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Large Integer Polynomials in Several Variables.

A. DUBICKAS (*)

ABSTRACT - For every sufficiently large positive integer D , we construct a family
of irreducible integer polynomials of degree D in n variables whose Mahler
measures are bounded by D and whose values at (1 , R , 1 ) are greater than
exp ](1 /9n) D n/(n11)(. This shows that an upper bound for the height of inte-
ger irreducible polynomials in terms of their degree and Mahler measure ob-
tained by Amoroso and Mignotte is sharp up to a logarithmic factor.

1. Introduction.

Let NPN be the maximum of modulus of a polynomial in n variables
P(x1 , R , xn ) in the unit disc Nx1NG1, R , NxnNG1, and let

M(P) 4exp { �
0

1

R�
0

1

logNP(e 2pit1 , R , e 2pitn )Ndt1 Rdtn}
be its Mahler’s measure. Clearly,

M(P) GNPNG (n11)D M(P) ,

where D is the degree of the polynomial P . See also p. 248 in [16] for
other versions of the second inequality.

Mignotte [13], [14] (see also [17]) was the first who sharpened this
inequality for n41. He proved that

logNPNEckD log (DM(P) ) log (2D11)1 log M(P) ,(1)
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which is better than logNPNGD log 21 log M(P) essentially by the fac-
tor kD if M(P) is smaller than a fixed power of D . The constant c in this
inequality was then sharpened by Amoroso [4] and by the author [9]. Mi-
gnotte’s original proof involves a version of Siegel’s lemma and an ine-
quality on the size of the factors of univariate polynomials. Inequality (1)
is the main ingredient in the estimate of the value of a univariate polyno-
mial at an algebraic point. Such estimate is stronger than Liouville and
for this reason it has other useful applications. A special version of such
inequality for Na21N , where a is an algebraic number of small Mahler
measure, was investigated in [2], [3], [7], [8], [10], [15].

Recently, Amoroso and Mignotte managed to generalize this result to
irreducible integer polynomials in several variables. They showed [6] that

logNPNG2D n/(n11) log ( (n12)3 D 3 M(P) ) ,(2)

and, in case 11 log M(P) / log ( (n12) D) GD/4 ,

(3) logNPNG

G (n11) D n/(n11)g11
log M(P)

log ( (n12)D)
h1/(n11)

log (4(n12) D 2 ) ,

thus gaining the factor D 1/(n11) for polynomials with small Mahler mea-
sures. (Note that putting n41 into (3) one obtains (1), and (3) is stron-
ger than (2) if log M(P) F ( (3n)111/n 21) log ( (n12) D).) Their results
come from a multivariate version of Siegel’s lemma [5].

On the other hand, Amoroso [1] showed that Mignotte’s inequality
(1) is sharp up to the logarithmic factors, namely, there are irreducible
polynomials P(x) �Z[x] of degree D having Mahler’s measure GD 2 /2
such that log P(1) Ak2D log D . In [6] Amoroso and Mignotte exhibited
a family of polynomials which demonstrate that (3) is sharp up to the lo-
garithmic factors appearing in it. Unfortunately, in their example
Mahler’s measure is very large (M(P) is of the size D D n/(2n11)

), so it is not
clear whether (2) is sharp or not. Therefore, they asked for an example
of a polynomial having small Mahler measure but at the same time being
large at a point on the unit disc (see p. 11 in [6]). The purpose of this note
is to give an explicit family of such polynomials showing that D n/(n11) is
the right order in both (2) and (3). We prove the following:

THEOREM. Let nF2 be an integer. Then, for every sufficiently large
positive integer D and for every prime number pFD/n , there is an in-
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teger irreducible polynomial P in n variables with degree D and with
Mahler’s measure M(P) 4p satisfying

logNP(1 , R , 1 )ND (1 /9n) D n/(n11) .(4)

Of course, if p is close to D/n , say D/nGpG2D/n , then for the family
of polynomials of the theorem inequality (2) is stronger than (3). By (2),
for them, the inequality logNPNE8D n/(n11) log ( (n11)D) holds, so the
theorem implies that (2) is sharp up to the logarithmic factor.

In the next section we give the construction of such P which is com-
pletely explicit. Then we prove the lower bound (4) of the theorem and
recall some useful results about the Mahler measure of polynomials in
several variables in proving that M(P) 4p . The proof of the theorem will
be completed in Section 3, where we show that these polynomials P are
irreducible. Irreducibility is the main difficulty in our proof. The reason
for this is that one cannot use arguments based on Hilbert’s irreducibili-
ty theorem, because we need a sharp and effective upper bound for the
Mahler measure of P , which will be obtained by some «deformation» of a
reducible polynomial F , in order to keep the Mahler measure of P
small.

Note that the theorem is stated only for nF2. In [1] and Theorem 2
of [10] slightly better results of order kD log D instead of just kD as in
(4) for n41 were obtained. Our theorem also implies that the multidi-
mensional Siegel’s lemma of Amoroso and David [5] or at least its ver-
sion given in Proposition 3 of [6] is not far from being sharp, since (2) is
derived from it. For instance, the exponent n in Proposition 3 of [6] can-
not be replaced by a smaller number.

2. Construction of polynomials large at unity.

Set F(x1 , R , xn ) 4»(11x1
l 1

R xn
l n ), where the product is taken

over every non-zero vector (l 1 , R , l n ) �Zn , 0 Gl 1 , R , l n Gk21.
Then, as the Mahler measure of polynomials is multiplicative, M(F) 41
(see, e.g., p. 260 in [16] or Theorem 3.10 in [11]). The degree of F is equal
to D4nk n (k21) /2 . Since F(1 , R , 1 ) 42k n21 , for every D of the form
nk n (k21) /2 , where k�N is sufficiently large, we obtain the inequality
logNF(1 , R , 1 )NDD n/(n11) /n .

Of course, the above F is reducible. We thus define P(x1 , R , xn ) as
follows. Set k4 [ (D/2n)1/(n11) ], where D is a sufficiently large integer.
Let L be the set of vectors l 4 (l 1 , R , l n ) �Zn , where kGl 1 , R , l n G
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G2k21 and gcd (l 1 , l 2 ) 41. Suppose that the polynomial

Q(x1 , R , xn ) 4 »
l �L

(11x1
l 1

R xn
l n )

has total degree q and partial degree l in x1 . Then, since NLNEk n , we
have

qGn(2k21)NLNE2nk n11GD and l G(2k21)NLNE(2k21) k n .

Now, set

P(x1 , R , xn ) 4
1

x1
r21

¯(x1
r (11x1 x2

D2q21 ) Q(x1 , R , xn ) )

¯x1

,(5)

where r is an arbitrary positive integer such that p411 l 1r is a prime
number. The fact that p is prime will only be used for irreducibility in
Section 3.

It is clear that the degree of P is equal to D . Since the coefficients of
Q are non-negative,

NP(1 , R , 1 )N4P(1 , R , 1 ) DQ(1 , R , 1 ) 42NLN .

Suppose that L s is the set of vectors (l 1 , R , l n ) �Zn such that kG

Gl 1 , R , l n G2k21 and gcd (l 1 , l 2 ) 4s , so that L 1 4L . Note that the
set Ns41

2k21 L s contains precisely k n elements. Furthermore, since the fir-
st two entries of every l �L s are divisible by s , we can bound

NL sNG ( [ (2k21) /s]2 [ (k21) /s] )2 k n22 E (1 /s11/k)2 k n .

It follows that

NL 1NFk n 2 !
s42

2k21

NL sNDk n 2 !
s42

2k21

(1 /s11/k)2 k n .

Since lim
kKQ

!
s42

2k21

(1 /s11/k)2 4p 2 /621, we have that

NLN4NL 1 NDk n /3 D (1 /6n)D n/(n11)

for D sufficiently large. This yields (4):

logNP(1 , R , 1 )NDNLN log 2 D (1 /9n)D n/(n11) .
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Now, we will show that M(P) 4p411 l 1r , where p is greater than or
equal to D/n . Since

l 11 G (2k21) k n G2k n11 21 GD/n21 ,

r�N satisfying r4p212 l exists for every integer pFD/n . The de-
gree of the polynomial

G(x1 , R , xn ) 4x1
r (11x1 x2

D2q21 ) Q(x1 , R , xn )

in the variable x1 is equal to p . It is easily seen that, for each choice of
x2 4e 2pit2 , R , xn 4e 2pitn on the unit disc, G(x1 , e 2pit2 , R , e 2pitn ) has its
roots in the unit circle. By the theorem of Lucas claiming that the smal-
lest closed convex set containing all zeros of a polynomial (in one varia-
ble) also contains all the zeros of the derivative of the polynomial, we ha-
ve that the roots of R(x1 ) 4¯G(x1 , e 2pit2 , R , e 2pitn ) /¯x1 are all in the unit
circle. Since the leading coefficient of R equals p , we obtain that M(R) 4

4p . This equality can be written in form

�
0

1

logNR(e 2pit , e 2pit2 , R , e 2pitn )Ndt4 log p ,

where t2 , R , tn are arbitrary fixed real numbers. We may now integrate
n21 times over t2 , R , tn in [0 , 1 ]. This will not change the right-hand
side, logp , whereas on the left-hand side we will get log M(¯G/¯x1 ),
where ¯G/¯x1 is considered as a polynomial in n variables. Consequently,
M(¯G/¯x1 ) 4p and, by (5),

M(P) 4M(P) M(x1
r21 ) 4M(¯G/¯x1 ) 4p .

Alternatively, by Exercise 3.2 in [11] and because M(G) 41,

M(¯G/¯x1 ) GpM(G) 4p .

On the other hand, writing ¯G(x1 , R , xn ) /¯x1 in the form

¯G(x1 , R , xn ) /¯x1 4px1
p21 x2

u2
R xn

un 1R1rx1
r21(6)

and using precisely the same argument as in Lemma 3.7 of [11], i.e.
expressing the quantity log M(¯G/¯x1 ) as log M(px2

u2
R xn

un ) 4 log p plus
a non-negative term, we obtain that M(¯G/¯x1 ) Fp . Combining upper
and lower bounds for the same quantity yields M(¯G/¯x1 ) 4p . As above,
this leads to M(P) 4p .
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REMARK. Mahler’s inequality [12] M(G 8 ) /M(G) Gdeg G , where G is
an arbitrary complex polynomial in one variable was also posed as a pro-
blem by Vaaler in the Problems section of the American Mathematical
Monthly and solved by Boyd using an elementary theorem of Bernstein
(Advanced Problem 6613, Amer. Math. Monthly 98, 451-452 (1991)).

3. Irreducibility of P.

By (6) we write

P(x1 , R , xn ) 4px1
l 11 x2

u2
R xn

un 1 !
j41

l

x1
jfj (x2 , R , xn )1r ,

where fj �Z[x2 , R , xn ]. Assume that P is reducible in Z[x1 , R , xn ]. Sin-
ce p is a prime number, one of the factors of P written as a polynomial in
x1 must have the leading coefficient equal to x2

v2
R xn

vn and the constant
term equal to a non-zero integer r 8 . (Here, v2 Gu2 , R , vn Gun are non-
negative integers and r 8 Nr .) Thus, for each choice of x2 , R , xn with
Nx2 N4R4Nxn N41, this polynomial (and so P itself as a polynomial in
x1) must have a root whose absolute value is greater than or equal to 1 .
However, by choosing certain xj 4e 2piu j , j42, R , n , we will prove that
the polynomial P(x1 , e 2piu 2 , R , e 2piu n ) has no such roots. Here,
u 2 , R , u n are some fixed positive numbers such that the collection
1 , u 2 , R , u n is linearly independent over Q . For instance, one can take
u j 4kpj21 , where p1 42 Ep2 43 Ep3 45 ER is the set of prime
numbers.

It remains to prove that all l 11 roots of the polynomial

T(x1 ) 4 (11x1 e 2(D2q21)piu 2 ) »
l �L

(11x1
l 1 e 2pi(l 2 u 21R1l n u n ) )

are distinct. Indeed, they all lie on the unit circle and the fact that the
polynomial P(x1 , e 2piu 2 , R , e 2piu n ) has all of its roots lying in Nx1 NE1
will follow by (5) and by the theorem of Lucas mentioned above.

We see at once that the root x1 4e 22(D2q21) piu 2 of T is simple, becau-
se the numbers 1 , u 2 , R , u n are linearly independent over Q . Clearly,
all l 1 roots of 11x1

l 1 e 2pi(l 2 u 21R1l n u n ) are distinct, so these factors also
have no multiple roots.

The only possibility left is that the factors 11x1
l 1 e 2pi(l 2 u 21R1l n u n )

and 11x1
m 1 e 2pi(m 2 u 21R1m n u n ) , where (l 1 , R , l n ) c (m 1 , R , m n ), share a

common root, say x1 4y . Then y l 1 m 1 is equal to e 22pim 1 (l 2 u 21R1l n u n ) and
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at the same time y l 1 m 1 4e 22pil 1 (m 2 u 21R1m n u n ) . The equality of these
exponents holds if their arguments differ by 2piv with v�Z . But the
numbers 1 , u 2 , R , u n are Q-linearly independent, so this is only possi-
ble if m 1 l j 4l 1 m j for every j42, R , n . In particular, this implies that
m 1 l 2 4l 1 m 2 . However, gcd (l 1 , l 2 ) 41, hence l 1 divides m 1 . Since
kGl 1 , m 1 G2k21, this can only happen if l 1 4m 1 . From the equalities
m 1 l j 4l 1 m j we conclude that l j 4m j for every j41, 2 , R , n , a contra-
diction. This, combined with all said above, implies that T is a separable
polynomial and completes the proof of the theorem.

We remark that by splitting x1
l 1

R xn
l n into two «nearly equal» parts

x1
l 1

R xm
l m and xm11

l m11
R xn

l n , where m4 [n/2 ], one can consider
»(x1

l 1
R xm

l m 1xm11
l m11

R xn
l n ) instead of Q . Having this product in place of

Q in the definition of P and slightly modifying the definition of L and fin-
ding its cardinality asymptotically, one can replace the constant 9 in (4)
by a smaller constant. However, similarly to the case n41, there is still
a logarithmic gap between upper bound (2) and the example of the
theorem.
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