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Endoprimal Abelian Groups of Torsion-Free Rank 1.

K. KAARLI (*) - L. MÁRKI (**)

ABSTRACT - This paper completely solves the endoprimality problem of (mixed)
abelian groups of torsion-free rank 1.

1. Introduction.

In an abelian group A , the functions of the form

f (x1 , R , xn ) 4k1 x1 1R1kn xn

with integers k1 , R , kn are called the term functions. Clearly, term func-
tions permute with all endomorphisms of A , i.e., if f (x1 , R , xn ) is a term
function and f is an endomorphism of A then

f( f (a1 , R , an ) ) 4 f (f(a1 ), R , f(an ) )

for any a1 , R , an �A . More generally, we call a function f of finite arity
in an abelian group A an endofunction if it permutes with all endomor-
phisms of A . An abelian group is called endoprimal if all its endofunc-
tions are term functions, in other words, if the term functions are the
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only functions in the group which permute with all endomorphisms.
The notion of endoprimality comes from universal algebra, where it

has emerged in two ways: as a generalisation of an important property
(called primality) of the two-element Boolean algebra and in the course
of investigations into a general duality theory. The investigation of abe-
lian groups with respect to endoprimality was started by Davey and Pit-
kethly [1] who, beside results for other kinds of algebraic structures, de-
scribed those bounded abelian groups which are endoprimal.

As is well known, classification results for abelian groups, like for
most algebraic structures, can only be obtained under severe restric-
tions. Obviously, endoprimality is a strong condition also for abelian
groups and thus it seems promising to find characterisations for these
groups. In [5] the present authors pointed at the connections of endopri-
mality with (direct) decomposition properties of abelian groups. Among
others, they proved that a torsion group is endoprimal if and only if it is
of finite exponent m containing Zm 5Zm as a subgroup, and that any
group of the form B5Z with B unbounded is endoprimal, and also cha-
racterised endoprimal rank-2 torsion-free groups by means of a decom-
position property. Investigations of endoprimality in torsion-free groups
have been continued in [4] and [6]. In [4], endoprimal torsion-free sepa-
rable groups are characterised, but also arbitrarily large indecomposa-
ble endoprimal groups are presented. In [6], endoprimal rank-3 torsion-
free groups are described, and even among these there are indecompo-
sable ones.

In the present paper we take up a further line from [5]. There the en-
doprimality problem was solved for the mixed groups of torsion-free
rank 1 with splitting torsion part. To formulate that result and for fur-
ther use, let us fix some notations.

In what follows, all groups are abelian and T4T(A) always stands
for the torsion part of a group A . Moreover, for any prime p , Tp 4Tp (A)
is the p-component of T and Tp* is the sum all Tq , qcp . The fact that B is
a direct summand of A is denoted by B ± A . By Jp we denote the ring of
p-adic integers.

So we have:

THEOREM 1.1 ([5], Theorem 5.9). Let A be a group and P be the set
of those primes p for which A/T is p-divisible. Assume that A has tor-
sion-free rank 1 and T ± A . Then A is endoprimal if and only if T is
unbounded and, for every p�P , the subgroup Tp is not reduced.
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Now we are going to settle the mixed torsion-free rank 1 case com-
pletely and prove the following theorem as the main result of the paper.
Notice that we also get endoprimal groups in which none of the primary
parts split off; in other words, they are as close to being indecomposable
as a mixed group of torsion-free rank 1 can be.

THEOREM 1.2. Let A be a group and P be the set of those primes p
for which A/T is p-divisible. Assume A has torsion-free rank 1. Then A
is endoprimal if and only if T is unbounded and, for every p�P , Tp is
either not reduced or it is not a direct summand of A .

2. Unary endofunctions.

The proof of the first three lemmas is straightforward.

LEMMA 2.1. Every endofunction of a group A preserves the kernels
and images of all endomorphisms of A . r

LEMMA 2.2 ([5], Proposition 2.5). Let A4A1 5A2 and f be an n-ary
endofunction of A . Then fi , the restriction of f to Ai , is an endofunction
of Ai , i41, 2 , and

f (x1 1y1 , R , xn 1yn ) 4 f1 (x1 , R , xn )1 f2 (y1 , R , yn )

holds for arbitrary xi �A1 , yi �A2 , i41, R , n . r

LEMMA 2.3. Let A be a group and f a unary endofunction in A . If b
and c are endomorphic images of the same element a�A then
f (b1c) 4 f (b)1 f (c). r

LEMMA 2.4. If f is any unary endofunction on a group A then fNT is
an endomorphism of T . Moreover, for every p-component Tp of T , there
exists j�Jp such that f (x) 4jx for every x�Tp .

PROOF. We first consider the action of f on the p-component Tp . We
start with the case when Tp is not reduced, that is, it has a quasicyclic
subgroup D . Obviously, D is a direct summand of A; let A4B5D . Then
by 2.2 there exist endofunctions fB and fD of the groups B and D , respec-
tively, such that for every x�B , y�D we have f (x1y)4fB (x)1 fD (y). It
is an easy exercise to show that the unary endofunctions of D are preci-
sely its endomorphisms, that is, multiplications by p-adic integers. Let j
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be the p-adic integer such that f (x) 4jx for every x�D . Now, if D1 is
any other quasicyclic subgroup of Tp then there exists f�End A that
maps D isomorphically onto D1 . This yields that f (x) 4jx holds for all
x�D1, but then also for any x�E where E is the divisible part of Tp .

Let A4B1 5E , B2 4B1 OTp , thus B2 is a reduced p-group. If B2 is
bounded then it has a cyclic direct summand C of A of highest order.
Now there exists f�End A that embeds C into D , implying f (x) 4jx for
every x�C . Also, every cyclic subgroup of B2 is an endomorphic image of
C , hence f (x) 4jx holds for every x�B2 . Now, if x�B2 and y�E are ar-
bitrary then the projections of A to B1 and E take x1y to x and y , re-
spectively, thus by Lemma 2.3 we obtain

f (x1y) 4 f (x)1 f (y) 4jx1jy4j(x1y) .

Now assume that B2 is unbounded. A reduced unbounded p-group
has cyclic direct summands of arbitrarily high orders (see e.g. [3], Exer-
cise 27.1). These direct summands, being pure subgroups of Tp , are pure
subgroups of A . Then, as bounded pure subgroups, they all are direct
summands of A . Thus, A has cyclic direct summands Ci of arbitrarily
high orders p ni . Since any of these subgroups can be embedded by
means of an endomorphism into D , it follows that f (x) 4jx holds for
every x in any Ci . Since any cyclic subgroup of Tp is an endomorphic ima-
ge of some Ci , we have f (x) 4jx for all x�Tp .

The case when Tp is reduced can be handled similarly. If Tp is bound-
ed then it has a cyclic direct summand C of highest order and C is a di-
rect summand of A as well. This yields that the restriction of f to C is an
endofunction of C , thus there is an integer n such that f (x) 4nx for any
x�C . Also, for every cyclic subgroup C1 of Tp there exists f�End A that
maps C onto C1 . This yields that f (x) 4nx holds for any x�Tp .

To finish with Tp we need to handle the case when Tp is reduced but
not bounded. As above, we find cyclic direct summands Ci of A contained
in Tp of strictly increasing orders and on each of them the function f can
be computed by f (x) 4ni x where ni is an integer. Because for every i , j
with iE j there is an endomorphism of A which embeds Ci into Cj , all
these ni’s can be replaced by a single p-adic integer j . Thus, f (x) 4jx
holds for every i and every x�Ci . Since any cyclic subgroup of Tp is an
endomorphic image of some Ci , the same formula holds for any x�Tp .

By this we have, in particular, that f acts as an endomorphism in
every Tp .

Next we prove the equality f (x1y) 4 f (x)1 f (y) for the case when
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x , y�T belong to different p-components. By the foregoing we have
f (x) 4mx and f (y) 4ny for some integers m , n . We first find k , l�Z
such that

kx4x , ky40 4 lx , ly4y .

The orders of f (x) and f (y) divide the orders of x and y , respectively,
hence

k( f (x1y) ) 4 f (k(x1y) ) 4 f (x) 4mx4k(mx1ny) 4k( f (x)1 f (y) )

and similarly l( f (x1y) ) 4 l( f (x)1 f (y) ). Since obviously k and l can be
chosen coprime, we have f (x1y) 4 f (x)1 f (y).

Now, using an easy induction argument one can prove the formula

f (x1 1R1xn ) 4 f (x1 )1R1 f (xn )(1)

for arbitrary x1 , R , xn belonging to pairwise different p-components of T.
To conclude the proof, we prove the equality f (x1y) 4 f (x)1 f (y)

for arbitrary elements x , y�T . Assume that x , y�Tp1
1R1Tpn

and
x4x1 1R1xn , y4y1 1R1yn where xi , yi �Tpi

, i41, R , n . Then,
using the formula (1) and the fact that f induces endomorphisms on all
p-components, we have

f (x1y) 4 f ( (x1 1R1xn )1 (y1 1R1yn ) )

4 f ( (x1 1y1 )1R1 (xn 1yn ) )

4 f (x1 1y1 )1Rf (xn 1yn )

4 ( f (x1 )1 f (y1 ) )1R1 ( f (xn )1 f (yn ) )

4 f (x1 1R1xn )1 f (y1 1R1yn )

4 f (x)1 f (y) . r

LEMMA 2.5. Let A be an abelian group with torsion part T , and as-
sume that rank (A/T) 41. Then every unary endofunction of A is an
endomorphism.

PROOF. Consider an arbitrary unary endofunction f of A . By Lemma
2.4, f preserves T and the restriction of f to T is an endomorphism of T .
Next we show that, for any a�A0T and t�T , f (a1 t) 4 f (a)1 f (t). First
observe that the general case of this formula can be derived by an induc-
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tion argument from the special one with t�Tp . Thus, assume t�Tp . Mo-
reover, for the beginning assume that t is contained in a direct summand
C of A . Let A4B5C , a4b1 t1 , b�B , t1 �C . Then it follows from Lem-
ma 2.2 that f (a) 4 f (b)1 f (t1 ) and f (a1 t) 4 f (b)1 f (t1 1 t). Hence, using
Lemma 2.4 we have

f (a1 t) 4 f (b)1 f (t1 1 t) 4 f (b)1 f (t1 )1 f (t) 4 f (a)1 f (t) .

Consequently, the formula f (a1 t) 4 f (a)1 f (t) holds whenever Tp is a
direct summand of A .

It remains to consider the case when Tp ±O A . In this case Tp contains
cyclic direct summands of A of arbitrarily high orders. We take one of
order at least the order of t . Let it be C4 acb. Let A4A1 5C , a4b1u
where b�B , u�C . Now both a and t are endomorphic images of b1c ,
and Lemma 2.3 gives f (a1 t) 4 f (a)1 f (t).

Finally, if a1 , a2 �A0T then there exist a�A0T , m1 , m2 �Z , t1 ,
t2 �T such that a1 4m1 a1 t1 , a2 4m2 a1 t2 . Hence

f (a1 1a2 ) 4 f ( (m1 1m2 )a1 (t1 1 t2 ) )

4 f ( (m1 1m2 )a)1 f (t1 1 t2 )

4 (m1 1m2 ) f (a)1 f (t1 )1 f (t2 )

4 (m1 f (a)1 f (t1 ) )1 (m2 f (a)1 f (t2 ) )

4 ( f (m1 a)1 f (t1 )1 ( f (m2 a)1 f (t2 ) )

4 f (m1 a1 t1 )1 f (m2 a1 t2 )

4 f (a1 )1 f (a2 ) . r

Call a group 1-endoprimal if those of its unary functions which per-
mute with all endomorphisms are exactly the unary term functions, that
is, the functions of the form kx with some integer k . Now we have:

COROLLARY 2.1. An abelian group of torsion-free rank 1 is 1-endo-
primal if and only if it is not p-divisible for any prime p and its endo-
morphism ring has trivial centre. r

3. Proof of the Main Theorem.

The following statement is a direct consequence of [7], Proposition
2.2 or even of [2], Theorem 1.2.
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LEMMA 3.1. Let A be a group of torsion-free rank 1. If T4Tp and
A/T is not p-divisible then T ± A . r

For easy reference, we state without proof the following simple
fact.

LEMMA 3.2. For any group A and prime number p :

T/Tp* ± A/Tp* ¨ Tp ± A . r

Lemmas 3.1 and 3.2 directly imply

LEMMA 3.3. Let A be a group of torsion-free rank 1. If A/T is not
p-divisible then Tp ± A. r

The most unexpected conclusion from Theorem 1.2 is that a group of
torsion-free rank 1 is endoprimal provided none of its nonzero p-compo-
nents splits off and it has a non-zero p-component for every prime p such
that the torsion-free factor of the group is p-divisible. This fact is based
on the next lemma.

LEMMA 3.4. Let A be a group of torsion-free rank 1 and let Tp be
reduced. Assume that there exist j�Jp and f�End A such that
0 cf(A) ’Tp and f(x) 4jx for every x�Tp . Then Tp ± A .

PROOF. Lemma 3.2 reduces the proof of the present lemma to the ca-
se T4Tp . If A/T is not p-divisible then T4Tp ± A follows by Lemma
3.1. Assume that A/T is p-divisible and consider first the case j40.
Clearly then T’Ker f and we have a homomorphism f : A/TKT . Hence
f(A/T) 4f(A) is a divisible subgroup of T . Since A is reduced, f(A) 40,
a contradiction.

If jc0 then j can be written in the form j4p k h where h is an inver-
tible p-adic integer and kF0. The function x O h21 x is a well-defined
endomorphism of Tp , hence we have c4h21 f�End A and obviously
c(x) 4p k x for every x�T . Moreover, f(A) ’T implies c(x) 4p k x iff
x�T . Now, if x�End A is defined by x(x) 4c(x)2p k x then Ker x4T ,
hence x(A) `A/T . Consequently, x(A) is a torsion-free subgroup of A ,
that is, x(A)OT40.

We show that x(A)1T4A , which proves T ± A . Let A 4A/T and x
be the endomorphism of A induced by x modulo T . Then x(A) 4p k A 4 A
because A is p-divisible. Hence, x is surjective, which is equivalent to the
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statement that x(A) intersects all cosets of T in A . The latter is equiva-
lent to the equality x(A)1T4A . r

We need one more lemma which helps to carry out the induction in
the proof of the main theorem. Note that actually the same idea was used
several times in [5].

LEMMA 3.5. Let A4B5C . Assume that every c�C is contained
in some subgroup f(B) where f�End A . Then, if the restriction of
every unary endofunction of A to C is a term function, the same holds
for endofunctions of A of arbitrary arity.

PROOF. Suppose that the restrictions of all endofunctions of A of ari-
ty less than n are term functions. Let f be an n-ary endofunction of A and
c1 , R , cn �C . We take f�End A such that f(C) 40 and c1 4f(b) where
b�B . Also, let c�End A be the projection of A onto C composed with
the natural embedding of C into A . Then

f (c1 , R , cn ) 4 f ( (f1c)(b), (f1c)(c2 ), R , (f1c)(cn ) )

4 (f1c) f (b , c2 , R , cn )

4f( f (b , c2 , R , cn ) )1c( f (b , c2 , R , cn )

4 f (f(b), f(c2 ), R , f(cn ) )1 f (c(b), c(c2 ), R , c(cn ) )

4 f (c1 , 0 , R , 0 )1 f (0 , c2 , R , cn ) .

Now our claim follows directly from the induction hypothe-
sis. r

PROOF OF THEOREM 1.2. Neccessity. By [5], Corollary 5.2 the tor-

sion part must be bounded. If Tp 40 for p�P , then x O
1

p
x is an endo-

function which is not a term function, hence A is not endoprimal. Finally,
assume that there exists p�P such that Tp is a nonzero, reduced direct
summand of A and let A4B5Tp . Clearly Hom (Tp , B) 40. Let f�
�Hom (B , Tp ). Obviously, Tp* is the torsion part of B , Tp*’Ker f , and
A/T`B/Tp*. Hence f induces a homomorphism c : A/TKTp . Since A/T
is p-divisible, c(A/T) is a divisible subgroup of Tp . Since Tp is reduced,
we have c40 but then also f40. Thus, Hom (B , Tp ) 40, and using [5],
Corollary 2.6, we conclude that A is not endoprimal.
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PROOF OF THEOREM 1.2. Sufficiency. We first prove that A is 1-en-
doprimal. Let f be a unary endofunction of A . By Lemma 2.5 f is an endo-
morphism of A . Hence f preserves T and induces an endomorphism f of
A/T defined by f (a1T) 4 f (a)1T . Thus there is a rational number a
such that f (a)1T4a(a1T) for any a�A . Consider first the case when
a�Z . Define a new function f1 (x) 4 f (x)2ax . Clearly, f1 is both an en-
domorphism and an endofunction of A , and f1 (A) ’T . We are going to
show that f1 40, which implies that f is a term function.

Given a prime number p , let p p be the natural projection of T onto Tp

composed with the embedding of Tp into T . Then p p is an idempotent en-
domorphism of T with range Tp and also an endofunction of T . Since
f1 (A) ’T and f1 NT �End T , the composition fp 4p p f1 is an endofunction
of A . We shall show, by checking three cases separately, that fp 40 for
any prime p . This will prove that f1 40.

Case 1: p�P . By Lemma 3.3 we have A4B5Tp for a suitable sub-
group B of A . Since fp (A) ’Tp , Lemma 2.2 implies fp NB 40. Obviously
B/T(B) `A/T , therefore B/T(B) is not p-divisible. Hence, given any t�
�Tp , there exists f�End A such that f(b) 4 t , for a suitable element b�
�B . Since fp is an endofunction of A , we have 0 4f( fp (b) ) 4 fp (f(b) ) 4

4 fp (t). Thus, fp NTp
40. Now Lemma 2.2 gives fp 40.

Case 2: p�P , Tp ± A and Tp is not reduced. Now Tp has a nonzero di-
visible part D and we have direct decompositions A4B5Tp , Tp 4Tp85
5D . As in Case 1, we get fp NB 40. Due to p�P the group B/T(B) is p-divi-
sible, hence, given any t�D , there exist f�End A and b�B such that
f(b) 4 t . Now again as in Case 1 we conclude fp (t) 40, hence fp ND 40. It
remains to show that fp NTp840. First, any cyclic direct summand C of Tp8

can be embedded by an endomorphism of A into D . Since fp permutes
with that endomorphism, we get fp NC 40. Now there are two possibili-
ties: 1) Tp8 is bounded; 2) Tp8 is not bounded. In the first case we take a
cyclic direct summand C of Tp8 of the highest order. Then C can be map-
ped by an endomorphism of A onto any cyclic subgroup of Tp8 . Hence
fp NC 40 implies fp NTp840. In the second case we know that Tp8 has cyclic
direct summands Ci , i41, 2 , R , of arbitrarily high orders and obviou-
sly the collection of subgroups f(Ci ), f�End A , i41, 2 , R , includes all
cyclic subgroups of Tp8 . As above, we conclude that fp NTp840.

Case 3: p�P and Tp ±O A . Let D be the divisible part of Tp , A4B5D
and Tp84Tp OB . Then Tp8 ±O B , hence Tp8 is unbounded and obviously
Tp84Tp (B) is reduced. Assume that fp c0. Then by Lemma 2.2 the re-
striction of fp either to B or D must be nonzero. We show that fp NB c0.



K. Kaarli - L. Márki126

Indeed, by Lemma 2.4 there exists j�Jp such that fp (x) 4jx for every
x�Tp . Since Tp8 is unbounded, fp NTp840 would imply j40 but then also
fp ND 40. Now Lemma 3.4 applies with B and fp NB in the roles of A and f ,
respectively, to claim that Tp8 ± B , a contradiction.

We have finished the proof of the claim that f is a term function of A if
a�Z . In general, a can be written as an irreducible fraction

a4
m

p1
k1

R ps
ks

where m , k1 , R , ks �Z , k1 , R , ks F1, and the pi are prime numbers.
Since x O ax is an endomorphism of A/T , all the pi must belong to P . If pi

is a prime factor of the denominator of a , then Tpi
c0 by the assumptions

of the theorem. Let t�Tpi
be an element of order pi , then

p1
k1

R ps
ks f (t) 4 f (p1

k1
R ps

ks t) 4 f (0) 40

but, on the other hand,

p1
k1

R ps
ks f (t) 4mtc0

for m is prime to pi . Hence a�Z cannot take place, and this completes
the proof of the claim that A is 1-endoprimal.

We continue by induction on the arity of the endofunction f . We assu-
me that all endofunctions of A whose arity is less than n are term func-
tions of A . Let f be an n-ary endofunction of A , nF2.

We start with showing that fNTp
is a term function of Tp for every pri-

me p . Again we have to handle several cases separately. Obviously, we
may assume that Tp c0.

Case 1. p�P . Then Lemma 3.3 implies that Tp splits off, say, A4B5
5Tp . Since B/T *p `A/T is not p-divisible, for every c�Tp there exist
b�B and f�End A such that f(b) 4c . Hence our claim follows by
Lemma 3.5.

Case 2. p�P , Tp ±O A . Now Tp contains cyclic direct summands of A of
arbitrarily high orders. This implies that, for any positive integer k , the
group A has an endomorphic image Sk isomorphic to Zp k

n . Being an endo-
function, f preserves every endomorphic image of A , moreover, the re-
striction of f to that image is an endofunction of the latter. Since all
groups Zp k

n are endoprimal, it follows that the restrictions of f to all sub-
groups Sk are term functions. Moreover, since for every k , l with kE l
there exists an endomorphism of A that embeds Sk into Sl , there exist p-
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adic integers j 1 , R , j n such that

f (x1 , R , xn ) 4j 1 x1 1R1j n xn(2)

for every k and all x1 , R , xn �Sk , k41, 2 , R . Finally, if x1 , R , xn �Tp

are arbitrary then there are an integer k and an endomorphism f of A
such that x1 , R , xn �f(Sk ). From this we conclude that the formula (2)
holds for all x1 , R , xn �Tp . Since g1 (x) 4 f (x , 0 , R , 0 ) is a term func-
tion by the induction hypothesis and g1 (x) 4j 1 x for x�Tp , we conclude
that j 1 �Z . Similarly, all other coefficients j i are integers.

Case 3. p�P , Tp ± A . Now it follows from our assumptions that Tp

cannot be reduced. Let Dc0 be the divisible part of Tp . Hence we have
direct decompositions A4B5Tp and Tp 4C5D . We first consider the
subgroup B5D . Since B/Tp*`A/Tp is p-divisible, the assumption of
Lemma 3.5 is satisfied, that is, for every d�D there exist b�B and f�
�End A such that d4f(b). Therefore we can conclude that the restriction
of f to D is a term function; let

f (x1 , R , xn ) 4a 1 x1 1R1a n xn(3)

for all x1 , R , xn �D and for fixed a 1 , R , a n �Z .
Now, if x1 , R , xn �Tp and f is any endomorphism of A such that

f(Tp ) ’D , easy calculations show that

f (x1 , R , xn )2a 1 x1 2R2a n xn �Ker f .

Thus the equality (3) will be verified for all x1 , R , xn �Tp if we prove
that the intersection of the kernels of all such endomorphisms and the
subgroup Tp is zero. But this follows easily from the injectivity of D . In-
deed, every cyclic subgroup of Tp can be embedded into D . Since D is in-
jective, this embedding can be extended to an endomorphism of Tp and
since Tp ± A , it can be further extended to an endomorphism of A .

Thus we have shown that the restrictions of f to all p-components of T
are term functions. It is important to observe that there is a common
term function t which coincides with f on all p-components. Indeed, this
follows from the fact that, by the induction hypothesis, all unary func-
tions f (0 , R , 0 , x , 0 , R , 0 ) are term functions.

Our next step is to show that the restriction of f to T is a term func-
tion. Since every element of T belongs to a sum of finitely many p-compo-
nents, we can use again an induction argument. Let

x1 , R , xn �Tp1
5R5Tpm
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and assume that the formula (3) holds if x1 , R , xn �Tp1
or x1 , R , xn �

�Tp2
5R5Tpm

. Using the Chinese Remainder Theorem, we find integers
k and l such that

(k1 l)xi 4xi , kxi �Tp1
, lxi �Tp2

5R5Tpm
, i41, R , n .

It remains to calculate:

f (x1 , R , xn ) 4 f ( (k1 l) x1 , R , (k1 l) xn )

4 (k1 l) f (x1 , R , xn )

4kf (x1 , R , xn )1 lf (x1 , R , xn )

4 f (kx1 , R , kxn )1 f (lx1 , R , lxn )

4a 1 (kx1 )1R1a n (kxn )1a 1 (lx1 )1R1a n (lxn )

4a 1 (k1 l)x1 1R1a n (k1 l)xn

4a 1 x1 1R1a n xn .

For the rest we assume, without loss of generality, that the restric-
tion of f to T is zero. The next step is to prove the equality

f (a1 , R , an21 , an 1 t) 4 f (a1 , R , an21 , an )(4)

for all a1 , R , an �A and t�T . Obviously, it is enough to consider the
case t�Tp , for an arbitrary prime p . We treat two cases separately.

Case 1. Tp ± A . Let A4B5Tp and ai 4bi 1 ti where bi �B , ti �Tp ,
i41, R , n . Then, using Lemma 2.2, we have

f (a1 , R , an21 , an 1 t) 4 f (b1 1 t1 , R , bn21 1 tn21 , bn 1 tn 1 t)

4 f (b1 , R , bn )1 f (t1 , R , tn21 , tn 1 t)

4 f (b1 , R , bn )1 f (t1 , R , tn )

4 f (b1 1 t1 , R , bn 1 tn )

4 f (a1 , R , an ) .

Case 2. Tp ±O A . Now we can find in Tp a cyclic direct summand C of A
whose order is not less than the order of t . Let A4B5C , C4 acb, ai 4

4bi 1ci where bi �B , ci �C . Also, let t4u1v where u�B , v�C , and take
the endomorphism f of A such that fNB 41B and f(c) 4u . Then calcula-
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te, using again Lemma 2.2:

f (a1 , R , an21 , an 1 t) 4 f (b1 1c1 , R , bn21 1cn21 , bn 1u1cn 1v)

4 f (b1 , R , bn21 , bn 1u)1 f (c1 , R , cn21 , cn 1v)

4 f (f(b1 ), R , f(bn21 ), f(bn 1c) )

4f( f (b1 , R , bn21 , bn 1c) )

4f( f (b1 , R , bn )1 f (0 , R , 0 , c) )

4f( f (b1 , R , bn ) )

4 f (f(b1 ), R , f(bn ) )

4 f (b1 , R , bn )1 f (c1 , R , cn )

4 f (a1 , R , an ) .

So we have proved (4), from which it follows that f (a1 , R , an21 , t) 4

40 for arbitrary a1 , R , an �A and t�T . Indeed, (4) implies

f (a1 , R , an21 , t) 4 f (a1 , R , an21 , 0 ) .

Since by the induction hypothesis f (x1 , R , xn21 , 0 ) is a term function
and its restriction to the unbounded group T is zero, we must have
f (a1 , R , an21 , 0 ) 40.

It remains to show that f (a1 , R , an ) 40 holds also in the case when
none of the ai is a torsion element. Since rank (A/T) 41, there are inte-
gers k , l and elements a�A , u , v�T such that an21 4ka1u , an 4 la1

1v . Then

f (a1 , R , an ) 4 f (a1 , R , an22 , ka1u , la1v) 4 f (a1 , R , an22 , ka , la) .

Again by the induction hypothesis, f (x1 , R , xn22 , kxn21 , lxn21 ) is a
term function and its restriction to T is zero, so we conclude that
f (a1 , R , an22 , ka , la) 40. This completes the proof. r

REMARK. In some cases it may be useful to consider an abelian
group A as a module not over Z but over the largest subring N of Q over
which it is a module – this ring N is called the nucleus of A . For example,
the nucleus of every divisible torsion-free group is Q . Clearly, if N is the
nucleus of a group A and q�N0Z then the function x O qx is an endo-
function but not a term function of A . Thus A cannot be endoprimal as an
abelian group. On the other hand, this function is a term function of the
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N-module A , so A can be endoprimal over N . Therefore, when investigat-
ing endoprimality of abelian groups, it may be convenient to consider
them as modules over their nuclei, that is, to regard the functions (1)
with ki �N as term functions. It is easy to understand that the nucleus of
a mixed group A is the subring of Q generated by the inverses of all pri-
mes p such that A/T is p-divisible and Tp 40.

For this case, as is easy to see, our main theorem takes the following
form.

THEOREM 1.28. Let A be a group and P be the set of those primes p
for which A/T is p-divisible. Assume A has torsion-free rank 1. Then A
is endoprimal over its nucleus if and only if T is unbounded and, for
every p�P , at least one of the following three possibilities occurs: 1)
Tp 40; 2) Tp is not reduced; 3) Tp is not a direct summand of
A . r
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