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A TIME-DISCRETIZATION PROCEDURE
FOR A MIXED FINITE ELEMENT APPROXIMATION

OF MISCIBLE DISPLACEMENT IN POROUS MEDIA (*)

by Jim DOUGLAS, Jr. (*), Richard E. EWING (2),
and Mary Fanett WHEELER (3)

Abstract. — An efficient time-steppingprocedure is introduced to treat the continuous-time method
of the authors which employs a mixed finite element method to approximate the pressure and the
fluid velocity and a standard Galerkin method to approximate the concentration for the system describ-
ing the miscible displacement ofone incompressible fluid by another inaporous medium. The concen-
tration équations are solved by Gaussian élimination at each concentration time level, but the number
of matrix factorizations is reduced to one per pressure time step, which is much larger than the concen-
tration time step. Optimal orÜer error estimâtes are derived under certain constraints between the
discretization parameters. It is shown that the natural choices for these parameters satisfy the cons-
traints with the exception ofone case>for which a very mild pressure time step restriction is introduced.

Résumé. — On introduit un procédé efficace de discrétisation en temps pour traiter la méthode
(continue en temps) des auteurs, qui utilise une méthode d'éléments finis mixtes pour approcher la
pression et la vitesse du fluide ainsi qu'une méthode classique de Galerkin pour approcher la concen-
tration, dans un système décrivant le déplacement miscible d'un fluide incompressible par un autre
dans un milieu poreux. On résout les équations de concentration par élimination de Gauss à chaque
niveau de temps en concentration, mais le nombre de factorisations matricielles est réduit à un par
niveau de temps en pression, qui est beaucoup plus grand que le pas de temps en concentration. On
obtient des ordres optimaux pour les estimations d'erreur lorsque certaines relations sont vérifiées
par les paramètres de discrétisation. On montre que les choix naturels pour ces paramètres satisfont
ces relations sauf dans un cas, où une restriction très faible sur le pas de temps en pression est introduite.

1. INTRODUCTION

The miscible displacement of one incompressible fluid by another in a
porous medium Q <= R2 of unit thickness and nonuniform local élévation
can be described by a diflerential System that can be put in the form [7, 9, 10]

de
(b) <i>(x) ft + u.Vc - V.(D Vc) = (c-c)q = g(x, U c),
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250 DOUGLAS et al.

for x e Q and t e J = [0, T], where the diffusion coefficient D = D(x, u)
is the 2 x 2 matrix given by

D = 4>(x) { dj + | u | (4£(M) + ^ ( i / ) ) } , (1.2)

with ey(u) = W; t*y| M |2 and E1 = I — E. We impose the boundary conditions

{a) u.v = 0,

(b) t Bv(x,tt)è-vJ==0 ° ' 3 )

on 3Q x J, where v is the outer normal to Q ; for compatibility (Le., incompres-
sibility)

( « , ! ) = I q d x = 0, teJ. (1.4)î, 1) = f
Jn

The initial concentration

c(x,0)-co(x) (1.5)

must be specifîed, and the initial pressure can then be determined from (1.1a)
and (1.3a).

The authors [4] have previously defined a continuous-time fïnite element
method based on the use of an elliptic mixed fïnite element method to approxi-
mate the pressure p and the velocity u and a parabolic Galerkin method to
approximate the concentration c. It is particularly suitable to employ the
mixed method, since only the velocity and not the pressure appears in the
concentration équation. The object of this paper is to discuss a time-stepping
procedure for the fïnite element procedure that efficiently reflects the fact
that the velocity fîeld varies slower in time than either the concentration or
the pressure for reasonable physical data. Thus, we shall take the pressure time
step to be much larger than the concentration time step. We shall consider a
procedure that is based on the direct solution of linear équations for the con-
centration at each concentration time level ; the matrices and équations arising
for each step will be modifîed so that only one factorization will be required
for each pressure time step, rather than each concentration step. The modifi-
cation will be made in such a way that the asymptotic order of convergence
is unaffected. We shall consider the algebraic équations for the approximate
pressure to be solved exactly.

R.A.I.R.O. Analyse numérique/Numerical Analysis



MISCIBLE DISPLACEMENT IN POROUS MEDIA 251

Other time-stepping methods have been discussed for various finite diffé-
rence and finite element methods for the miscible displacement problem. In
particular, the concept of time-stepping nonlinear parabolic équations by
incomplete itération [3] has been extended [6, 12] to certain finite element
procedures for the miscible problem. The method of this paper is in a sensé
an outgrowth of a refînement [1] of an efficient direct solution method [2]
for nonlinear parabolic équations ; a variant of it has been applied [5] experi-
mentally.

Since this paper is a continuation of the authors5 paper [4], we shall use
the same notation as far as possible and we shali make use of the results of
that paper wherever feasible to shorten our arguments hère. An outline of this
paper is as follows. The continuous-time method of [4] will be recalled, and
then the time-discretization procedure will be derived. Some technical results
to be used in the convergence analysis will be summarized, and then the démons-
tration of the convergence of the fully discrete method will be given. The finite
element spaces^for th&^pressure and the-concentrations will-be-allowed^to be
associated with different polygonalizations of the domain, and the time step
for the pressure will be taken larger than that for the concentration. Optimal
order error estimâtes will be obtained under certain constraints on the discre-
tization parameter. Finally, it will be shown that these constraints are natural
and pose no practical difficulty.

2. FORMULATION OF THE METHOD

Let

(a) V = H(div; Q) n { v.v = 0 on dQ } ,

(b) W = L2(Q)/{ <p = constant on Q } ,

and set

(a) AQ^n-fy^yi^*.^, (2.2)
(b) B(a, q>) = - (div a, cp)

for a, p G V, cp e W, and 0 G Lœ(Q). The pressure équation is equivalent to
the saddlepoint problem

(a) A(c ; % v) 4- B(v, p) = (y(c), v), veV,

(b) B(o,<p)= - ( f t q > ) , q>e\V9 ^

vol. 17, n° 3, 1983



252 DOUGLAS et al

at each time te J. The concentration équation is equivalent to finding a diffe-
rentiable map c : J -> H1(Q) such that

h (u.Vc, z) + (D(u) Vc, Vz) = (#(c),z) (2.4)

for z e i î ^ Q ) and 0 < t ^ T and such that c(x, 0) = co(x).
Let fc — (/zc, /ip), with Jic and fcp being positive. Assume that Q is a poly-

gonal domain and that Vh x Wh is a Raviart-Thomas space [11] of index k
associated with a quasi-regular triangulation or quadrilateralization of Q
such that the éléments have diameters bounded by hp. (The argument below
covers the case of the extension to curvilinear boundary éléments given by
Johnson and Thomée [8] for the index k = 1.) Set

(a) Vh = {veVh: v.v = 0 on dQ },
(2.5)

(b) Wh = WJ{ cp SE constant on Q } .

The approximation properties of Vh x Wh are given by the relations (3.2)
of [4]. Then, let Mh <= H 1(Q) be a standard fînite element space for a Galerkin
method, and assume that it is associated with a quasi-regular polygonaliza-
tion of Q and that it is of index / :

inf || z - zh \\HHn) ^ M || z ||Hl + i(n) h[. (2.6)

Zh G M h

Let

(a) Atc > 0 , tc
n = nAtc,

{b) Atp = Q Atc, QeZ+ , t™ = m Atp .

The multiplier Q will, in gênerai, depend on Atc. The algorithm will be describ-
ed so as to advance the solution one pressure time step. First, approximate
c0 by a function C° = C(t^)eMh; this can be done by interpolation, by
L2-projection, or by projection with respect to some Dirichlet form.

Now, assume C(Ç) known. Then, the velocity-pressure pair { Um
9 P

m }
at time Ç can be calculated as the (mixed method) solution of the System

(a) A{C(t?) ; Um, v) + B(v, Pm) = (y(C(Ç)), v), veVhi

(b) B(Um,q>)= -(qiÇly), cp G Wh.

The question at hand is to discretize the concentration équation in time for
C < lc ^ Ç+1* This will be done by deriving, thorough several stages, a
convenient variant of a backward-differenced Galerkin procedure.

R.A.I.R.O. Analyse numérique/Numerical Analysis



MISCIBLE DISPLACEMENT IN POROUS MEDIA 253

The standard backward-difference équation would be of the form

s~*n r^n~ 1

t r
+ (D(l/(tc-)) VC", Vz) = (</(Cn), z), zeMh, (2.9)

where C" = C(t?) e Mh. Since t" £ { tjj : j = 0,,.., m }, we have no values for
the velocity C/(t") available directly from a pressure calculation. For m ^ 1,
this difïîculty can easily be eliminated by linear extrapolation. Set

•t-tx fin 1 f-ti j.în

V" = ' ' i Vm - c_ ' t / - " 1 (2.10)

for Ç < tn
c ̂  Ç + 1 and replace U{tn

c) by t7n in (2.9). For m = 0, first use
obtain a&st-estiroate to j / 1

r

first pressure step using interpolation for Un between U° and the estimated
C/1, and then continue as above; Le., use a predictor-corrector concept for
one pressure step. It can be helpful to correct twice. (In practice, it is often
feasible and désirable to utilize an asymptotic solution for the concentration
at early time, so that this predictor-corrector step can be avoided ; see [5].)

Next, there is the possibility of nonlinearity in the algebraic System (2.9)
arising from the appearance of g{Cn), If g(c) is linear, as it is for practical
purposes when g has the form g(c) — (c — c) q as in (1. lfr), then no modi-
fication of this term is necessary. If not, then since we are expecting only
fîrst-order convergence in Atc as a resuit of the discretization of dc/dt, we
can extrapolate C"1"1 and Cn~2 in the évaluation of g{Cn). Set

C", if g(C) = aC + p ,

2cn~1 — Cn~2 , otherwise

and replace g(Cn) by g(Cn). At this point, we are looking at the équations

<t> A T > z ) + (^n-VC", z) + (D(Un) VC", Vz) = (g{Cn), z), ze Mh.

(2.12)

Let us turn our attention to the computational aspects of solving (2.12).
Let

Mh = Span { zl5 „., zN } (2.13)

vol. 17, n° 3, 1983



254 DOUGLAS et ai

and form the matrices

(a) <g = l($zp zfi ,
_ _ _ (2.14)

(b) ^ n = jtf(Un) = [_{U\Wzj9 zt) + (D(U») Vzj5 Vz,)] .

Let \|/f = {g{Cn), z() and \|/n = (y\fn
u ..., \|/£)r, where for simplicity in the dis-

cussion we are going to assume the « otherwise » case in the évaluation of
Cn from hère on ; the linear case is slightly easier to treat in the analysis and
has no noticeable effect on the computational complexity discussion. In
matricial form (2.12) becomes

(V + Atcsén)$n = ^ p " ' 1 + Atc\|/
n, (2.15)

where

C"=îft"v (2.16)

If a good sparse matrix procedure that takes proper account of the structure
of <ë + Atc s#n is used, then the opération counts for the L[/-factorization,
the forward and backward solutions of Lt/p = \j/, and the formation of the
matrices and the right-hand side are as follows :

(i) Formation of V + Atc sén O(N)

(ii) Formation of ^ p " " 1 + Atc \|/
B = \j/tt O(N)

(iii) Factorization of <€ + Atc sén O(N3/2)

(iv) Solution of LUP" = \j/n 0{N log N).

Thus, the calculation is dominated by the factorization, and it would be very
advantageous to reduce significantly the number of factorizations. The final
modification of (2.9) or (2.12) présents a method requiring a single facto-
rization of a matrix of the form ^ + Atc sé{U) over each pressure time step,
instead of one each concentration step.

Recall that p and u are approxùnated by équations having no explicit
dependence on the time ; hence, linear extrapolation of U can be hoped to
produce second-order accuracy in the pressure time step. Set

C7-+1/2 = ~ Um - ^ U"1'1 . (2.18)

R.A.I.R.O- Analyse numérique/Numerical Analysis
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Finally, consider the relation

= (g(cn), z) + ((f/;+1/2 - ûn).vc\ z) +
U !2ÏÏ)VC\Vz), zeMh, (2.19)

where the extrapolation Cn is employed on the right-hand side so that linear
algebraic équations with a constant matrix ^ + Atcjrf(U™+l/2) occurfor *c

m

between t™ and t™+1. The final algorithm consists of the combination of (2.8)
at time Ç with (2.19) for t™ < tn

c ̂  Ç + 1 .
Variable time steps can be used in the following manner. The pressure

steps can be changed arbitrarily without loss of algebraic efficiency. The
integer Q occurring in the relation (2. lb) between Atp and Atc can be varied
at each pressure step. But, Atc must be held fixed over any pressure step, for

required-each^time
the efficiency of the method would evaporate.

The coefficients at, y, and g are not necessarily defined for c £ [0, 1]. Extend
them continuously as constants in c on (— oo, 0] u [1, oo), so that the nume-
rical method, which does not preserve the maximum principle for the concen-
tration that is satisfied for the differential problem, does not break down
when C ranges outside [0, 1].

3. SOME PRELIMINAIRES FOR THE CONVERGENCE ANALYSIS

The analysis of the convergence of the scheme defined by (2.8) and (2.19)
will be given under the assumption that the imposed flow is smoothly dis-
tributed. Thus, we shall be able to dérive optimal order convergence results
for smooth solutions. In the continuous-time case it was found valuable to intro-
ducé two projections in order to simplify the argument, and these projections
are equally useful here. Let the pressure solution { u, p } be projected into
the mixed finite element space by the map { Ü, P } : J -> Vh x Wh given by

(a) A(c iÜ,v) + B(v, P) - (j(cl v), veVh,
(3.1)

(b) B ( l / ) () W

Then,by[4, (5.4)],

\ \ u - Ü \ \ v + \ \ p - P \ \ W * : M \ \ p \ \ L ~ i J ; H k + 3 m h k
p

+ 1 , t e J . ( 3 . 2 )

vol. 17, n° 3, 1983



256 DOUGLAS et al

Next, let C : J -> Mh be the projection of c given by

(D(u) V(C - c), Vz) + (M.V(C - c), z) + (X{C ~ c), z) - 0 , z e M h ,

(3.3)
where

X = 1 + q+ . (3.4)

Then, from [4, (5.10) and (5.11)],

(fi\ II /" f"1 II A- lt \\ r - (~* II < ^ A/f El / ° II h
\uj || c \\ L^(Q) c II H H 1 (fi) ^ 1 II sljfir' + 1(f2) c '

( 3 . 5 )
de \ . ,!_<

l2 } II C HHÏ + 1(Q) +dt
me»

de
dt

where both Mx and M2 depend on the L^-norm of u and the ellipticity constant
associated with dm$(x) and M2 dépends on the L^-norm of du/dt as well.

The estimate [4, (6.2)] for U — Ü and P = P is valid at pressure time
levels; thus,

« || nm p
"*" II * ~ r

jjm fj
\\w

The quasi-regularity of the grid has been assumed in the dérivation of (3.6).

4. CONVERGENCE ANALYSIS

Let Ç = C - C and r\ = c - C. Then, (2.4), (2.19), and (3.3) can be
combined to obtain the relation

- D(u")) VC", Vz)

n)) VC", Vz), zeMh. (4.

The terms will be treated either separately or in combination below, and
the test function will be chosen to be z = Ç".

First,

C" - C""C""1 de" 1 f'? ÔTI , 1 fw , . _ i v 3 2 c .

R.A.I.R.O. Analyse numérique/Numerical Analysis
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and

^MW)" 1

c
d2c
ô?

ÔT[

Tt
2

L2(Jn

2

;L2)
+ II l" llî» y (4.2)

w ^

where Jn = (t" *, t") and the argument « O » will be omitted where the
meaning is clear. Also,

Next, note that

(JD(MB) - ^

M {II T I " . | | 2
2 + .|| ^ n . - | | £ 2 } .

~~ - D{Un))VCn =

+ (D(un) - D(Un))VCn

Observe that

V(Cn - 2 C " " 1 + Cn~2) = Atc f

Thus, using [4, (7.2)-(7.4)], we see that

~~ ~" " - 2C71""1 +

(4.3)

C n" 2) -

(4.4)

et-
• d i .

J ( ? -
Since

TT» _ 77m+l/2 _ V ••_£
U UP - At

it follows that || Un - U™+li2 \\L2 is bounded. Indeed, by differencing the
équations defining Um and Um~ \ a factor of Arpshould be obtainable through
estimating C(Ç) — C(Ç~1); however, just boundedness suffices for our
purposes. Thus,

\((D(Un) - D(ÏÏ™+1/2))V(Cn - 2C"" 1 + Cn-2)5V^n)| ^

e II VÇ" H*, + M(At c ) 3

ôt2 • (4.5)
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258 DOUGLAS et al

The term involving V(2 ^" 1 — £? 2) must be treated more carefully;
hère, it is necessary to see that D(Un) — D(U™+1/2) tends to zero as àtc tends
to zero. We shall dérive two estimâtes, one applicable to the case of the zero
index Raviart-Thomas space and the other for positive index spaces. For
the first of these estimâtes, we note that

(a) A(C(Ç); Um - Um~\v) + B(v,Pm - P™"1) =

(b) B(Um -

Thus,

|| JJ™ _ t /m~ ]

and

il un - t /r1

ij pm pm—1

M {At + || i C(Ç) -

f »

{ i + fc;*(fci+1 +

(4.6)

ILO }

\\L2 } (4.7)

(4.8)

where quasi-regularity has been invoked to shift || Um l ||L« to || Lrm 1 ||L2

and then (3.6) and (3. 5a) have been applied. The constant M(p, c) dépends
on the PF1>00-norm of//""1 and the ifï+1-norm of c ^ " 1 ) . The notation Ç™
indicates (̂t™). It then foliows that

((D(Un) -

<M(p,t
tm- 1

.{ + + || VÎT2 ||22 }, (4.9)

where again an inverse property has been used to replace || V^n ||L« by || VÇ" ||L2.
The application of (4.9) will introducé a constraint of the form A^ = o{hc\
which will not be serious for the choice k = 0 and / = 1 for the indices of
the spaces but which is not natural for k > 1.

The second_estimate for the V(2 ^""1 - £"~2)-term passes through an Lœ-
estimate for Un — ÏJ™+1f2. First, write the différence in the form

^ % ^ (4.10)

R.A.I.R.O. Analyse numérique/Numerical Analysis
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Then,

|| ÏÏn - 5- ||L- < 3 { || Um - um ||L- + || t/"1'1 - iT"1 ||L- }

< M(p9 c) { feJ + ̂ W ' + ll ̂ P II*+ 11 ^ r 1 M } > (4-11)

by (3.2), (3.5a), (3.6), and quasi-regularity ; now, M(p, c) dépends on Hk + 3-
norms of p as well. The hk

p-term should be improvable by the application of
reasonable L™ -estimâtes for u - Ü; Scholtz [14] has derived one for fc > 1,
but the case k = 0, which we would need to uniformize our argument, has
not been treated. Then, (4.10), (4.11), and~[4, (7.4)] ünply that

{{D(ÏÏn) - |

^ M(A c) {kj + h;1 h1;" + /z-^il ^ II* + II ̂ r 1
 IILO + top}.

.{ Il W \\ll + II V ^ ' 1 \\l + II V^«-2 |||2 } . (4.12)

Next, consider the final term generated by (4.4) :

| {(D(un) - D(Un)) VC", VÇW) | <

| ((D(un) - £>(?)) VC", V^n) | + | ((fl(5") - D(t7")) VC", V^

M{p9 c) { || M» - Ü* ||L2 + || i? - Û- ||L2 } || V^" ||La

A c) { (Atp)
4 + hf+2 + || ^ \\l + || Ç " 1 ||i2 } + e || V^« Ui,. (4.13)

Three terms in (4.1) remain to be bounded. Again, two must be combined
in like manner to that leading to (4.4) :

c n + (Ï7m+1/2 - !7n).vcn =
= (M" - ÏÏn).VCn + (ÏÏn - t/m+1/2).V(CM - 2 Cn~l + C"~2) +

+ (î/^+i/2 _ i /«) .v(2^- 1 - ^ " - 2 ) . (4.14)

Now,

", Ç») | ^ Af(p, c) { (Atp)
2 + || S» - Ü» \\L2 } || kn \\b

+ \\^1\\h + Hn\\h}. (4.15)
Next,

| ((t/«-L/;+i/2).V(Cn-2 C"-1 +C"-2), Ç») | ^ M(p, c) { (Atpr+\\ S" lli3 } *

(4.16)

In order to bound the third term arising from (4.14), recall [13] the embedding
inequality for finite element spaces over quasi-regular polygonalizations given

vol. 17, n° 3, 1983



260 DOUGLAS et al.

by

|| \ \\L. < Af Oog V 1 ) 1 ' 2 (II V^ ||L, + II k U , \ e Mh . (4.17)
Then,

< M y t / ; H^di ç ||L || r n L ) || ç IL
< M(p, c) { hk

p
+1 + hl

c
+1 + || £ ||L2 + || Ç " 1 ||Li + Afp }.

.(îog v 1 ) 1 ' 2 {II V Wl + II vçn ||2, + il v ^ " 1 ni, + II V I T 2 112»} • (4.18)

The final term generated by (4.1) can be handled easily :

| (g(d') - g{c»), Ç») | < | (g(C) - g{én), %') \ + \ (g(ân) - g{c"), Ç») | ^

^ M(p, c) { (Atc)
2 + * « + 2 + || 4" ||22 + || ^-"1 ||22 + || i T 2 112» } • (4-19)

We turn now to estimating the left-hand side from below. It follows from
Cauchy-Schwarz and [4, (5.9)] that

(4.20)

The argument of [4, (7.8)-(7.9)] can be repeated with Ü™+1'2 in place of U
to show that

+ M VÇ" H2, • (4.21)

The bounds derived above can be collected to imply the inequality (all
norms are now in L2 or (L2)2)

< M(/;, c) { fcc
2I+2 + /z2k+2 + (AO2 + (At,)* } +

, c) { 1 + || % ||2 + || Ç»-1 ||2 } { || 4- ||2 + || Ç"-i ||2 + || ÉT2 ||2 }

M(p, c) { || ^ ||2 + || Ç-"1 ||2 } + Ö" + Kj1 (4.22)

R.A.LR.O. Analyse numérique/Numerical Analysis
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forj = 1 or 2, where

Qn = M(p, c) (log h;1)112 {hk
p
+x + hl

c
+1 + Atp + || Ç™ || + || ^ ~ 1 || }.

-{ II Ê" II2 + II W ||2 + || V ^ 1 ||2 + II V^" - 2 ||2 } (4.23)

and

( a ) RI - M{p9 c ) { l + h ; 1 hl
c
+1 + V ' C I I ^ II + II ̂ " ' II) } x

£m c m - 1

^ 1 + ^ ~
2

(6) Rn
2 = M(P,c){hk

p + Atp + h ; 1 h[+1 + h;H\\ % II + II ̂ r 1 I I ) } •
. { l i v ^ n 2 + n v ^ - M l 2 + I I V | " - 2 | | 2 } .

(4.24)

The L2(Jn; ...)-terms have been replaced by (AQ4^2" tîmes the correspondfng
Lœ(Jn; ...)-terms on the right-hand side in (4.22) to simplify the appearance
of the argument.

The object now is to demonstrate optimal order convergence in L2 for the
concentration; i.e., we wish to show that || ^" || =0(hl

c
+1 +hk

p
+1 +Atc + (Atp)

2).
In order to do so, certain constraints will be imposed on these four parameters ;
it will be shown later that the constraints are reasonable for the choices of the
indices k and / that are likely to be used. The constraints will differ depending
on whether R" or R% is chosen in the inequality (4.22). The démonstration also
requires an induction argument, dependent again on the choice of R" or R%.
For either choice, assume that

f i ; ' )" 2 -0 (4-25)

and make the induction hypothesis that

aogfce-
1)1/2sup.K-.||-»0. (4.26)

n

These two hypotheses control the Q"-terms, in that after summation in time,
the H1 -portion of Qn is covered asymptotically by a small fraction of the diffu-
sion term on the left-hand side of (4.22).

To analyze (4.22) when R" is to be considered, we require that

(a) hp
x{hl

c
+1 + Atc + (Atp)

2) < Kl9 a constant,

(6) K^Atp + h*p
+1) -> 0 .
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With these constraints, we make the induction hypothesis that

fe^supUÇ-U-O. (4.28)
n

When instead R% is to be considérée, we assume that

(a) k ^ 1, the Raviart-Thomas index,
(4.29)

(b) \[+i 2)

and the required induction hypothesis is that

É - H - O . (4.30)

Under either the conditions (4.27)-(4.28) or (4.29)-(4.30) in addition to
(4.25)-(4.26), it follows that, as (h, Aï) -» 0,

{(<>!;, Ç) m , £,)} + (<|>(4. + d, |

*£ M'(p, c) { hfl+2 + hf+1 + (Atc)
2 + (Atp)4 } +

+ M"(p, C) { II Ç" ||2 + II 4 » - 1 ||2 + II %"'2 ||2 + II ̂  ||2 + II Ç - 1 ||2 }

+ e { II V4" ||2 + || V ^ - 1 1 | 2 + II V i T 2 II2 } (4.31)

for t™ < ^ < t™+1 and m Js 1. We remind the reader that this form is not
quite appropriate for t" < t^, since the procedure has to be modified during
the start-up process. We shall assume that the start-up procedure is such that

sup { || Ç" || + Atc || VÇ" || } < M(j>, c) (h1;1 + hk
p
+1 + Atc + (Atp)

2) } ;

(4.32)

any reasonable scheme will suffice. Under this assumption we can consider
t" > tp and ignore the terms arising from times preceding t*. Now, multiply
(4.31) by Afc and add on the time for t* < tc

k < t". Then, if

m(k) = m for Ç < tk
c < t j + 1 , (4.33)

dt | Û^+ "2 |) VÇ\ V^) Atc ̂

p)
2M' Ç { h2l+2 + h2

p
k+2 + Atc + (Atp)

+ 3MK" X (||^||2 + IK

38 X | |V^ | | 2 At c . (4.34)
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For 8 sufficiently small the last term is covered by the diffusion term on the
lefthand side, and it follows that

|| Ç\||2 ^ M'" { h2l+2 + hf+ 2 + (Atc)
2 + (Atp)

4 } +

+ M'" £ (K*||2 + Km(fc) | |2)Atc. (4.35)

Let
an = m a x { K f c | | 2 : ^ < tk

c ̂  tc" } , (4.36)
sothat

an < Mm { h2l + 2 + h2
p

k+2 + (Atf + (Ag4) } + 2 M'" £ a* A'c •

(4.37)

An application of the Gronwall lemma shows that

K ^ fej+ J + A*c + (Afp)
2 } , (4.38)

as was to have been shown. Thus, optimal order convergence will take place,
provided that the induction hypotheses can be demonstrated. First, (4.26)
follows from (4.25) and (4.38). Next, (4.28) follows from (4.27b), the fact
that Afc ^ Atp, and (4.38). Finally, (4.30) follows from the two parts of (4.29)
and (4.38). Hence, (4.38) is established.

If (4.38) is then combined with (3.5) and then with (3.2) and (3.6), we obtain
the estimate

max || (c - C)(Ç) ||L2 + max [|| (u - U)(Ç)]\V +.|| (p -Ç
n m

< M(p9 c) { h1;" + ^ + 1 + Atc + (At,)2 } , (4.39)

where M{p, c) dépends on the norms ofp in L»{J\ WUco) and L°°(J;Hk+3)
and those of c in H2(J; W1^) and WUco(J;Hl+i\ provided that (4.25)
and either (4.27) or (4.29) hold. The reasonableness of these restrictions will
be discussed in the next section.

5. REASONABLENESS OF THE PARAMETER CONSTRAINTS

The most likely choices of the indices for the fïrst element spaces are the
pairs (fe, /) = (0, 1) and (1, 1), and it is most important that the constraint
(4.27) not be too restrictive for the (0, l)-case and that (4.29) not be so for the
(1, l)-case. In fact, the only real restriction that is imposed for any choice (k, /)
arises in the (0, l)-case5 and it is very slight. Since the error behaves asympto-
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tically as

K+1 + hk
p
+1 +Atc + (Ag 2 , (5.1)

the error is balanced by taking these four terms roughly equal in size. If this is
done, then, for any / ^ 1,

V W 1 + Atc + ( A g 2 ) ~ ^ 0 (5.2)

if k > 1. Thus, (4.29) holds and the convergence rate is assured. If k = 0 and
/ > 1, then this choice of the parameters leads to

(a) h;\hl
c
+1 + Atc + (Atp)

2) ~ constant

(b) /̂ (A^ + jg-V^O,

and (4.27) holds, so that convergence is again assured at the optimal rate.
Finally, for the case k = Oand/ = l,takefcc

2 = Atc = {Atp)
2 and Atp = o(hc).

Again, (4.27) holds. We have had to choose the pressure step smaller than we
should like, but not too seriously. Thus, in ail cases very reasonable choices
can be made for the parameters ho h^ Ato and Atp.
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