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MATHEMATICALMOOaUNGANONUMeaCALANALYSlS
MODÉUSATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 24, n° 3, 1990, p. 369 à 401)

GLOBAL EXISTENCE AND ONE-DIMENSIONAL NONLINEAR STA BI LI TY
OF SHEARING MOTIONS OF VISCOELASTIC FLUIDS OF OLDROYD TYPE (*)

by C. GUILLOPÉ 0) (**) and J.-C. SAUT (X) (2) (**)

Communicated by R. TEMAM

Resumé. — Dans cet article nous étudions l'écoulement de cisaillement et l'écoulement de
Poiseuille d'un fluide de type Oldroyd (ou Johnson-Segalman) avec temps de retard. Nous
montrons que le mouvement existe pour tout temps, et pour des données initiales quelconques.
Nous examinons la stabilité (au sens de Lyapunov) de Vécoulement stationnaire perturbé par des
perturbations d'amplitude finie.

Abstract. — In this paper we discuss shearing motions and Poiseuille flows o f Oldroyd
(Johnson-Segalman) fluids with retardation time. We show that the motion exists for arbitrary
time and arbitrary initial data. We investigate the (Lyapunov) stability o f the basic steady flow to
one-dimensional finite amplitude perturbations.

1. INTRODUCTION

This paper is concernée! with one dimensional motions of a class of
viscoelastic fluids of Oldroyd type [1], [9], [11], i.e. satisfying the constitutive
law
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370 C. GUILLOPÉ, J. C. SAUT

where T is the extra-stress tensor, D[u] is the symmetrie part of the velocity
gradient, r\ is the elastic viscosity, \x is the relaxation time, and |m is the

retardation time, 0 =s JX< \ l . ~^- is an invariant (frame indifferent) time

derivative

^ = ^ + (u • V ) T + iW - Wi - a (Dg + iD ) , (1.2)

where W is the skew-symmetric part of the velocity gradient and
- 1 === a =s= 1. The case Û = ± 1, 0 corresponds to the Maxwell models (with
retardation time), also called Jeffreys models.

Equation (1.1) is coupled with the following équations, given by the
balance of momentum and the mcompressibility,

V ^ V . T + ƒ , (1.3)

div u - 0 ; (1.4)

ƒ is some given body force.

We shall assume that the retardation time |x is different from zero and
décompose T into a viscous stress plus an elastic stress g = ls + Zp> where

def

lp + ^lillp = ( /
~&l def

Let us dénote T^ by T. Then équations (1.1), (1.3), (1.4) reduce to

( du \

— + (U.V)uJ + Vp =i]s Aw + V. T + ƒ ,
<divw = 0 , (1.5)

Another réduction is obtained by using dimensionless variables, and
introducing the Weissenberg number We = Xx U/L and the Reynolds
number Re = pUL/r\. (U and L represent a typical velocity and a typical
length of the flow.) Namely we set

L U L ~
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VISCOELASTIC FLUIDS OF OLDROYD TYPE 371

where stars are attached to dimensional variables. The dimensionless
constitutive and momentum équations are

Re ( ^ +

div w = 0 ,

Vp = (1 - M + V . T+ ƒ , (1.6)

where the retardation parameter <o is defined by

co = 'ïlpAl = 1 — ^/\ , 0 < co < 1 . (1.7)

The " total " stress is thus given by T + 2 ( 1 - O > ) D .
We shall now restrict our study to spécifie one-dimensional motions. For

plane shear flow (plane Couette flow) between two parallel planes, we take

u(x t) - (0 v
y(x,t)) '

where x = (x,y) dénotes a point of IR2.
The Weissenberg and Reynolds numbers are defined via the velocity

U of the upper plane and the distance L between the planes.
We easily deduce from (1.6) the équations of motion

Rei;, = ( i -

(1.8)

- a

System (1.8) holds for * e (0, 1) =
boundary conditions

t?(r,O) = O, v(t,

and the initial conditions

r e R+ and is supplemented by the

(1.9)

(1.10)

System (1.8) can be further reduced to a System of only three équations.

vol. 24, n° 3, 1990



372 C. GUILLOPE, J. C. SAUT

This is obvious for a = ± 1, where the équations for a and 7 can be solved at
once. When a ^ ± 1, we define the following combinations of a and 7

<* = ^ - ^ o r - ! ± ^ 7 , p = ( i _ f l ) a + ( l + a ) 7 ; (LH)

and system (1.8) takes the form

Re vt - {

(1.12)

Equation (1.12) is decoupled and trivial, so we are left with a system of
three équations for the three unknowns v, a, T.

For plane Poiseuüle flow we obtain in a similar fashion the system
(f 3*0 and xe ( - 1,1) = / ) ,

R e » , - (1-U>)VXX = TX- f,

(1.13)

where ƒ is the (constant) pressure gradient in the flow direction. The
boundary conditions are

v(t, - 1 ) = v(t, 1 ) = 0 , t3*0 (1.14)

In what follows, we shall consider only the genuinely nonlinear case
where \a\ <: 1.

Let us now describe the content of the paper. In section 2 we review some
facts about steady motions. In particular we show that for a suitable range of
the parameters, the basic steady Poiseuille flow fails to be C1 at two points.
In section 3, we prove global existence for solutions of the Systems (1.12),
(1.9), (1.10) and the Systems (1.13), (1.14), (1.10), for arbitrary time and
arbitrary data. Moreover we show that the stresses are uniformly bounded
in space and time. (This is also true for the corresponding nonlinear
hyperbolic Systems obtained with a zero retardation time.) In section 4 we
use energy methods to study the nonlinear (Lyapunov) stability of the basic
steady solution of the plane Couette problem, for one dimensional
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VISCOELASTIC FLUIDS OF OLDROYD TYPE 373

perturbations. In section 5 we relate these results to linear stability analysis
by studying the spectral properties of the linearized operator. In the last
section we briefly discuss extensions of some of our results to models with
several relaxation times and to time dependent shearings.

Results related to those of section 2 have been obtained by Kolkka et al.
[7], [8]. We thank Professor B. Plohr who kindly brought these works to our
attention (cf. also J. Yerushalmi et ai. [14]).

We would like to thank J. M. Ghidaglia and C. Jouron for fruitful
discussions.

2. STEADY SOLUTIONS

We review here some facts about steady solutions for the aforementioned
flows. In this section, e dénotes the constant 1 — o>, 0 < e <: 1.

2.1. Steady solutions for the plane Couette flow

The basic steady solution for the plane Couette flow is given by

(v(x) = x , Vxe (0 ,1 ) , r2 ^
1T = Cst., a — Cst.

which, by (1.13), implies that the total shear stress has the value

T = T -+- EVY = + 8 ,

l+We2(l-a2)

or
l + eWe2(l-a2)
l + W e 2 ( l - a 2 )

whüe

(2.2)!

We l + W e 2 ( l - a 2 ) ^ '2

We make explicit the dependence of the dimensional shear stress on the
shear rate 7 = U/L. Setting k = X1 / ( l — a2)112, one obtains

(2.3)

It is readily seen from (2.3) that, if 1/9 <= s < 1, then T* is strictly increasing
in 7, while if 0 <= E <: 1/9 then {(y, T*(y)), y > 0} is a S-shaped curve,
shown in figure 2.1.

vol. 24, n° 3, 1990



374 C. GUILLOPÉ, J. C. SAUT

e<1/9

e=1/9

Figure 2.1. — Curve { (7, T*(Y)), 7 > 0} for different values of e, 0 =s e === 1.

The real numbers 7! and 7+ are the two positive roots of the équation

sk4y4- (1 - 3 e ) £ 2 7 2 + l = 0 ; (2.4)

thus

21 ; • (2*5)

Notice that ye
± > l/k, for all e's, 0 < e <: 1/9.

2.2. Steady solutions for plane Poiseuille flow

Here ƒ dénotes a (positive) constant pressure gradient driving the flow.
From now on we set k2 = We2(l - a2). Steady solutions for the plane
Poiseuille flow are given by

a =
1 - e kvl

l+k2v2
x ' We i+k2v2

x'

where vx is a solution of an algebraic équation of degree 3,

(1 + ek2vl)vx= fx(l +k2v2
x) .

(2.6)

(2.7)

It is instructive to study first the limiting case e = 0 : there exists a critical
fc = l/(2k) such that, if ƒ > fc, équation (2.7) is not solvable if

M2 AN Modélisation mathématique et Analyse numérique
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VISCOELASTIC FLUIDS OF OLDROYD TYPE 375

\x\ < 1 is large enough, while for ƒ === fc9 équation (2.7) admits a unique
solution i n ^ 0 ^ - ! , ! ) given by

v v =
2fx , - 1 (2.8)

The profiles of the steady Poiseuille flow obtained for 8 = 0 and for
e = 1 are shown in figure 2.2.

Figure 2.2. — Profiles on (0, 1 ) of the veloeity for steady Poiseuille flows for f =s f c :

O) Case e = 1, v(x) = j - (x2- 1), x e ( 0 , 1 ) ;

Case e = 0, v(x)
Ji 1+ ( l - 4 /4/2it252)1/2 e (0,1).

For e > 0, équation (2.7) coincides with équation (2.3), with the following
change of notation :

Clearly, for E =* 1/9 équation (2.7) admits a unique solution vx continuous on
(—1,1), while for 0 < e <: 1/9 équation (2.7) admits one or three solutions
depending on the magnitude of ƒ |JC| , x s ( - 1, 1).

Stationary solutions of plane Poiseuille flow are described by the
following result.

PROPOSITION 2.1 :

(a) Let e be in [1/9, 1]. There exists a unique <ël stationary Poiseuille flow
v = ve(x), x e ( - 1 , 1 ) . This solution is <^c0 on ( - 1, 1), exceptpossibly for
e = 1/9.
(b) Let e be in (0, 1/9). There exists some critical /C

E^> 0 such that :

vol. 24, n° 3, 1990



376 C. GUILLOPÉ, J . C SAUT

(i) if f =s= fl, then there exists a unique ^ stationary Poiseuille flow (which
is ^°° in - (-1,1)) ;

(ii) if f > fl, there does not exist a cë1 steady flow, but there exists a
continuüm of <$° stationary flows which are ^°° except at two points
x£ and — xe in (— 1, 1 ).

Proof : Equation (2.7) is solved by taking the inverse of the function
shown in figure 2.1 (after having made the aforementioned change of
notation).

(a) For e = 1, (2.7) gives the Newtonian parabolic steady Poiseuille flow.
For 1 => E 2= 1/9, équation (2.7) admits a unique continuous solution
vx(x), x e (— 1, 1) ; the (unique) steady Poiseuille flow is then obtained by
intégration of vx, and is ^°°on ( - 1, 1), except possibly for s = 1/9, where
vxx can be infinité at two points of ( - 1, 1).

(b) For 0 < e < 1/9, the curve in figure 2.1 is S-shaped. Let fl be the
maximal value of ƒ > 0 for which the function ƒ -> vx(l), which is a solution
of équation (2.7), is monotonie increasing :

1 + £^2 ( e )2

fi-y- , , 2 , ~ 2 , (2.9)

1 + kÂ(yt Y

where 7! is given by (2.5).
(i) If ƒ ^ /c

e, then the situation is similar to the case where 8 = 0 ,
ƒ =s= fCJ and to case (a) : there exists a unique <ê1 Poiseuille flow which is
<̂ °° on ( - 1 , 1 ) .

(ii) Let ƒ be large enough, namely ƒ > fl. Because the solution
vx = vx(x, ƒ) of équation (2.7) is not single-valued, there cannot be any
<ë'1 steady Poiseuille flow. Necessarily, such a vx has to have a jump at the
points x£ and — x£, where x\ === xz ^ xi , and

" ƒ 1 + (*•£ )2

Thus there exists a continuüm of steady solutions which are 'g700 on
( - 1, 1) except at the two points xe and - xz {cf. fig. 2.3 and 2.4).

This proves the proposition.

Remark 2.2.

(a) When 8 -> 0, then (xl, 7L ) goes to ( ^— , 1 ) , while « , 7^ )

goes to (0, + 00).
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Figure 2.3. — Case 0 < e < 1/9, and f > f*.
Profiles on (0,1) of the two " extremal " discontinuous solutions vx of équation (2.7) :

o o o o vx is discontinuous at x = x i ;

* * * * vx is discontinuous a tx =x+.

Figure 2.4. — Case 0 -< e < 1/9, and f > f*.
Profiles on (0, 1 ) of the two " extremal " velocity fields solution ;

o o o o v except at xl ;

vol. 24, n° 3, 1990



378 C. GUILLOPÉ, J. C. SAUT

(b) Let us choose ƒ such that ƒ :> fc. Then, ƒ ;> /c
e if s is small enough, so

there exists a continuüm of steady Poiseuille flows which are regular except
at the points xE and — x£. As s -• 0, the solution vE

+, which is singular at
xl, converges to a function that is infinité at x = 0, which therefore has not
been considered in the case e = 0. In the other hand, as e -• 0, the solution
ve_ , which is singular at xi, converges on the interval ( - — ^ , ̂ —— ) to

the solution obtained for s = 0. Moreover, on the intervals \ \x\ > 5-7̂ 7 f »

the profile of the velocity vE_ becomes more and more parallel to the walls at
x = ± 1. This phenomenon can be viewed as if those viscoelastic fluids
having a weak Newtonian part nearly slip along the walls (cf. W. R.
Schowalter [13]).

(c) Proposition 2.1(6) (ii) gives solutions which are <ë1 except at two
points. Similarly équation (2.7) can be used to produce solutions which are
<^1 except at finitely many points.

(d) This phenomenon of steady solutions which are not cël appears here
in a model with Newtonian viscosity, contrary to the viscoelastic model
studied by J. K. Hunter and M. Slemrod [15]. We do not have a criterion for
selecting the physically admissible solutions among this infinity of solutions.

3. GLOBAL EXISTENCE

In this section, we shall prove a global existence theorem for unsteady
plane Poiseuille and plane Couette flows, valid for arbitrary time and data.

Before stating our results, we recall some standard notation.
If / is an interval of IR+ , L2(J) will stand for the space of measurable

square integrable functions, equipped with the norm

\u\ = l! \u(x)\2 dx\'2 .

The Sobolev space Hk(J) is the space of L2 functions on J having weak
derivatives up to order k in L2, equipped with the norm

\/ = 0 JJ

2 \ 1/2

dx

For 1 =s/? ===-h oo, LP(R+ \Hk) is the space of functions u of t and
x such that

def

(with the usual modification when p = + oo).
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As seen in section 1, the one-dimensional flow problems that we consider
here can be redueed to a System in (v,x, T) which takes the form

Re vt + evxx - TX - f ,

T ^ , (3.1)

- a ) ü - * . e . i n J x R ,

v(x, t) = g{x), a.e. x e 3/ , f € (R+ , (3.2)

where ƒ and g are given and independent of t. For plane Couette flow, we
set

/ = 05 ƒ = (0 ,1) , "

for plane Poiseuille flow, we set

Moreover, the plane Couette flow problem can be redueed to a System in
(u, a, T) involving homogeneous boundary conditions for u by setting
u(x,.) = v(x, .)-~x, XE (0,1). This has the effect of introducing affine
terms in the a and T équations.

We recall the foliowing local existence resuit, which is a particular case of
the genera! results of Theorem 1 in [2J.

PROPOSITION 3.1 : Let 0 < E < 1 and v0 e H2(I) n H%(I)7 T0 e H2(I),
a0 € H2(I), f e if 1(/) . Then there exists a unique solution (v, T, a ) 0/(3.1),
(3.2) such that

v e L2(0, T* ; H\l )) n <ë([0, T*] ;

where T* > 0 dépends only on the data,

We now state a global existence resuit for the aforementioned System,
together with a uniform bound on the solution. Here ƒ is a fixed real
number, and e is strictly positive.

THEOREM 3.2 : Let 0 < e < 1.

(i) Uniqueness. There exists at most one solution {v, a, T) o f (3.1)-(3.2) in
the space L°°(IR+ ; L2) n Lfoc(U+ ; H1) x L°°(/ x U+ )2.

(ii) Existence. Let v0 e HQ(I)9 a0, T0 € Hl{I), Then, for ail T=> 0, there
exists a unique solution (P, a3 T) o f (3.1)-(3.2) in the space

7 T ; flT1) n L2(0, T ; H2) x » (0, T ; H1)2.

vol. 24, nœ 3 , 1990
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(iii) Uniform bound. Let (v, a, T) be the solution given in (ii). Then
v e <ëb(U+ ; L2) (x). Moreover a, T e <gh(I x R+ ), uniformly in s e [0, 1].
More precisely

+ . (3.3)

Proof: We first prove the uniqueness result, then the existence resuit
together with the uniform bound.

(i) Uniqueness. Let (vl9 a1? TX) and (v2, a2, T2) be two solutions in the
aforementioned class ; the functions v = v1 — v2, T = TX - T2, a = ^ - a2

satisfy the (linear) system,

Re üf -

(3.4)

\ Y e * V IX ' -l "x/ >

a.e. i n / x (O, 71), together with

Ü(., 0) - a( . , 0) = T( . , 0) = 0 a.e. in / , n ^
u(x, f) = 0 a.e. x e 3/ , f e (0, T) .

We multiply (3.4)i by ~ £ v, (3.3)2 by a, (3.4)3 by (1 - a2) T, integrate
We

over / , and add the resulting relations to get :

i _ | (1 _ s)\v I2 H — lal2 + |T

Using the Cauchy-Schwarz inequality, and the f act that a2 and T2 are in
L°°(I x R+ ), we deduce from (3.6) that there exists a constant c such that

O #Ö(R+ ; A") dénotes the space of bounded continuous X-valued functions on U+.
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which gives t?= a = T = 0 by Gronwall's lemma.
(ii) Existence and uniform bounds. We shall first establish some a priori

estimâtes satisfied by a smooth solution (f, a, T). Recall that <o = 1 — e.
(a) To start with, we prove that the elastic stress components a and T are

bounded in the space L°°(7 x R+ ), uniformly for s e [0,1]. We multiply

équation (3.2)2 by a - -^~ , équation (3.1)3 by (1 - a2) T, and add the two

resulting équations. We obtain

( 3 8 )

Setting <p(x,t)= ^a(x9t)-^-\ + (1 - a2) T2(X, t), for fixed x e I,

t e R+ , and denotinj

Schwarz inequality,

? E R+ , and denoting 9' = - ^ , we deduce, from (3.7) and from the Cauchy-
ot

in R+ , (3.9)

which, by intégration over (0, r), gives inequality (3.3).
(b) Next we dérive an L°° bound on v. Let us define the function

u by u(x,t) = v(x,t) for the plane Poiseuille flow, and by
u(x, t) = v(x, t) -x for the plane Couette flow. We multiply (3.1)x by
u and integrate over / . This gives

-— (ReM 2 ) + e|wJ2 = - Tuxdx- fudx. (3.10)

Using the Cauchy-Schwarz inequality, and the Poincaré inequality (that is
| ux | =5 -j—r | u |, Vw 6 HQ(I), where | /1 dénotes the length of the interval

/ ) , we obtain

(3-11)
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Taking (3.3) into account, we deduce from (3.11), that the function
| u(., t) | is baunded on R+ , and therefore also the function | v(., t) \. More
precisely there exists an increasing positive function C l s such that

Sup \v(t)\ ^Cl( |u o | , | a o | , | T O | , (1 - f l 2 ) 1 / 2 , - ^ , - j . (3.12)

Combining this with (3.10) yields

\vx\
2dt\ *SLC2T9 foreveryT>0. (3.13)

(c) The next step is to dérive some a priori estimâtes for (tf, a, T) in
H\I) x H\I) x H\I). We multiply (3.1)! by -±--±vxx (which equals

———Uxx) and integrate over / . We differentiate (3.1)2 and (3.1)3 oncew e
with respect to x and take the scalar product in L2 with x—2 and

T̂  respectively. Adding the three resulting équations, we get

1 d / R e , - M . 2 . 1 i I 2 . I

fVxx dx) + J V**~ aTi) dx •
Using the uniform bound (3.3) for a and T, and the Cauchy-Schwarz
inequality, we obtain

( r 4 p ) P.H)
^3

where C3 = C3( 11^1^, HTQH^, (1 - a2f\ ^ - ) . A straightforward use

of Gronwall's lemma implies

I V II L°°(0, T ; Hl
0) n L2(0, T ; tf2) ̂  C 4 >

II T II L ° ° ( 0 , T ; H1) ' II a II L 0 0 ^ , T ; H 1 ) ^ C 4 »
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where C4 dépends only on \\vo\\v \\<xo\\v \\TO\\V (1 - Ö2)1 '2 , - ^ 5 - ,

- and T.
8

(d) We are now in a position to prove the existence part of Theorem 3.2.
Let tl be a positive number. We choose a smooth séquence {PJJ, otj, T$} ,

converging to (v0, a0, T0) as t) goes to zero. Let (i/1, a \ T1) be the
corresponding local solution given by Proposition 3.1, defined on some
interval [0, r*(Ti)). Actually this solution is smooth enough to dérive
rigorously the estimâtes (3.15), which are therefore valid on [0, T * ^ ) ) .
Since the constant C4 is bounded for bounded values of T*(T\), it follows
that T*(TI) = + oo, and that (3.15) is valid for (u\ a*9 T1^), for any

r>o.
Using a standard compactness argument we see that (v^, a11, T0) converges

to a solution (t?, a, T) of (3.1)-(3.2) which satisfies the requirement of
Theorem 3.2, parts (ii) and (iii). This proves the theorem. D

One can easily prove a regularity property of the solution (v, a, T) of
(3.1M3.2).

THEOREM 3.3 : Ifv0 e H2(I), a0, T0 e H2(I), then the solution (v, a, T) of
(3.1)-(3.2) satisfies

v e L°°(0, T;H2)n L2(0, T ; H3) ,

a,T£r(0, T;H2) , foranyT^O .

Proof: Again it suffices to dérive the corresponding a priori estimâtes for
the local smooth solution given by Proposition 3.1. They are obtained in a
fashion similar to the proof of part (ii) in Theorem 3.2. We leave the details
to the reader.

Remark 3.4: Inequality (3.3) provides a uniform bound of the stress
components of a purely elastic fluid (E = 0), that is

for every ( ^ , / ) i n / x R + . However, as proved in [11], there exists, in this
case (e = 0), smooth solutions whose spatial gradient develops singularities
in finite time.
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4. ENERGY METHODS AND LYAPUNOV STABILITY FOR THE BASIC STEADY
COUETTE FLOW

In this section we investigate the Lyapunov stability for arbitrary
perturbations (v9 a, T) of the steady solution of the Couette flow. This basic
flow is given, for x G (0, 1), by

, , 1 - e k2 1 - 8
vs(x) = x,as =

where k2 = We2 (1 - a2) > 0, and 0 < e < 1.
Expressing that (v + vs, a + as, T + T,) is solution of (1.12) yields the

following System for (v, a, T) :

a, + ^ = (1 - a2)(rs vx + T) + (1 - a2) rvx , (4.1)

^^-a-a^' in (°' !) x R
+ .

V(O,.) = V(19.) = O9 o n R + , (4.2)

i>(., 0) - rOî a ( . , 0) = a0? T( . , 0) = x0 on (0, 1) . (4.3)

We first state a Lyapunov stability resuit which is unconditional in

THEOREM 4.1 : Let e s (0, 1) and k2 = We2 (1 - a2). /ƒ e < 1/5, we

assume that

/ o \ 1/2
Ir ̂ - 1c (F}— ? f \ (A A\
tv •<- / V Q ^ C ^ — z, i - ~—— i . y-t.'-tj

def \ 1 — J £ /

(/ƒ s =2= 1/5 we put no restriction on k.) Then the steady Couette flow
(vs, ois, TS) is unconditionally Lyapunov stable in L2(0, 1), and conditionally
stable in H2(0, 1).

Proof: We proceed as in the proof of part (ii) of Theorem 3.2 and dérive
energy estimâtes in L2(0, 1) and in Hl(0, 1). The proof of the conditional
stability in H2(0, 1) is similar, and is left to the reader.

(i) Let us first examine the Lyapunov stability in L2(0, 1). To dérive an

energy équation in L , we multiply (4.1)x by TJTJ-V, (4.1)2
We

ry

Ô '

\ — a
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(4.1)3 by T> a n d integrate over (0, 1). Adding the resulting équations, we
obtain

We

vx a dx

For (x, t ) fixed, let us define the quadratic form in R3,

Q(X,Y,Z)= AX2 + BY2 + CZ2 + 2 .

where X = vx(x, t), Y = a(x, t), Z = r(x, t), and

= ST ,̂ B =
, 2 '21 - a1

The quadratic form Q is positive definite if and only if

AB -D2>0;

in this case we have

Q(X, Y, Z) ^ K0(X
2 + Y2 + Z2) , VJT, y, Z e IR3

where \0 is the smallest eigenvalue of Q,

A+B- ((A-B)2 + 4D2)m

Xo = min ( 1 ,

Hère condition (4.6) reads

) •

4 e > k2
 T, ,

< 4-5 >

(4.6)

(4.7)

which is equivalent to condition (4.4) if E < 1 / 5 , and which imposes no
restriction on k if s 5= 1/5.

Using inequality (4.7) and Poincaré's inequality we deduce from (4.5)
that the function defined by

l l 2 > | 2 " 1 2

satisfies an inequality having the form

(4.8)

vol. 24, n° 3, 1990



386 C. GUILLOFÉ, J. C. SAUT

for some X < 0, provided that condition (4.4) holds if s <: 1/5. Inequality
(4.8) implies the L2-unconditional Lyapunov stability of the steady solution.

(ii) Proceeding as in part (ii) of the proof of Theorem 3.2, we obtain an
energy équation for the derivative (vx9 ax, TX) of the solution of (4.1)-(4.3),
i.e.

d 1

Under condition (4.4) if e < 1/5, the quadratic form <
part (i) is positive definite, so that

Re xc . . o 1

X ( | » „ | 2 + | o I | 2 + \TX\2)

f (TOL, - axx) ux;c ds

for some \ > 0.
We estimate the last term of (4.9) as follows,

r\

(4.9)

OLX, rx) defined in

(4.10)

KI) KI
(4.11)

for some positive constant cv Using the Cauchy-Schwarz inequality and
(4.11), we deduce from (4.10) and (4.8) that there exists a 8, 0 < 8 < X, such
that

d_ ( Re T,
dt 1-a2 « Î +

for some positive constant c2. We use (4.8) and the inequality

(4.12)
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so that (4.12) becomes the Ricatti inequality,

<p' + \<p=£C3 <p2 , f o r some X > 0 , c 3 » 0 , (4.13)

where

\ — a

We thus obtain the uniform bound for <p,

on? •

, foraU

provided <p(0)=ï=\/c3. This estimate shows the conditional Lyapunov
stability of the steady solution in / ^ (0 ,1 ) . D

Remark 4.2 : The function k0 = ko(s) obtained in (4.4) is an increasing
function of e, such that fco(O) = 0, iko(l/9) = 1, ko(V5) = + oo. D

For small values of k, we also have a conditional Lyapunov stability result
in Hl(0,l) (and consequently in H2(0t 1), but the computations are
sornewhat tedious).

THEO REM 4.3 : Let 0 < E < 1 ««d A:2 = We2 (1 - a2). Then the steady
Couette solution is conditionally Lyapunov stable in ^ ( 0 , 1 ) , for all

2

Proof: We change the unknown function by setting

We2

A = —— a - We T ,
k2

so that the differential équation satisfied by A does not contain any linear
term in vx. The functions v, A and T satisfy the following équations

Re vt - svxx = TX ,

2) V + Jj?At + ̂ r^A = (1 + k2) T + (1 + k2) rvx + £-Avx, (4.14)
w e w e

T, + —i T = 4 T ^ - (1 - 0 2 M - (1 - ö 2 ) A t ? r - — - TVX.

We now multiply (4.14)x by Jj— , (4.14)2 by ^ i - , (4.14)3 by T, and

obtain
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We take the *-derivative of (4.14) and multiply the resulting system by
rsvx i _ a2

. ~Ayy rY respectively. We obtain
We \+k2

^ | r J ( A ^) ' A * <**+(*- «2) J
- (1 - a2) j (AuJ, TX dx - £- ƒ (TUJ, TX rfx . (4.16)

The absolute value of the right hand side is easily majorized by
-nIMI2 + c ( T i ) ( M I I Î + ilTllî) for e v e r y T l : > 0 * T h i s ' together with (4.15)
shows that the function 9, defined by

9(0 = w I|O(OII+ ï Ï
satisfies the Ricatti inequality (4.13), with different constants. This shows
the conditional Lyapunov stability in / ^ (0 ,1 ) of the steady solution for
k2 <=: 1. This result for k2 = 1 will be obtained while proving Theorem 4.4.D

A systematic dérivation of energy estimâtes in Hl(0, 1) made by using
some appropriate linear combinations of a and T gives a conditional
Lyapunov stability result valid for all k's small enough, the bound on
k being larger than the one obtained in Theorem 4.1. This result can be
stated as follows.

THEOREM 4.4 : Let k2 - We2 (1 - a2).

(i) If E is in (1/9, 1)? then the steady Couette flow is conditionally
Lyapunov stable in /^(O, 1) for all values of k.
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(ii) Let 0 < e =s= 1/9. Then there exists a function kx = kx(e) > ko(e) such
that the steady Couette flow is conditionally Lyapunov stable in H\0, 1) for
all k^k^s). (k0 is given in TheoremA.l).

Proof: We define A = a + -^- T, £ being a real number. Using the
We

function A instead of a in équations (4.1) implies that v, A and T satisfy the
following

We now dérive an energy estimate in L2(0, 1 ) in the same way as above : it
reads

(4-18)

Similarly an energy estimate in ifx(0, 1) is derived (the coefficients of the
quadratic terms are the same as those in (4.18)). The cubic terms are
majorized by i\\\v \\\ + C(«n)(||A ||J + | |T | | Ï ) , V-q > 0. We shall therefore
obtain a Ricatti inequality for

(and thus the conditional stability in Z/1), provided that a certain quadratic
form (cf. below) is positive definite.

In relation (4.18), we have to choose

- 1 < É < 1 . (4.19)

Notice that the special case where £ is equal to - fc2is compatible with (4.19)
only if k2<z 1 : this is the case studied in Theorem4.3.

Let us assume k2 s= 1 and define the quadratic form Q by

Q(X, Y, Z) = 8T,X2 + W e 2 4 ^ ^ + (1 - É) Z 2 - T, We ^ ^
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Condition (4.6) reads

8T„

which is equivalent to

i ^ , 4 o ^ ' ; r > » ; » . (4.20)

Set

(i) Let us assume that k2 = 1. Then fa(^) is unbounded for g = - 1.
Therefore, for every e => 0, there exists g, - 1 -< £ < 0, such that condition
(4.20) holds. This proves the case k2 = 1 in Theorem4.3.

(ii) Let e > l / 9 . Since max £fc(g) ^ ^ ( 1 ) = —^- r , Vfc > 1, there

exists g, 0 < € < 1, such that condition (4.20) holds for every fc> 1. This
proves the case e > 1/9 of the current theorem.

(iii) Let 0 < E =S 1/9. In order to define the function fcj = ^ ( e ) introduced
in the theorem, we first notice that there exists k, \<k<2, such that

max

where 1 = Çs is in ( — 1,0). The real number k is characterized by the
following property :

— if 1 < k ^ k, then max gk(è) = tk(^)9 €fc e ( - 1, 0) ;

— if A:> Jk, then max £fc(g) = ^ ( 1 ) .

Actually, an easy calculation shows that k2 satisfies k4 = 1 + J?, and that

I = - — . Therefore & - (1 + x/5)/2.

Moreover, the function &-• ^(êjt) decreases from (1, £) onto

, 00 ), We define the function 81 on [1, k], by
1 + k2 /
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The function fe2 = ^ ( e ) is then the inverse function of ex, and therefore is
an increasing function from [0, 1/9] onto [1, &]. We clearly have
^ ( E ) > A:0(s), Vs < 1/9, where kö has been introduced in (4.4).

Fix now e in (0, 1/9), and k < k^e). Then condition (4.20) holds for
£ = £k9 where %k (as defined above) is the real number in (— 1, 0) where
ïk attains its maximum. This complètes the proof of the theorem.

5. LINEAR STABILITY

It is well known in the case of the Navier-Stokes équations (at least for
flows in a bounded domain) that the nonlinear stability can be determined
by the analysis of the eigenvalues of the linearized stationary operator [4],
[5], [10], [12]. No such result is known in the context of flows of viscoelastic
fluids. It is even not clear whether the asymptotic behavior of the linearized
équation is governed by the spectrum of the linearized stationary operator.

In this section we shall give a partial answer to these questions in the case
of one dimensional shearing motions. A discussion of 2 or 3 dimensional
perturbations is postponed to a forthcoming paper.

First we investigate the linear operator in (4.1). Thus we define an
unbounded linear j£? operator in H = L2(I)3 by

/

\ We

-à'-

We

(5.1)

The domain £>(J?) is defined as the set of (v, a, T) G HQ(I) X L2(I)2 such
that -evxx~TxeL2(I).

The following lemma states the main properties of j£f (see T. Kat o [6] for
the définitions).

LEMMA 5.1 :

(i) 5£ is a closed operator in H.
(ii) ££ is m-sectorial with vertex — À for some A > 0 and semi-angle

TT

4 '

(iii) /ƒ s > i or if 0 < e < i and k2 = We2 (1 - a2) is different from
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1 - 3 e ± (9 e2 - 10 e + 1 ) m , , r z 7 , .
K± , where K± = — — , the spectrum cr(jSr) of

jSf consists only of a countable set of eigenvalues of finite multiplicity.

/ƒ 0 < E ̂  - , and k2 = K±, then o-(jSf) contains in addition 0 as a«

eigenvalues of infinité multiplicity.

Proof: (i) This is obvious.

(ii) Let us prove first that the numerical range of ££ is included in a

TT ƒ 1

complex sector of vertex - A and semi-angle — . Setting U ~ I a I, we
\ T /

obtain

_ JL. \ vxrdx- (l-a2)Ts f vx â dx - (1 - a2) râdx+ a f dx .

Therefore,

- ( 1 - Ö 2 ) T S | « , | | O | - ( 2 - a 2 ) | a | | T | ,

while

( ^ À ) - « 2 ) T
S K I I « I +2(2-«2)|T||a|

and

2(2-Ö 2 ) |T | |a|

Jm (&U, U).
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Finally,

Jm (<ev, U) « ^e (&U, U) + ( ±- + ^- + 2 - a2) \a\

| 2 + |w,|2) , (5.2)

where

A = Max ( J - + A + 2 - a2, (1 - a2) T, + 2 - * 2,

which shows that

/ m + A / ) C/, t/)

The numerical range of J5f is therefore included in the complex sector of
vertex - A and semi-angle — .

Let us show that JS? is quasi-m-accretive ; the first part of the proof has
just shown that JS? is quasi-accretive. It remains to prove that there exists jx
such that

(Jïf +

and

1 e i f (H) (the space of bounded linear operators on H)

To do this, we consider the System, for (f, g, h) e L2(I)3,

^ - - (1 - a)2
 TS vx - (1 - a2)

( )

a =
(5.3)
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We readily obtain the following estimate from (5.3) :

fe2 fe 2 2+ |a|2+
| |T | + | a | | T | (5.4)

+ I / I M + \9\H + \h\\T\.

From Young's inequality and (5.4), with JJL > 0 large enough, we obtain an
inequality of the type

This shows that (j£f + (M- + £) 7)"1 is a bounded operator in H.
Now, let V e H and U be such that (££ + (|x + g) / ) U = V. Then

((Jïf

which gives

|ÜU/)C/, t/)

Since ((J5? + fx/) £ƒ, t/) ^ 0 for jx large enough, we get

(iii) Let X be an eigenvalue of =â?. Then there exists such that

- (1 - a2) TS vx + J - a - (1 - a2) T = Xa ,

4 4
We eliminate a in (5.5)2, (5.5)3 and use the expression for rs. Thus,

def

where A:2 = We2(l - a2). Finally, (5.5) implies

[F(£ ,We, f l } \ )~ e]ux;c = X Re ü . (5.6)

We assume first that F (e, We, a, X) ^ e. Then, (5.6) with the boundary
conditions (5.5)4 yields
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v(x) = An$inmrx , n = l , 2 , ..., (5.7)

X„Re

More explicitly, we end up with a polynomial of degree 3 in \ „ ,

Re We2( l + k2) \3
n - We (1 + k2)[2 Re + n2ir2 We E] X2

+ Xrt{Re ( l + ^ 2 ) 2 + «27T2We [1 + e + 2 sk2]} (5.8)

- « 2 T T 2 { E ( 1 + A:2)2 + (1 - E ) ( 1 - k2)} = 0 .

Once v is chosen by (5.7), a and T are uniquely determined by solving
(5.5)2, (5.5)3. This gives eigenvalues only of finite multiplicity. Indeed, let
x £ \ i = 1,2, 3, be the roots of (5.8). The eigenvalue X is not simple
precisely when \ = \£> = \jp for n ̂  ra and f, ; e {1, 2, 3 } . This is only
possible for at most a finite number of couples ( n , m ) . (Look at the
résultant of the corresponding polynomials in (5.8).)

Now we examine the case F (e, We, a, X) = E. This implies X = 0 and
F (e, W e , a , 0 ) = e, i.e. (1 - e ) ( / c 2 - l ) = e ( l -f/c2)2. Solving this équation
in K = k2 yields

There are two positive roots K± if and only i f 9 e 2 — 10e + l > 0 , that is if

and only if 0 < e ̂  - . In this case

e = We4 (1 - a2)2 = 1 " 3 e ± v
2

9 f ~ 1 Q e + 1 = K* • (5-9)

Thus, for 0 < e =s - and k2 = K± , 0 is an eigenvalue of £f with infinité

multiplicity, since every v e HQ(I) n H2(I) is then a solution of (5.6). Note
that this is the only case where 0 is an eigenvalue of ££.

We shall prove now that the spectrum of J§? consists only of eigenvalues,
i.e. if X e C \ 2 , where 2 = {0} U {Xrt, n e M, solution of (5.8) }, then X
belongs to the résolvent set of Jgf. Let f,g,hbe arbitrary éléments in
L2{I). It is sufficient to show that the following system has a unique solution

- evxx - TX + X Re v = Re ƒ ,

- ( l - a 2 ) T , t > x + ( ^ - + x ) a - ( l -
(5.10)

ll7(0) = V(l) = 0 ,
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and that (JS? + X/)"1 e &(H,H). From (5.10)2, (5.10)3, we get

Tjc = - i ^ F ^ , We, a , - X )

, 2 ,, , w . [
£2 + (1 + \ W e ) 2

Since X e C\X one can solve (5.10) uniquely in v and obtain the estimate

We can then solve the linear system in a, T, and get

This complètes the proof of the theorem. D

The solution (v$, rs, <xs) is called linearly stable if the spectrum of
Se lies in {Me z > 0} . Then obviously, Inf « e t r ( i ? ) > 0 . Since JSf is the
infinitésimal generator of an analytic semi-group, this implies that the
solution of the linearized version of (4.1) tends to 0 exponentially as
t _ • + oo .

The next lemma states a necessary and sufficient condition for linear
stability. This result is essentially contained in [14] but we give a direct
proof.

LEMMA 5.2 :

(i) ƒ ƒ - < £ < : 1, then (vs, T5, <XS) is linearly stable.

(ii) Let 0 < e =s - . 77zen (t?„ T„ a j is linearly stable if and only if

0 === fc < (K_ )1/2 or jfc > (K+ )1/2, w/zere ifc = We2 (1 - a2), and K± are given by
(5.9).

Proof: We use the Routh-Hurwitz criterion (cf. [3]) to locate the
solutions of (5.8) : the roots of (5.8) belong to the half plane { ?̂e z > 0} if
and only if

e ( l + k2)2 + (1 - k2)(l - e) > 0 , (5.11)

a 1 a 2 - o t 0 a 3 > 0 , (5.12)
where

ot! = Re (1 + A:2)2 + n2 ir2 We (1 + e + 2 eA:2) ,

a2 = We (1 +fc2)(2Re + n2TT2Wee) ,

a3 = Re We2 (1 + k2) ,

a0 = n27T2[e(l + k2)2 + (1 - e)(l - k2)] .
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Condition (5.12) can be expressed as

2 Re2 K2 + K[2(Re + en2 ir2)(2 Re + n2TT2 We e ) + (1 - 3 e ) Re We n2 TT2]

+ (Re + tt27r2Wee)(2Re + rc2i72We (1 + e ) ) > 0 , V K ^ O (5.13)

where K = k2.
We have already encountered condition (5.11). It holds for any

k provided that - < e ^ l . On the other hand, if 0 < e < - , it holds if

k2 '< K„ or k2> K+ .
We note that (5.12) is always satisfied. Indeed it clearly suffices to show

that the roots of (5.13) are négative. Their product is positive. Furthermore
the sign of their sum is the sign of

- 2(Re + eJf )(2 Re + We zX) + (3 s - 1 ) Re We X

where X = n2fn2. Since this expression equals

- 2 e 2 W e Z 2 - R e Z [ 4 E + ( l - 8 ) W e ] - 4 R e 2 < 0 ,

it shows that the roots of (5.13) are négative.
The lemma is proved.

Remark 5.3 :
1. The intervals of linear stability are precisely those where the curve in

figure 2.1 is increasing.
2. We do not know how to show that linear stability implies nonlinear

stability (e.g. in L2). However, we proved in section 4 that the solution

(vs, rs, as) is stable for all fc's if E > - , and for k e [0, k^e)) if

0 < s === - . This /^(s) is smaller than K_ .
1
9

of JS? crosses the imaginary axis by 0, eigenvalue of infinité multiplicity.

3. If 0 <: e === - , the linear stability of (vs, TS, as) is lost when the spectrum

6. RELATED PROBLEMS

In this section we investigate some généralisations of our previous results
which are of physical interest.

6.1. Several relaxation times

The models under study in the previous sections involve a single
relaxation time (Xi). For an intégral model, this corresponds to a relaxation
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kernel of exponential type. More realistic models possess a more gênerai
kernel. Taking a sum of exponentials leads, for the differential form of the
model, to several relaxation times. Namely, the extrastress tensor
T is decomposed as

(6.1)

where

and

(6.2)

ls = 2 T)S Q , 0 .

We shall restrict ourselves to the case r\s > 0 (non-zero Newtonian
contribution). The full équations of motion become (cf, (1.5)),

div w =

^

or, in nondimensional form

(6.3)

Re / ^ + (tt. v )

div u = O ,

- ( 1 - ( O ) A M = V. T, + ƒ ,

(6.4)

where here

O) = , O) • = , T| =
Tl Tl

n,-,W, = . ^ ;

and Re =

Setting

pi/L

( = f ' ( I s we reduce the system (5.4), for the Poiseuille or

the plane Couette flow, to
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Ret> r-(l-(o)i>„= V v - / ,

a i r + ? ï i=(l-a2)T,.1 ; ; c ,

399

(6.5)

where

As in (1.13) the équations for fy are linear and uncoupled. The system (6.5)
is satisfied for f =* 0, ;c E ƒ (ƒ = (0,1) for the shear flow, I = ( - 1, 1) for
the plane Poiseuille flow).

The boundary conditions are

v\x = ö = 0 , v\x = l = lfor the shear flow,

v \x = _ 1 = 0 , v \x = j = 0 for the Poiseuille flow.
(6.6)

The force ƒ is zero in the first case, and equals a positive number in the
second case.

Most of the results of the previous sections carry over to the system (6.5),
(6.6). For instance, Theorem3.2 holds mutatis mutandis.

The basic steady solution for the plane Couette flow is

V(x) = X , T = T -f EVX = + 1 - (O

(T is the total shear stress),

Steady solutions for the plane Poiseuille flow are given by

CO,

2) v2 ',e,l + W?(l-a2)^

a = (1 - a2) v2^„2

(6.7)

(6.8)

vol. 24, n* 3, 1990



400 C. GUILLOPÉ, J. C. SAUT

where vx is a solution of the algebraic équation of degree 2N + 1,

fx= (1 - «o) vx + vx £ ( - L 2 j . (6.9)

6.2. Non uniform shearing motions

We consider the shearing motions between two infinité parallel walls, the
lower wall being fixed and the upper wall moving with the time dependent
velocity K(t). For instance, K(t) could be a periodic function
K(t) = Usinbt.

If for instance U = Sup K(t) is used to define the Reynolds number and
t

the Weissenberg number, the analog of (1.13) is

Re vt - (1 - o>) vxx = TX - Re K' (t) x ,

where t?(jc,f) satisfies the homogeneous boundary conditions

) = v(l,t) = Q. (6.11)

When K(t) is a smooth function (with X and AT' bounded), Theorem 3.2 can
be easily extended to the situation described by (6.10), (6.11) : we get global
existence, uniqueness and uniform bounds on the solution.

Note added in proof. After this paper was accepted for publication, the work [16] was
brought to our attention by J. Nohel.
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