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NONEQUILIBRIUM REACTION-DIFFUSION STRUCTURES
IN RIGID AND VISCO-ELASTIC MEDIA :

KNOTS AND UNSTABLE NONINERTIAL FLOWS (*)

by Peter J. ORTOLEVA Q)

Abstract — A simple réaction-diffusion model is used to demonstrate the existence of
asymptotic (i e long time) knotted solutions of réaction-transport problems. The knots are
attained with respect to the surface of constant concentration. These solutions cannot be mapped
continuously onto the plane and as such have no two dimensional analogue — they are strictly
three dimensional structures

The existence of knotted solutions is first argued for intuitively using the properties of a simple
reaction-diffusion System. A variational theorem for this system is then denved Extrema of the
associated « energy » functional with knotted topology are obtained numencally The existence of
a rich class of knotted and other strictly three dimensional solutions is also discussed

When the reaction-diffusion medium is subject to mechanical stresses, flows may result These
flows may interact with emerging dissipative structure when the time scales for flow and reaction
are comparable Imposed shears may orient compositional patterns Ifthe rhéologie properties of
the medium depend on composition, vortices may émerge under conditions far below the cntical
Taylor shear rate

I. A FREE BOUNDARY REACTION-DIFFUSION MODEL

Consider the knotted structures of figures 1, 2. Our purpose here is to
demonstrate that a surface of equal concentration for the long time solution
of a reaction-transport system can take on such topologies. For concreteness
consider the reaction-diffusion problem

^ i = D,V2c, +Fl(c) (1.1)
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Figure l.

Figure 2.
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with appropriate boundary conditions on the N concentrations i = 1,
2, ..., N. Hère Dt is the diffusion coefficient for species i and Ft (ç) is its net
rate (a function of ç = {c1? c2, ..., c#}). We seek to show that even if
F does not explicitly depend on position r and if the domain has no holes or
knotted shape, there exist asymptotic solutions of (I.l) such that there is a
range of constants yu 725-*>'YN wherein the isoconcentration surfaces
ct(r, t) = yn have knotted structure as t -• oo [1].

To demonstrate the above conjecture consider the two species problem

(1.2)

(1.3)

If the « slow manifold » G(X, Y) = 0 has the form as in figure 3 then it has
been shown that as e->0 the above problem maps onto a simple free
boundary problem as follows [2] (see fig. 3 for définitions). There exists a
surface denoted S(r9t) = O such that Y = Y1 or Y11 for S < (> ) 0 respect-
ively. The value of X, denoted Xo in figure 3, is such that as e -> 0 the jump
in Y is stationary ; for X =£ Xo a Y jump from the lower to the upper branch
moves with a velocity that approaches zero as X -> ZQ. The concentration

y — —- _ ^-

Figure 3.
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X always lies close to a well defined value Xo such that X = Xo + e1/2 X*
defining the scaled concentration déviation X*. The latter satisfies

Ç-B,rt't/(S) (1.4)

« S > - { £ *< 00 CM)

The constant F1 is given by Fl = F(X0,Y
l) and similarly for F11. If

X satisfies no-flux boundary conditions then so does X* ; then we have

= o , r on X (1.6)
on

for a system in a domain bounded by the surface 2 (where 9/9n is a normal
derivative). The above free boundary problem is complete upon specifying
the dynamics of the surface S(r,t) = 0 and imposing continuity of
X* and its gradient across S(r, t) = 0. The free boundary dynamics is given
by

— =QX*\VS\, S(r, 0 = 0 , (1.7)

for well defined constant Q.
1 he above free-boundary problem provides a relatively simple framework

for arguing the possibility of knots [1]. In particulier we investigate the
existence of steady state solutions (dX*/dt = dS/dt = 0) wherein the free
boundary S = 0 may take on the form of a knot as in figures 1, 2 or even
more complex knotted and tangled structures.

II. BASIC PROPERTIES OF THE FREE BOUNDARY PROBLEM

To motivate an intuitive argument for knotted structures, let us review
known properties of simple solutions of the free boundary problem (1.4-7).
Static one-dimensional structure along the x-spatial axis as in figure 4 may
easily be calculated exactly. For F1^ - F11 it has been demonstrated that
such a structure is linearly stable [3], When continued into a two-dimension-
al domain, in a strip for — oo < y < oo, déviations from planarity in the
interface are smoothed out in time (at least when Q is small) [1]. Double
interface structures as in figure 5 are repelled from the walls and their width
does not collapse [1]. Cylindrical or spherically symmetrie solutions may be
obtained [1].
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0

r
Figure 4.

Figure 5.

The above mentioned structures and their properties suggest the follow-
ing ;

* the free boundary has a measure of morphological stability (they do not
collapse when extended in two or three dimensions) ;

* the free boundaries are repelled by no-flux walls and by other free
boundaries ; and

* the free boundaries may take on tubular structures.

This suggests that there may indeed be knotted, tubular free boundaries
as in figures 1, 2.

vol 23, ne3, 1989
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III. A VARIATIONAL THEOREM FOR STATIC STRUCTURES

Static solutions of the free boundary problem (I 4-7) are such that
X* 5 0 for S^Q With this we may calculate static structures as the solution
of

Dx V
2X* + ƒ ( - X* ) = 0 (III 1)

dX*/dn = 0 , f on 2 (III 2)

The solutions of (III 1, 2) are the extrema of the functional

E[X*] = f d3r l-±Dx\VX*\2 + X* ƒ(--**)} (III 3)

This suggests a method for calculating knotted structures One may guess
« trial functions » with knotted topology and then use the E functional to
optimize the form of the trial function

One approach is to construct a trial function by mtroducing a line source
and then use the vanational theorem to détermine the équation of the line
Let T be a parameter generating a trajectory ? 0 (T) Introducé a « weight*»
W(T) and range O-(T) Then we have

X*~ [drW(r)exp {- \r - ro(r)\2/4 a2^)} + B(r) (III 4)

where B (F ) is a term fixing the boundary condition on X* For example m a
spnericai vessel ot radius R take

B = £0+ (R~r)e-^r"R^x

x | ^ T W ( T ) | - e x p {- | F - F 0 ( T ) | 2 / 4 C T 2 ( T ) } (III 5)

where Bo and X are vanational parameters and r — \r\ for the sphère

centered at r — 0 With this one may use the functional £[X*] to obtain
vanational équations for ? 0 (T) , W(T) , O-(T), BO and X Knotted structures
would then be penodic orbits which do not deform continuously onto the
plane

To date a more modest approach was adopted, W and a were taken to be
independent of T , ?0(T) (= {*()> ̂ o* zo} ) w a s taken m the form

2 2 2

X0 = fX COS <|>o

*> = »«*+' (III6)
(x = a + o cos T

z0 = - c sin T

M2AN Modélisation mathématique et Analyse numérique
Mathematical Modelling and Numencal Analysis



NONEQUILIBRIUM REACTION-DIFFUSION STRUCTURES 513

for variational parameters a, b, c. The parameter k = 1, 2, 3, ... détermines
the multiplicity of the knot (see figs. 1, 2 for A: = 1, 2 knots). With this we
used a numerical intégration algorithm to calculate E(a, b, c, <r,W,\) and
then used the program STEPIT to détermine the best values of the
variational parameters for a given k [4],

IV. REMARKS

Having established the possibility of simple knotted asymptotic states of
reaction-transport Systems, it is clear that the structures obtained are just a
few examples of a very rich class of tangled structures. These can be
connected (arising as the weaving of a simple tube with connected ends) or
they may involve the intertwining of a number of independent closed tubes.
The possibilities are even seen to be greater when we recognize that such
structures can themselves exist within larger tubes. Thus, for example, a
simple knot may exist within one loop of a larger knot.

It is likely that under some conditions the knot structures may have a
temporaly oscillatory nature. For example, it was found that patterns in a
dise arising from the free boundary problem of Section I can rotate in
specified ranges of parameters [2]. These dynamical states arise as a System
parameter passes through a critical value beyond which a rotational
frequency rises from zero.

V. PATTERNING AND REACTING VISCO-ELASTIC MEDIA

The potential for instability and patterning in a reaction-diffusion
problem is enhanced when chemical and mechanical variables are coupled.
An interesting case in point is metamorphic differentiation. Metamorphic
rocks have been subjected to conditions from 6 to 30 km in depth. The
minerai content of such rocks is often observed to be distributed in banded,
spotted, or concentric shells, or even as spiral (vortex patterns). A typical
differentiation is on the cm scale and involves alternating concentrations of
quartz and mica.

While rocks do flow, the vortex structures cannot be of the Taylor type.
Rock flow is very slow so that their mechanics is non-inertial. Inertial effects
are central to the development of a Taylor vortex driven by a shear flow.
Hence vortex structures observed in metamorphic rocks cannot be of the
Taylor type but rather must involve some type of mechano-chemical
coupling.

To illustrate mechano-chemical coupling that can lead to the création of
the above-mentioned patterns, consider our rhéologie model of a reacting,
noninertial visco-elastic medium [5]. As suggested by the geological
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application, the medium is described by the distribution in space and time of
the following variables :
Rt = average radius of minerai i grains
nt — number of minerai i grains per volume
ca = concentration of mobile molecular species a in the intergranular space
<j> = volume fraction of medium occupied by intergranular space (assumed

small and constant)
ü — velocity of rock flow ; and
grm = stress tensor (a macroscopic quantity defined as an average over a

macro volume element containing many grains).

In this way we describe the M minerai (i = 1,2, ..., M) and N
intergranular species (a = 1, 2, ..., N ). It is convenient to introducé the set
of quantities <B> (the « texture ») defined via

0 = {Ru R2, ..., RM ; nu n2, ..., nM) . (V.l)

The phenomonological relation between gm and û in rocks can be rather
complex. The simplest such relation adopted in the rock mechanics
literature is

•s~'-^''[HS+5HH (v-2)
where Pm = - tr (gm) and dut/dx} is the derivative of the /-component of

ü with respect to the ;-th cartesian coordinate ; and hl} is the identity matrix.
An important source of coupling in the present model is via the texture
dependence of the viscousity nq. From &71 and ü we are thus reduced to four
independent variables that we take to be uu w2, u3, and Pm (the mean
stress). Equations to détermine three of them come from momentum
conservation ; for these non-inertial fluids we get

0, f = 1, 2, 3 . (V.3)

A fourth équation will be derived below from considération of grain growth
kinetics.

The reaction-diffusion équations take the form

V. (<f>£Vç) + | w G - 0 . (V.4)

Here Q is a matrix of diffusion coefficients, | is a matrix of stoichiometric
coefficients multiplied by solid molar densities (Ç is constant), w is a
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M x M diagonal matrix with entries <i>, = 4 Tmf R? and Gt is the grain growth
rate. Hère we use the fact that the u is small (so that transport is mainly
diffusional) and that the concentrations change adiabatically in response to
the slow grain growth rates (i.e. there is no d§ç/bt term).

Grain growth and number conservation imply

-gji = - Ü . V*f + G, (V.5)

^ i - - V . ( 2 « i ) . (V.6)

Because the space between grains is small,the medium is completely filled
with solid and hence

£ 4 imt R? = 3 . (V.7)

This may be combined with the grain growth and number conservation
équations to obtain

M

V.3= £ 4irnlRfGl . (V.8)

These équations point out a second source of mechano-chemical eoupling.
The grain growth rates depend algebraically on am and © as well as on
çt This is because grain growth is sensitive to the stress on a grain ; the stress
on a grain dépends on the g"1 acting on the macro-volume element
containing it and on the mechanical properties of the grains contained
within that element. Thus in an average sensé, the rate of growth dépends
on e . (See Refs. [5], [6] for detailed formulae for G.)

VI. MECHANO-CHEMICAL FEEDBACK AND PATTERN FORMATION

The above model allows for a number of feedback mechanisms leading to
pattern formation. Consider an initially uniformally textured medium. If the
rate of growth of, say, minerai 1 üicreases with the local volume fraction
occupied by minerai 1, then ségrégation of minerai 1 is indicated. For
example, the reaction quartz &X (where X is mobile SiO2 in the
intergranular space) has been taken to have rate in the form

Gqmnz ~k[cx~ Kig", Quartz)] (VU)

vol. 23» n' 3, 1989
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where 4>quart2 is the volume fraction of quartz in, say, the quartz-mica rock
The tendency for ségrégation of quartz from mica is mdicated by the fact
that under some conditions K decreases with 4>quartz Furthermore, the
dependence of r\ on <J>quartz may cause a decrease m Pm with increasmg
4>quartz This will again promote quartz ségrégation because K tends to
decrease with Pm Note that the textural couphng through viscousity can
only destabilize the uniform medium to infinitésimal perturbations when the
uniform state is subject to a shear or other flow In the state of rest of the
uniform medium, viscousity coupling is second order [7]

Linear stability analysis of the flow free uniform state shows that
metamorphic differentiation can take place In particular the rate of growth
of harmonie perturbations can have a well defined maximum as a function of
wavelength [7], [8]

The full nonhnear problem has been simulated m one [6] and two [9]
spatial dimensions In these simulations spots of mica were found to
spontaneously develop in a quartz-mica rock perturbed shghtly from
umformity for a model descnbing deep (20-30 km) rocks Concentric rings
of quartz and mica were also observed [9] When a shear is imposed the
spots become elongate, tending to align with the imposed flow In these
simulations the texture dependence of the viscousity was neglected Even
so, the imposed flow can have interesting effects As a spot elongates the
associated secondary ring may be brought so close to the inner spot that the
minimum wavelength for which patterns grow is passed and the rmg may
disappear With this an imposed shear may select band formation parallel to
shear and with a well defined wavelength

Noninertial vorticies may émerge from a coupling of the spot forming
process and texture dependent viscousity In future work it will be of
interest to investigate the onset of vorticity as a function of the dependence
of tl on texture, the rate of gram growth, and the mmeral content of the
ïmtially uniform rock as well as on the imposed rate of shear
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