a,/a, D, R, < R;, can not be expected even if a; and
a, are constants. However, if we neglect a possible part of R*\ Q between
neighbouring points of (), while setting up the discretisations,
Re {Dj L, uy, upy = c|luy|| i,o and thus the boundedness of

| (D L)1
step 1) if q; € CO(I}TZ), &< a;/a, < p, with

u:(2\/§+3+(1+\/§)\/2+2\/§>2z165,

and if AZ%\Q,, has the d.c.p.

We finally note that using the same sort of analysis, it can be proved that
KL up, uyy =clluy, ||fn o Without conditions concerning a,/a,.

0 e mo SA1 be proved in the same way as in [7] (theorem 2.4

4. PROOF OF THEOREM 2.12

Before giving the proof we state three lemmas. First we formulate an
interpolation lemma, which is in fact a special case of the general
interpolation theorem for Hilbert scales, which we used earlier. The proof
of this lemma can be found in, for instance, [4] lemma 4.

LEMMA 4.1: Let H, and H, be two complex Hilbert spaces. Let
A : H| - H, linear, bounded, A;, A;': H, - H, linear, bounded and positive
definite (i = 1, 2).

Then for all a, B, ye R with a <B <, it holds that

Y-B B-«
[ASAATPI,, = |ASANTS] 2 ", [ATAATY] S,

LEMMA 4.2 : If Q has the s.l.L.p., then there is a linear operator E that
maps functions on Q onto functions on R? with the properties

(@ E(f)lg =S foral fe C*®(Q); that is, E is an extension operator.
(») YkeN,, the map E: H¥Q) > HYR?) is bounded, the bound
depending only on k, d, « L » and « R » (cf. definition 2.14).

Proof [11] chapter VI § 3 theorem 5. An inspection of the proof there
shows the assertion about the bound in (b). O

LEMMA 4.3 : For all k € N, there are linear maps
2,.G (% - HYR?) <« L(R?)

and R),: LAR?) - G (hZ?) with the properties :
@ 2wy _og=c (L e {0,k}) (b) 2, is local (cf. lemma3.12 (7))
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© R Pr=Fr @ |B],_,<c (e {0,k})
(e) A, is pseudo local ie. Ic, dy >0 such that for all ue CP(R?),
Ioall, < ch*llull, where v, € G(hZ?) is defined by
v, = R,u on {xehZ’:dist (x,supp (u)) =d, h}
=0 elsewhere .

Proof : P, = PP (see definitions 3.13 and 3.11) has the properties (@)
and (b) (see lemma 3.12 (8) (7). [2] § 4.2.5 shows the existence of an
R, with property (d) and &, 2, = £, ((c)). Using [2] § 5.1.3, one can
verify that there is a local £,: LR >G(KhZ% with
|| F,—- P, ‘@"Hohk < ch* The estimate

“‘@h_'@h” = H'@h(‘}h_'@h @h)H()._ksChk

0k
in combination with the locality of .@h shows that £, has property (e) (9).
O

Proof of theorem 2.12 : By the definition of ||.|__ , for s > 0, it suffices to
give the proof for s € [0, k].

(@) At first we prove the inequality ||u, | < ||B,s,/2kuh||0 J(s€ [0, k],
u, € G (Q,)), or equivalently

| Bi** ), 19,,-5/2k||0k0)o <1 (se[0,k])(cf - (2.5)).

For s = 0, we have that ||, _,,=1 and for s =k

185 i B B0, 87717,

” ‘@'1[2 o, By 1/2” 00,0

- — 1/2
“Bh 1/2Bh B, 1/2” cf(\,
1.

nn
—u,v

() In [5) proof of lemma 2.1, the existence of 2,, &, is assumed as in lemma 4.3, but with
in addition '

|2y Rou—ull < || Pyw,—ull, forall ueL*R’), w,eGHhZ%

and £, local. It is easily seen that then necessarily holds that &, = (2} 2,)"' 2. From the

locality of 4, it follows that &, & = (P} #,)”" is local. If we now assume that

2, is of the usual finite element form 2, u,(x) = 2 u,(jh) p ( %-j ) with w e H*(R?)
je Zd

having a compact support, it appears by means of Fourier analysis that {pn(.—j):j € z }is

an orthogonal set in L*[RY). However, at least in the usual case of positive w, for

k >0 this conflicts with the requirement 2 (G(hZ%)) c H*(RY) unless w € HE(10, 1[% + ¢).

However, in the latter case the corresponding 2, if not 0, does not satisfy || 2, =c.

[P
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Lemma 4.1 now gives the result | #;**w, B,,“Ska‘lo 0o =1 (s€[0,k]).

(B) For the proof of the inequality || Bj**u,| o =<Cllusll, o (s€ [0, k],
u, € G (Q,)), we will construct an N, : G(hZ%) - G (Q,) with N, w, = I,
and || B?¥ Ny vyl o< Clloall (s € [0,k], v, € G (hZ%)), which is equival-

ent to

| Bi** Ny B My o =<¢ (s [0,k]).

From the existence of such an N, the desired result follows directly by
SubStltutlng Uh = W, Uy (uh (S G(Qh))

Because of lemma 4.1, it suffices to show that || Bi** N, %B; k"oo f =€
forse {0, k}. Thisisequivalentto |N,| , __=<cforse {0,k}, which for
s = k we see by writing

uNh"k,()(__k=
_ ” .9?,}/2(»,, N, Qh— 1/2”04_0 - " gah— 1/2N}il= o g;/z ‘@};/th N, ‘@17 1/2” (1)/30
= | BN B2 BIPN, B P = | BIAN, B,

We define N, = o} &, F(h) 2, as follows.

We take 2,:G (2% - H*R?Y), R,: L*RY) >G(hZ% as in lem-
ma 4.3. By the locality of £,, there exists a d, >0 such that for all
u, € G (), supp (2, 0, u,) « Q(h(dy + D)) (for D, ¢f. notation 1.1).

Remark 2.16 shows that for all 2 € (0,4,], where A is « small enough »,
Q{h{d, + D)) and thus RN\Q(h(d, + D)) has the s.L.L.p. with the « R»
and «L» from Q (¢f. definition 2.14). Thus by lemma 4.2, for all
h e (0, hy] there exists an extension

E(h): H'RN\Q(h(d, + D))) - H'RY) (LeNy),

which is bounded uniformly in £ € {0,k}, he (0, hy).
Hence, if we define R(h) as the restriction of functions in R? to
RANQ(A(d, + D)) and F(h): H'®RY) - H'RY) (L eNy) by
F(h)= S -~ E(h) R(h),

then F(h) is bounded uniformly in £ € {0, k}, he (0, ko] too.
With the above definitions, we have

thhzw;f.@hF(h)?hmhzmﬂ‘.@h.@hwh=Ih

and | Ny|y o o =<c
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Since for k =0, || is unbounded with respect to 4, we have to do

¥
h”hohk
some more work in order to get the remaining estimate
IVull o (= llon Nall, _,) =< c. Because of
ﬂg’hﬂk‘_"k"s*c, It 2 F(h)j|,_,<c and | £

lioo=ch™"

it suffices to show
”(Jh—(.ohm,f‘) .@hF(h)||04_kschk.
Define for u € H*(R?), v, € G (hZ%) by

v, = R, F(h)u on (RA\Q((d, + dy+ D) h)) N hZ? (d, from lemma 4.3 )

=0 elsewhere on #Z ¢.

Since for all ue H¥R?), supp (F(h)u) = Q(h(d, + D)), the pseudo
locality of £, (lemma 4.3) implies the existence of a ¢, independent of u
(and #), with

vall, < ch*||F (h) ul|, .

The function (£, — w, ) R, F(h) u — v, € G(hZ?) is identically zero
outside Q;\Q,, where Q; = Q((d,+d,+ D)h) N hZ". By remark 2.11
and lemma 2.10, with « { » = d, + d, + 2 D, applied to Q;, the existence is
shown of a ¢’, independent of u (and #), with

[ (Fh— @ i) By F(h)u—v,| < ch | Ry F(h)u—v,|, <

.o A ANTEE o 10 AN "
TS hllg g€ ) NE) U -

By |F(h)|,_,<c and | &, = ¢, the proof is completed (). O

I

(' In [5] proof of lemma 2.1, Calderdén’s extension theorem ([1] theorem 4.32) is used for
the construction of F(k) instead of Stein’s extension theorem (lemma 4.2). Calderon’s
extension operator needs less smoothness of the boundary than the s1.L.p., in fact a kind of
«uniform c.p. » suffices. However, this extension operator (and thus « N, ») depends on the
degree (£) of the underlying Sobolev space, which implies that interpolation (lemma 4.1)
cannot be used.
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